
HAL Id: hal-01134837
https://enpc.hal.science/hal-01134837

Submitted on 4 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Investigation of the effect of aggregates’ morphology on
concrete creep properties by numerical simulations
F. Lavergne, Karam Sab, J. Sanahuja, Michel Bornert, C. Toulemonde

To cite this version:
F. Lavergne, Karam Sab, J. Sanahuja, Michel Bornert, C. Toulemonde. Investigation of the effect of
aggregates’ morphology on concrete creep properties by numerical simulations. Cement and Concrete
Research, 2015, 71, pp.14-28. �10.1016/j.cemconres.2015.01.003�. �hal-01134837�

https://enpc.hal.science/hal-01134837
https://hal.archives-ouvertes.fr


Investigation of the effect of aggregates’morphology on
concrete creep properties by numerical simulations

F. Lavergnea, K. Saba,∗, J. Sanahujab, M. Bornerta, C. Toulemondeb
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Abstract

Prestress losses due to creep of concrete is a matter of interest for long term
operations of nuclear power plants containment buildings. Experimental studies
by Granger (1995) have shown that concretes with similar formulations have
different creep behaviors. The aim of this paper is to numerically investigate the
effect of size distribution and shape of elastic inclusions on the long term creep of
concrete. Several microstructures with prescribed size distribution and spherical
or polyhedral shape of inclusions are generated. By using the 3D numerical
homogenization procedure for viscoelastic microstructures proposed by Šmilauer
and Bažant (2010), it is shown that the size distribution and shape of inclusions
have no measurable influence on the overall creep behavior. Moreover, a mean-
field estimate provides close predictions. An Interfacial Transition Zone was
introduced according to the model of Nadeau (2003). It is shown that this feature
of concrete’s microstructure can explain differences between creep behaviors.

Keywords: Modeling, Creep, Particle Size Distribution, Microstructure,
Interfacial Transition Zone

Introduction

Concrete structures evolves due to time-dependent phenomena such as shrink-
age and creep. Predicting basic creep is necessary to estimate the time-dependent
prestress losses in thick structures such as nuclear containment buildings. For this
purpose, experimental investigations were conducted by Granger [1] in order to
assess the basic creep of six concretes with various formulations.
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According to this study, concretes with apparently similar formulation may
exhibit different long term behaviors. For instance, the concrete from Flamanville
and the one from Paluel have very similar formulation regarding cement compo-
sition, water to cement ratio and grain size distribution as shown in table [Tab.
1]. Fillers were added to the concrete from Paluel so that the total amount of
fine aggregates (smaller than 100 µm) was almost equal in these two concretes.
However, the major difference between the two concretes is the nature of the
aggregates : crushed granite (granodiorite) for Flamanville and semi-crushed
sand-lime river gravel for Paluel. Actually, the time-dependent strains of these
two concretes are very different as shown in figure [Fig. 1] : The average strain
measured on concrete samples from Flamanville after three years of the same
compressive loading was twice as much as the one measured on samples from
Paluel. Since tests revealed comparable mechanical properties for aggregates,
Granger [1] also measured the basic creep strains of the cementitious matrices
without finding noticeable deviation. He concluded that the differences of overall
creep properties were due to the aggregates (shape, mineralogy or interface with
the cement paste).

Flamanville Paluel

(12.5/25mm) 700kg 700kg
(5/12.5mm) 340kg 348kg
(0/0.8mm) 170kg

(0.1/0.5mm) 485kg
(0/5mm) 140kg 722kg

Filler Piketty 50kg
Cement (St Vigor) 375kg 375kg

(CPA HP PM)
Water 180kg 180kg

BV40 plasticizer 1.5kg 1.56kg

Young Modulus of aggregates 51-65GPa 65GPa
Young Modulus of concrete at 28 days 31.9GPa 38.4GPa

compressive strength fc at 28 days 50MPa-53.4MPa 43.0MPa-52MPa

Table 1: Formulation of two concretes of Granger [1]

Because experimental results are difficult to obtain, a natural way to perform
parametric studies is to rely on models. The purpose of this paper is to numer-
ically investigate the effect of size distribution and shape of inclusions on the
long term creep of a matrix-inclusion material where the viscoelastic phase is the
matrix. The matrix has the same behavior as a cement paste, the inclusions are
perfectly bonded to the matrix and they have the elastic properties of aggregates.

One could use X-ray tomography images as inputs of 3D FFT-based compu-

2



 0

 20

 40

 60

 80

 100

 0.01  1  100  10000

ε
x
/σ

x
 (

1
0

-6
M

P
a

-1
)

t-t0 (days)

basic creep, t0=28 days

Flamanville

Paluel

Figure 1: Results of uniaxial compressive creep tests reported by L. Granger [1]. Although the
formulations of concretes from Flamanville and Paluel were comparable, the basic creep strain
(10−6MPa−1 vs days) proved different. The compressive stress was 12 MPa and the concrete
was loaded at t0 = 28 days.

tations [2] . This procedure has two drawbacks: the image must be segmented
in order to differentiate the phases, and boundary effects may occur since the
sample is not the unit cell of a periodic material. Filtering strategies have re-
cently been defined to mitigate the effect of such boundary effects and get a
macroscopically consistent estimate of the overall behaviour [3]. This study is fo-
cused on numerically generated periodic microstructures so as to tightly control
the volume fraction of inclusions, their sizes and their shapes. The generation
of several microstructures with prescribed grain size distribution and spherical
or polyhedral shape of inclusions is made by dense sphere packing or Random
Sequential Adsorption algorithm. The 3D numerical homogenization procedure
for viscoelastic microstructures proposed by Šmilauer and Bažant [4] is used to
compute the time-dependent response to a constant applied load. The Interface
Transition Zone is described, the model of Nadeau [5] is recalled and the assump-
tion to extend it to viscoelasticity are exposed. Then, the obtained results are
compared to the predictions of mean-field homogenization.

In the first part of the paper, the microstructure generator is described, the
3D numerical homogenization method is introduced, some numerical tests are
performed to validate and assess the performances of the simulations, the case
of an Interfacial Transition Zone is exposed and its effect on the creep strain
is numerically estimated. In the second part, the micromechanics methods are
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recalled and their predictions are compared to the numerical results. The paper
ends with a discussion and a conclusion.

1. Simulation of viscoelastic matrix-inclusion microstructures

1.1. Generation of matrix-inclusion microstructures

In this section, the microstructure generator and the 3D numerical method
for computing the overall viscoelastic response are presented. A matrix-inclusion
microstructure is generated according to given volume fraction, sieve curve and
shape of inclusions.

1.1.1. Scope statement

Some features are to be enforced in order to obtain a valuable matrix-inclusion
microstructure generator :

• Inclusions are placed in a cubic cell and they should not overlap.

• The microstructure should be periodic.

• A tight control of the volume fraction, the size distribution and the shape
of inclusions are required.

• High volume fractions of inclusions (> 50%) are needed to represent realistic
microstructures of concrete.

• The simulated material should be isotropic.

• The generator should run as fast as possible.

At least two methods may fulfill these requirements. The Random Sequential
Adsorption (RSA) algorithm [6] is the simplest method to design and implement.
Its ability to handle convex polyhedra makes it useful to assess the effect of shape
of inclusions. A high volume fraction of inclusions (up to 68%) may be reached for
wide sieve curves. On the other hand, this method fails to simulate monodisperse
grain size distribution for volume fraction greater than 30%.

The other algorithm is the one of Lubashevky and Stillinger [7] which is dedi-
cated to pack efficiently sets of ellipsoidal inclusions. In the case of monodisperse
spheres, volume fraction up to 63% can be reached. To the authors’ knowledge,
there is no extension of this method to polyhedral inclusions.
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1.1.2. Determination of the number of inclusions and their volumes

Given the sieve curve (volume fraction vs particle diameter), the volume frac-
tion of inclusions fg and the dimension l of the cubic cell, the starting point,
common to both methods, is the generation of the random number of the inclu-
sions in the cubic cell and their volumes. The sieve curve is first approximated
by a piecewise linear function of the equivalent diameters on twenty classes, each
class representing 5% of the total volume of inclusions. The equivalent diameter

of an inclusion, d, is given by d = 3

√
6
πv, where v is the volume of the inclusion.

Each class must provide a volume V5% = 0.05 × l3 × fg of inclusions. On each
class i ∈ {0, 1, ..., 19}, the distribution of diameters is such that the approxi-
mated sieve curve s(d) is an affine function of d on the interval [di+1, di[ with
Dmax = d0 > d1 > ... > d20 = dmin. [Fig. 2]. The classes are filled one after
another, starting from the class 0 of largest inclusions [d1, d0[ to the class 19 of
the smallest inclusions [d20, d19[. While the volume of the generated inclusions in
class i is less than V5%, a new inclusion of diameter dpicked is repeatedly generated
in this class as explained hereafter.
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Figure 2: The sieve curve : volume fraction vs particle diameter. This curve is approximated
by a piecewise linear function on twenty classes, each class representing 5% of the total volume
of inclusions.

Let Fi(d) be the probability to pick in the class i an inclusion of diameter

lower than d. Since the sieve function is piecewise linear, F ′i (d)
π

6
d3 must be

uniform. Taking into account Fi(di+1) = 0 and Fi(di) = 1 , we find that Fi is
given by
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Fi(d) =
d−2 − d−2i+1

d−2i − d
−2
i+1

Hence, dpicked is generated by :

dpicked = F−1i (R()) =
(
d−2i+1 + (d−2i − d

−2
i+1)R()

)− 1
2

where F−1i is the inverse function of Fi and R() is the generator of the uniform
random law on [0, 1[

1.1.3. Convex polyhedra and the RSA algorithm

A convex polyhedron is generated aiming at controlling its shape [Fig.3,4]. A
center is generated and a number of points is picked according to a Poisson law
(parameter λ > 0). Then, directions are selected on the unit sphere according to
the uniform random law, and distances to the center are generated according to
a log-normal law (parameters µl ∈ R, σl > 0). The polyhedron is defined as the
convex hull of those points which is computed through the C++ interface of the
Qhull software [8, 9].

Each convex polyhedron is generated according to the previously described
procedure and is placed into the cubic cell avoiding overlapping with already
generated polyhedra : its position is randomly picked in the cubic cell until
non-overlapping is achieved. By putting the bigger inclusions first, high volume
fraction may be reached. This method has already been used to generate con-
crete and mortar microstructures with spherical [10] or polyhedral inclusions[11].
Unlike [11], the computation of overlapping between polyhedra is performed an-
alytically in the proposed generator. Indeed, overlapping between two polyhedra
is computed thanks to the Gilbert-Johnson-Keerthi distance algorithm [12] as
implemented in the Bullet physics library [13]. This procedure suppresses the
exclusion-zone of one voxel adopted in [11] and it speeds up the computations.
In addition, in order to limit the potential pair of polyhedra to be tested, the
cubic cell is divided into sectors : two polyhedra can potentially overlap if they
share the same sector. Moreover, each polyhedra is embedded in a rectangular
bounding box because testing overlapping of boxes is much easier than testing
overlapping of polyhedra. A polyhedron may be present in different sectors of
the cubic cell in order to ensure periodicity.

The maximum reachable volume fraction depends on the size distribution
and on inclusions’ shape. A wide range of inclusions’ sizes allows larger volume
fractions. Simulating spherical inclusions is faster than simulating unaligned
elongated inclusions with sharp edges. Artificial concrete microstructures with
high volume fraction (60− 68%) and polyhedral inclusions can be built with the
RSA method for some size distributions [Fig. 3]. In particular, the ratio between
the largest inclusions’ equivalent diameter to the smallest one must be less than
20. If this ratio is too large, the number of inclusions would become prohibitive.

6



If this ratio is too small, reaching the given volume fraction would take too long
or could not be achieved.
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Figure 3: A section of a 4 cm-wide sample of a concrete made of coarse sand (d > 0.5 mm) and
small gravel (d < 13.5 mm) built by the RSA algorithm is shown. There are 28760 polyhedra
in the cubic cell and the volume fraction is 68%.
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Figure 4: On the left, polyhedra are rather round whereas polyhedra feature sharp edges in the
middle. The RSA algorithm has been used. The sieve curve of the corresponding mortar is
presented on the right.

1.1.4. Lubashevsky and Stillinger algorithm for spherical inclusions

The RSA algorithm described above cannot achieve high volume fraction
for monodisperse particles. For this reason, we use the Lubashevsky and Still-
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inger algorithm for generating matrix-inclusion microstructures with monodis-
perse spherical inclusions.

In our implementation, we use the algorithm described in [7] and [14] for sim-
ulating polydisperse packing of spherical inclusions. This dynamic, event-driven
algorithm enables very high packing ratio of spheres. Seeds are placed in the cubic
cell and their growth rate are chosen to comply with the size distribution. Each
radius increases proportionally to time t and each center moves with a constant
velocity. As spheres collide, the algorithm changes their velocities to avoid over-
lapping. Thanks to uniform speeds and growth rates, collisions, or events, can
be computed analytically. There is no need for time steps since nothing happen
until the next event. Therefore the procedure jumps from one event to another
and the program runs tremendously fast. This method has been extended to el-
lipsoids [15, 16], but this implementation is limited to spherical inclusions or sets
of spheres. This algorithm has already been used to model composite materials
in the range of elasticity [17].

1.2. Numerical determination of the effective viscoelastic properties of heteroge-
neous materials

1.2.1. The unit cell problem

The aim of this section is to numerically determine the overall viscoelastic
behavior of a matrix-inclusion microstructure where the inclusions are elastic
and the matrix viscoelastic.

The strain tensor ε(t) in a viscoelastic material depends on the history of
stress tensor σ(t). If the constitutive law is linear, the Boltzmann superposition
principle states that the material properties are defined by a compliance function
(fourth order tensor), J(t, t′), such that :

ε(t) =

∫ t

0
J(t, t′)

dσ

dt
(t′)dt′

If the elapsed time since loading is the only relevant parameter, the material
is non-aging :

J(t, t′) = J(t− t′)
The determination of the overall viscoelastic behavior of a periodic microstruc-

ture can be obtained by solving the following auxiliary problem on the periodic
unit cell V .

div σ(x, t) = 0 x ∈ V
ε(x, t) =

∫ t
0 J(x, t, t′)dσdt (x, t′)dt′ x ∈ V

ε(x, t) = E(t) +∇su(x, t) x ∈ V
u(x, t) periodic x ∈ ∂V

σ(x, t) ·n(x) skew − periodic x ∈ ∂V
Here E(t) is the time-dependent overall strain, u(t, x) is the displacement field

in V ,∇su(x, t) is its symmetric gradient, ∂V is the boundary of V and n(x) is
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the outer normal to ∂V . Actually, E(t) is the volume average of ε(x, t) and we
denote by Σ(t) the volume average of σ(x, t).

1.2.2. Numerical discretizations

We use the computational method of Šmilauer and Bažant in [4] developed for
cementitious materials. This method which relies on the exponential algorithm
[18, 19, 20] is a time-iteration procedure to solve the viscoelastic problem for the
case of steady loads. It features an integration of the constitutive equations on
each time step assuming a constant stress rate. It enables the time step to grow
exponentially when performing a relaxation (or creep) simulation. This method
has recently made use of the FFT algorithm as the solver for the unit cell tangent
problem [4, 21].

Let ∆ε(x) = ε(x, ti+1) − ε(x, ti), ∆σ(x) = σ(x, ti+1) − σ(x, ti) and ∆u(x) =
u(x, ti+1)− u(x, ti) be respectively the strain, stress and displacement increment
between time ti and ti+1. These fields are solution of the following unit cell
tangent problem :

div ∆σ(x) = 0 x ∈ V
∆ε(x) =

∫ ti+1

ti
J(x, ti+1, t

′)dσdt (x, t′)dt′ + ε0(x) x ∈ V
∆ε(x) = ∆E +∇s∆u(x) x ∈ V
∆u(x) periodic x ∈ ∂V

∆σ(x) ·n(x) skew − periodic x ∈ ∂V
where

ε0(x) =

∫ ti

0

[
J(x, ti+1, t

′)− J(x, ti, t
′)
] dσ
dt

(x, t′)dt′

and
∆E = E(ti+1)− E(ti).

σ

γk

ε

Ck

τkCk

Figure 5: The rheological model is made of a series of Kelvin chains

It is assumed that the stress rate dσ
dt in the interval [ti : ti+1] is constant and
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that the compliance corresponds to a series of Kelvin chains [Fig. 5] :

J(t− t′) =

∫ t

t′

n∑
k=1

τ

τk
e
− τ−t

′
τk C−1k dτ + C−10

where Ck, k = 0, 1, ..., n are n + 1 fourth-order elasticity tensors and τk, k =
1, 2, ..., n are n characteristic times. The integration of the constitutive equations
on the time step gives the following incremental constitutive equation :

∆σ(x) = Ci
t(x)(∆ε(x)− εi(x))

where Ci
t(x) and εi(x) are explicitly given by :

(Ci
t)
−1 = C−10 +

n∑
k=1

1− τk
1− e−

ti+1−ti
τk

ti+1 − ti

C−1k

εi =
n∑
k=1

τk(1− e
− ti+1−ti

τk )γik

where γik are n symmetric second-order strains corresponding to internal vari-
ables of Kelvin chains [Fig. 5]. They are defined incrementally as γ0k = 0 and for
i ≥ 0 :

γi+1
k =

1− e−
ti+1−ti
τk

ti+1 − ti
C−1k ∆σ + e

− ti+1−ti
τk γik

Notice that the choice of a series of Kelvin chains combined with the above
described exponential algorithm allows for the introduction of these internal vari-
ables. Hence, storing these few internal variables enables large computations
(FEM or FFT).

To solve the unit cell tangent problem at each time step, a method is required.
The FFT algorithm of H. Moulinec and P. Suquet has proved a powerful tool to
compute the elastic [22] and viscoelastic [23] response of a periodic microstruc-
ture. It takes digital images of materials and prestress as inputs. Both the basic
[Alg.1][22] and the accelerated [Alg.2][24, 25] versions are written for this study.
An isotropic reference material C∗0 is to be introduced and its Green operator
Γ0 is applied in the Fourier space. The loading can be either the prescribed
macroscopic strain or the prescribed macroscopic stress as explained in [22].

Regarding implementation details, the MPI extension of the FFTW library
[26, 27] and the PETSc library [28, 29, 30] are combined. The software routinely
performs its computation on several processors on shared-memory machines as
well as on clusters (Ivanhoe at EDF R&D). Using less than twenty nodes and
about 100-200 processes on this cluster, the size of the problem may be increased
up to 700 × 700 × 700 for elasticity and 400 × 400 × 400 for viscoelasticity with
8 Kelvin chains and our computations last less than two hours (180 time steps).
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1.2.3. Constituents’ properties

Long term behavior of concretes were experimentally identified by Granger
in [1]. Characteristic times τk and stiffness Ck of Kelvin chains correspond to a
creep test of a concrete (Penly) loaded at 28 days. Eight characteristic times were
introduced, one for each decade, from 0.002 days to 20000 days. Properties of
the cement paste are assumed to be similar. To model a viscoelastic cimentitious
matrix, the elastic and viscoelastic stiffnesses of a concrete were divided by three
[Tab. 2]. Its Young modulus is Ematrix = 12 GPa, which is comparable to the
measured ones of reconstituted cementitious matrices [1]. A reverse identification
of these values could have been performed. All Poisson’s ratios are assumed to
be 0.2. The behavior of inclusions is elastic isotropic (Young Modulus E = 60
GPa and Poisson’s ratio 0.2 ).

Concrete, L. Granger cement paste
τk (days) Young Modulus E, GPa Young Modulus E, GPa

Elastic 36.02 12
0.002 1901.73 634
0.02 1426.16 475
0.2 546.23 182
2 240.54 80.2
20 112.68 37.6
200 54.79 18.3
2000 36.5 12.2
20000 27.04 9.01

Table 2: Mechanical behavior of a concrete identified on a creep test [1] and the behavior of
the defined cement paste. All Poisson ratios are assumed to be 0.2.

1.2.4. Studied microstructures

To explore the effect of grain size distribution and shape, the volume fraction
was set to 63% and three different microstructures were defined :

• Unimodal : all inclusions are spherical and their diameters are equal. There
are 150 inclusions for a volume of 8 mm3 and their radius is about 0.2 mm.

• Bimodal : all inclusions are spherical. Two diameters coexist : about 0.2
mm and 1 mm.

• Concrete : inclusions are polyhedra and their grain size distribution is
described on [Fig. 3]. Regarding their shape, crushed inclusions correspond
to convex hulls of about λ = 12 points whose distances to center are picked
according to a log-normal law (µl = 0.08, σl = 0.02) before scaling.
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With these parameters, the polyhedral inclusions are similar to inclusions
used in concrete mixes. Indicators describing the inclusions’ shape such
as elongation ratio and flakiness ratio have been defined and measured on
real samples of aggregates [31, 32, 33, 34]. For an ellipsoidal inclusion with
principal axes of lengths a > b > c, the elongation ratio is a/b and the flak-
iness ratio is c/b. The average elongation ratio of the polyhedral inclusions
used in our simulations is 1.08 and their average flakiness ratio is 0.8. The
elongation index and flakiness index correspond to the volume fraction of
inclusions featuring respectively an elongation ratio greater than 1.8 and a
flakiness ratio lower than 0.6. For normal mix design, the combined (flaki-
ness + elongation) index for coarse aggregates must be limited to 25%, for
workability reasons [35]. In our simulations, the elongation index is less
than 1% and the flakiness index is 11%.

Examples of these microstructures are displayed on [Fig. 9].

1.2.5. Validation of the numerical procedure

To ensure the reliability of the method and its implementation, some basic
tests were performed.

Time Discretization
Is the response of a homogeneous microstructure precisely computed ? The

integration of the constitutive law on the time step may induce a numerical error.
In the case of Kelvin chain, the result of a relaxation test is estimated by the
Laplace-Carson transform and it serves as a reference to compute the relative
numerical error for the cement paste (Fig.6). It should be emphasized that the
long term stress of a series of Kelvin chain under a constant strain is steady.
Therefore the numerical error due to time discretization vanishes. Different values
of the rate b = ti+2−ti+1

ti+1−ti of the geometric growth of the time steps were tested. In
all our simulations, we chose the geometric growth b = 1.12. Therefore, 180 unit
cell tangent problems have to be solved to cover the range between t−t0 = 5×10−6

days and t− t0 = 21900 days where t0 is the time of the initial loading.
Space discretization
In the case of heterogeneous microstructures, the discretization of the FFT

grid also triggers numerical errors :

• The stress and strain field are stored per voxel which induces numerical
errors. See [36] for further discussions about this issue.

• The heterogeneous microstructure is projected on a grid. Therefore, there
is a loss of information about the local behavior of the material. A crit-
ical comparison of numerical methods working on conforming meshes or
Cartesian grids was performed in the range of thermal conduction and lin-
ear elasticity at high phase contrast [37]. FFT solvers lead to very good
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Figure 6: Time discretization. Left : Dilation strain during a hydrostatic creep test on a
cement paste. The closed-form response and numerical estimate through the iterative procedure
remain close. Right : Relative error on εx during an uniaxial relaxation test on a homogeneous
microstructure. The numerical error depends on the base b for the geometric growth of the time
step.

approximations of overall properties since extremely fine meshes can be
considered.

In order to lower the error due to the projection on a grid, for each voxel, a
local volume fraction based on 64 sensing points is computed and a Reuss-like
constitutive law is computed and assigned to each voxel. Therefore, the mi-
crostructure is made of black voxels (pure matrix), white voxels (pure inclusions)
and gray voxels (composite). To estimate the error due to discretization, the re-
sponse of the unimodal microstructure with a volume fraction of 55% is computed
at various resolutions [Fig. 7 8]. The use of a low contrast between the Young
modulus of the phases (< 20), the ability of parallel FFT to deal with large grids
and the choice of the Reuss bound for gray voxel lead to a mesh-independent
overall response.

1.2.6. Representative Volume Element

It is well-known that the asymptotic overall response should not depend on
the generated sample neither on the size of the unit cell which must be large
enough to be representative of the microstructure ([38, 39] among others). For
each microstructure defined in section 1.2.4, different size of the unit cell and
many samples were generated. Numerical hydrostatic and shear creep tests are
performed.

Two criteria were defined to ensure that the unit cell is a representative volume
element :

• For a hydrostatic creep test, the unit-cell hydrostatic compliance at time t
is defined as 1

3K(t) = tr(ε(t))
tr(σ) and for a shear creep test, the unit-cell shear
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Figure 7: Top : One microstructure of concrete of size 40 mm made of 63% of inclusions at
discretization 1003,2003 and 4003. Bottom : The delayed responses to hydrostatic (left) and
shear(right) creep tests are computed.

compliance is 1
2G(t) =

εxy(t)
σxy

The corresponding relative standard deviation
of the compliance is defined as the ratio of the standard deviation to the
average of the unit-cell compliance over the samples that were generated. It
represents the statistical dispersion of the estimated overall time-dependent
strains and it is expected to decrease as the size of the unit cell increases.

• An anisotropic indicator a is defined to check that the unit-cell compliance
is isotropic. For a hydrostatic creep test, it is defined as

a =

√
(εdevxx )2 + (εdevyy )2 + (εdevzz )2 + 2ε2xz + 2ε2yz + 2ε2xy

(tr(ε)/3)2

where εdev is the deviatoric part of the overall strain. For a shear creep
test, σxy being the direction of loading, it writes :

a =

√
ε2xx + ε2yy + ε2zz + 2ε2xz + 2ε2yz

ε2xy

a is positive and a is null if and only if the overall strain corresponds to the
response of an isotropic material.
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a discretization on a 7003 grid. Assigning the Reuss-like behavior to gray (composite) voxels is
less sensitive to discretization that the Voigt-like behavior.

The results of these tests are described in [Tab. 3]. The relative standard de-
viation of the estimated macroscopic compliances are very low and the overall
response is isotropic. These features are obtained for cubic unit cells of concrete
of 4 cm×4 cm×4 cm size, the largest inclusion diameter being less than 1.25 cm
and the constituents’ properties being those described in section 1.2.3. In the case
of bimodal microstructures, a 2mm unit cell, twice as large as the largest aggre-
gates, was sufficient to retrieve a precise estimate of the overall strain. The frame
of periodic homogenization allows precise results on small unit cells in the range
of elasticity [40, 41]. Gal and Kryvoruck have performed 3D elastic computations
on 50mm large samples of concrete, the maximum diameter of aggregates being
15mm [42] . Our simulations indicate that the size of the RVE remains small in
the range of linear viscoelasticity, as long as the elastic contrast between phases
is limited, while it may enlarge for phenomena like plasticity[43] or fatigue[44].

1.2.7. Influence of grain size distribution and shape

Responses to hydrostatic and shear creep tests are computed, the matrix
being made of cement paste. The microstructures are those defined in section
1.2.4 on page 11. The volume fraction of inclusions is set at 63%.

The overall time dependent strains remain close, even for very different mi-
crostructures[Fig. 9]. The sieve curve and the shape of inclusions have little effect
on the overall viscoelastic behavior of the matrix-inclusion composite. Therefore,
the only relevant parameter is the volume fraction of inclusions.

Thanks to 3D computations, stress concentrations can be estimated. During
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microstructure

size of
cubic
cell

(mm)

maxi-
mum of
inclusion
diameter

(mm)

average
compliance,

in
10−6MPa−1

compliance
relative

standard
deviation

anisotropic
indicator a

number of
tests

hydrostatic test

t− t0 = 0 day
unimodal 2 0.4 19.7 0.003 0.01 10
unimodal 4 0.4 19.8 0.0005 0.003 5
bimodal 2 1 19.8 0.0005 0.013 10
bimodal 4 1 19.9 0.0003 0.004 5
concrete 40 14 19.8 0.0005 0.012 10

t− t0 = 21900
days

unimodal 2 0.4 47.7 0.022 0.03 10
unimodal 4 0.4 47.2 0.003 0.008 5
bimodal 2 1 48.9 0.004 0.05 10
bimodal 4 1 48.9 0.002 0.016 5
concrete 40 14 48.9 0.003 0.04 10

shear test

t− t0 = 0 day
unimodal 2 0.4 38.8 0.004 0.007 10
unimodal 4 0.4 38.9 0.001 0.002 5
bimodal 2 1 39.3 0.003 0.007 10
bimodal 4 1 39.4 0.001 0.003 5
concrete 40 14 39.3 0.002 0.006 10

t− t0 = 21900
days

unimodal 2 0.4 88.9 0.02 0.02 10
unimodal 4 0.4 88.3 0.005 0.005 5
bimodal 2 1 94.1 0.01 0.03 10
bimodal 4 1 93.8 0.003 0.01 5
concrete 40 14 92.7 0.006 0.02 10

Table 3: For each kind of microstructure and different size of the unit cell, many samples are
built and numerical hydrostatic and shear creep tests are performed. The relative standard
deviation of the estimated macroscopic compliances are very low and the overall response is
isotropic.
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a shear creep test σxy = 1MPa, the instantaneous local shear stress is above
1.37MPa in 5% of the microstructure. After 60 years, the local shear stress
is above 1.71MPa in 5% of the microstructure : for prescribed constant average
stress, the stress distribution in the microstructure evolves with time. The matrix
tends to relax while the stress increases in inclusions [Fig. 10]. The concrete and
the bimodal microstructures cannot be distinguished based on the probability
distributions of the stress component σxy during a shear creep test [Fig. 10].

The limited heterogeneity between the inclusions and the matrix may be one
of the reasons for the overall time dependent strains being so close. On the
first time step, the elastic loading, the inclusions are 5 times stiffer than the
matrix. On the last time step, 60 years after loading, the tangent behavior of the
inclusions is 14 times stiffer than the one of the matrix.

As long as concrete is modeled as a matrix-inclusion microstructure, the dis-
crepancies between creep strains of similar concretes cannot be attributed to the
sieve curve or to the shape of inclusions. The description of concrete’s microstruc-
ture must be refined.

Considering the cementitious matrix as homogeneous seems arguable as there
is no strong scale separation in concrete. Considering a 40 mm-wide sample of
concrete and a 4003 discretization, each voxel is 100 µm wide. At this scale, SEM
images [45, 46, 47] clearly show that the behavior of the matrix may differ from
one voxel to another due to fine aggregates, bundled partly unhydrated cement
grains or a variable porosity [Fig. 11]. The assumption of a matrix-inclusion
material might also be questionable for concrete since there sometimes exists an
Interfacial Transition Zone between the inclusions and the cement paste. This
feature is studied in the next section.

1.2.8. Introducing an Interfacial Transition Zone

The Interfacial Transition Zone is a ≈ 20 µm-thick layer of the cement paste
that is more porous than the rest of the cement paste and has a different chemical
composition [45]. It is due to the imperfect packing of cement grains (< 50 µm)
on aggregates known as wall effect and it evolves during hydration. This feature
may be observed on SEM images [45, 46, 47] and it might affect the mechanical
properties [45, 48]. Garboczi and Berryman have successfully compared their
analytical model to numerical elastic computations in the range of elasticity, the
ITZ being introduced as effective layers around particles[49]. For the elastic 3D
computations of Gal and Kryvoruck [42], this porous zone is merged with the
aggregates. This procedure increases the volume fraction of inclusions, but it
decreases their elastic stiffness, especially for small aggregates if the thickness of
the ITZ is taken as uniform. For the 2D finite element computations of Grondin
[50], an effective mixed interphase around each aggregate is formed by the ITZ
and by a volume fraction of the bulk cement paste. Micromechanics methods may
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different microstructures. On the top and bottom left, the relaxation of the matrix and the
increase of stress in aggregates are displayed. On the bottom right, there are some differences
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Figure 11: A blue 100 µm grid is put on top of a SEM image from Scrivener [45]. The red lines
indicate the largest inclusions. The cement paste is clearly heterogeneous over a 10 0µm voxel.
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also take account of the ITZ as an effective layer surrounding inclusions [5, 49]
or as an imperfect bonding between inclusions and matrix [51].

Representing the ITZ would not be possible a concrete scale since the size of
the voxel would be 100 µm. Multiscale approaches may deliver a consistent way to
set the behavior of composite voxels [3], since the finer details of the microstruc-
ture cannot be accurately described at concrete scale. To perform realistic
homogenization computation, a 4 mm-wide sample of a mortar was considered,
so that 10µm details such as an ITZ can be pictured . The model of Nadeau [5]
described hereafter was used to estimate the local behavior as a function of the
distance to the nearest inclusion. Let δ be the thickness of the ITZ.

• The local volume fraction of cement αc(di) depends on the distance to the
nearest inclusion di

αc(di) =

 ᾱc

(
1− 0.5

(
δ − di
δ

)2
)

di < δ

ᾱc di > δ

where ᾱc is the volume fraction of cement far from the inclusions. As
described below, it is computed for each microstructure so that the overall
water to cement ratio w/c is equal to 0.48.

Let f(di)δd be the volume fraction of the cementitious matrix located at a
distance of the nearest inclusion between di and di+δd. f(di) is numerically
estimated for each microstructure. The following equality stands :

w/c =

∫∞
0 αw(x)f(x)dx

ρc
∫∞
0 αc(x)f(x)dx

where ρc ≈ 3.15 is the density of cement and αw(di) is the local volume
fraction of water. If cement and water are the only constituents of the
cement paste, αw(di) + αc(di) = 1 for all di and :∫ ∞
0

αc(x)f(x)dx =
1

1 + ρcw/c

and finally :

ᾱc =

(
(1 + ρcw/c)(

∫ δ

0
(1− 0.5

(
δ − x
δ

)2

)f(x)dx+

∫ ∞
δ

f(x)dx)

)−1
• The elastic behavior C0 as a function of the local water to cement ra-

tio, equal to αw
ρcαc

, is provided by fit on experimental tests, as reported by
Nadeau [52]. To set viscoelastic parameters, two assumptions were made.

1. The viscoelastic Poisson’s ratio of each Kelvin chain is the same as the
elastic one.

20



2. The effect of water to cement ratio on the elastic and viscoelastic
parameter are identical : Ck = AkC0(

αw
ρcαc

) where Ak is a constant.
For instance, if increasing the water to cement ratio from 0.48 to 0.55
decreases the elastic Young Modulus (C0) by 30%, then the drop of
all viscoelastic modulus of Kelvin chains Ck, k ≥ 1 is also 30%.

The assumption Ck = AkC0(
αw
ρcαc

) holds true if the cement paste is considered
as a porous material which solid phase is a non aging linear viscoelastic material
with a uniform Poisson’s ratio. Indeed, in this case, at the scale of the porous
material, the local compliance writes :

J(t, x) = J(0, x)f(t)
where f(t) is a scalar function of time t. The determination of the overall

response of the cement paste as a function of porosity necessitates the resolution
of a homogenization problem on the unit cell representing the porous material.

In the Laplace-Carson space (Appendix B), the constitutive equation for this
unit cell problem becomes :

J∗(p, x) = J(0, x)f∗(p)
Let ε(x) be the elastic solution of the unit cell problem for prescribed overall

strain E. Then, ε(x) is also the solution of the unit problem with prescribed
overall strain E for all p in the Laplace Carson space. Therefore :

Jhom,∗(p) = Jhom(0)f∗(p)
Inverting the Laplace Carson transform gives :
Jhom(t) = Jhom(0)f(t)
This demonstrates that if the cement paste is a two-phase porous material, the

local compliance having a uniform in time Poisson’s ratio, then the cement paste
has a uniform in time Poisson’s ratio and the effect of time and microstructure
are uncoupled.

If the effect of changing the water to cement ratio were limited to a change
of porosity in a two-phase porous material, the consequence on the viscoelastic
behavior would be similar to the one described above. But it is known that the
microstructure of the cement paste includes porosity, elastic unhydrated cement,
elastic or viscoelastic products of hydration and other additives [53]. The higher
the water to cement ratio is, the higher the hydration degree becomes [54] and
the hydrated phases are assumed to be responsible for the viscoelastic behavior

of cement paste [4]. Therefore, the assumption Ck = AkC0(
αw
ρcαc

) probably

underestimates the long term effect of an ITZ.
Numerical tests were performed on a 4 mm wide cubic cell depicting the

microstructure of a mortar [Fig. 12]. At this scale, a voxel is approximately
10 µm wide and the ITZ can be introduced. Various thickness δ between 0 µm
(no ITZ) and 50 µm were tested. The larger the ITZ is, the lower the elastic
and viscoelastic stiffnesses are. The relative decreases of identified viscoelastic
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Lamé coefficient λ (GPa)
at elastic time step, t− t0 = 0,

for δ = 0µm, 20µm and 50µm.
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Figure 12: Top : an ITZ can be pictured on the microstructure of a mortar, depending on its
thickness δ. Bottom left : the local water to cement ratio is displayed as a function of the
distance to the inclusion. The corresponding elastic Young modulus and the Young modulus
of a 10 µm voxel overlapping with inclusions are also displayed. Bottom right : the numerical
solution to uniaxial creep test depends on the thickness of the ITZ. Both the elastic response
and the the long term strain are modified by the introduction of an ITZ.

stiffnesses are twice larger than the one of the elastic stiffness [Tab. 4]. Moreover,
according to the previous paragraph, it is likely that this effect is underestimated
by our computations.

Therefore, the presence of an ITZ is a plausible explanation of discrepancies
between creep strains of various concretes.

2. Comparison of numerical and micromechanics methods

2.1. Semi-analytic methods

2.1.1. Linear viscoelastic homogenization

Micromechanics methods remain practical to upscale the overall viscoelas-
tic properties. In the frame of non-aging creep, the Laplace-Carson transform
turns the time-depend problem into several elastic problems thanks to the cor-
respondence principle [55, 56]. In this space, the Hashin-Shtrikman bounds [57],
the Mori-Tanaka model [58, 59], the three-phase model of Christensen & Lo[60]
or the n + 1-phase spherical model of Hervé & Zaoui[61] deliver estimates of
the macroscopic response. Coming back to the real space requires inverting the
Laplace-Carson transform with numerical tools such as the Gaver-Stehfest algo-
rithm [62, 63] or the collocation method [64, 65]. Semi-analytical elastic homog-
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no ITZ
δ = 0

δ = 20µm δ = 50µm

τk

Young
Modulus of

Ck

relative
difference
to no-itz

case

Young
Modulus of

Ck

relative
difference
to no-itz

case

Young
Modulus of

Ck

relative
difference
to no-itz

case

0 35 0 28.6 -0.18 27.7 -0.21
20 181 0 123 -0.32 116 -0.36

20000 41 0 26.7 -0.35 25.3 -0.39

Table 4: Effect of the ITZ on the identified macroscopic Young modulus of Ck. The effect of
the interface is more important on the long term creep behavior than on the elastic behavior as
shown by the relative difference to the no-ITZ case.

enization models may also provide the time-dependent response through time
stepping procedures [66, 67, 68]. The analytic method combining the Hashin-
Shtrikman bound and the Laplace Carson transform is described in Appendix
B.

2.1.2. The tri-sphere model : a scalar parameter to account for the morphology
of the microstructure

Compared to the Hashin-Shtrikman model, the tri-sphere model of de Lar-
rard & Le Roy[69, 70] introduces an additional parameter g∗ to account for the
morphology of the microstructure. The cementitious matrix is divided in two
parts. A minimal part fills the gaps between the aggregates at maximum packing
density g∗. The rest of the matrix ensures good rheological properties.

The corresponding homogenization procedure has two steps. First, the mini-
mal part is merged with the inclusions using the upper Hashin-Shtrikman bound
( volume fraction g∗). Then, the rest of the matrix is introduced thank to a lower
Hashin-Shtrikman bound [Fig. 13].

The close packing volume fraction g∗ arises from the compressible packing
model of de Larrard [69], which extends the linear packing model of Stovall [71].
It depends on the close packing density Φ∗i and volume fraction of solid material
yi of each class i of the sieve curve.

• For unimodal spherical inclusions, g∗ = Φ∗ = π
3
√
2
≈ 0.74

• For bimodal spherical inclusions and if there exists no interaction between
the two classes :

g∗ = min

(
Φ∗

1− ysmall
,

Φ∗

1− (1− Φ∗)(1− ysmall)

)
At packing limits, if ysmall < 0.21, large inclusions dominate and small
inclusions fill in the gaps. On the opposite, if ysmall > 0.21, large inclusions
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Figure 13: Homogenization schemes of the Hashin-Shtrikman model (left) and tri-sphere model
(right).

are scarce and small inclusions are tightly packed. The bimodal distribution
used in our numerical simulations has a volume fraction of solid material
of small inclusions of ysmall = 0.5.

• A more precise knowledge of interactions between classes is required to ad-
dress continuous inclusions’ size distributions and irregular shapes. Typical
values of g∗ for concretes are between 80% and 90%.

2.1.3. n+1−phase spherical model to account for the Interfacial Transition Zone

The n+ 1−phase spherical model of Hervé & Zaoui [61][Fig. 16] extends the
three-phase model of Christensen & Lo[60]. It has been used by Nadeau [5] to
upscale the elastic properties of mortars with an ITZ. The ITZ is depicted as
successive layers of cement paste having different mechanical properties. This
method is combined with the Laplace-Carson transform to estimate the time
dependent strain of such a material.

In our case, the inputs are the same as in the numerical method : the distri-
bution of the cement paste as a function of the distance to the nearest inclusion
f(di) is provided by the microstructure. The link between di, the water to cement
ratio and the viscoelastic properties is described in section 1.2.8. Each layer has
a width of 1µm and the corresponding volume fraction of the microstructure is
estimated according to its discretized image. These volume fractions are then
used as inputs for the n+ 1−phase spherical model in the Laplace Carson space.

The sieve curve and the shape of inclusions change the output of this mi-
cromechanics method since they affect the distribution of the cement paste as
a function of the distance to the nearest inclusion f(di) and the local volume
fraction of cement αc(di).

Outputs of these models are to be compared to full field numerical results.

2.2. Comparison with numerical estimates

2.2.1. Influence of volume fraction

Concrete microstructures made of crushed inclusions are built thank to the
RSA algorithm. Three unit cells of each volume fraction of inclusions are built and
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Figure 15: Results of the tri-sphere model [69, 70] for unimodal(left), bimodal(center) and
concrete microstructures are compared to numerical estimates. The volume fraction of inclusions
is 63%.

discretized on 3843 grids [Fig. 4] to run viscoelastic computations. A numerical
shear creep test is performed on these unit cells. The overall strains is close the
one estimated by the Hashin-Shtrikman bound in the Laplace-Carson space [Fig.
14] at different volume fractions of inclusions.

The volume fraction of inclusions being set to 63%, a small deviation from
the Hashin-Shtrikman bound in the Laplace-Carson space occurs at long term
[Fig. 9]. The heterogeneity between the inclusions and the matrix may explain
this feature. On the first time step, the elastic loading, the inclusions are 5 times
stiffer than the matrix. On the last time step, 60 years after loading, the tangent
behavior of the inclusions is 14 times stiffer than the one of the matrix.
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2.2.2. Hashin-Shtrikman, tri-sphere model and numerical estimates

The creep strains estimated by the tri-sphere model are close to our numer-
ical results for the bimodal and concrete microstructures. As g∗ is large, this
model delivers estimates close to the Hashin-Shtrikman ones. But estimated
time-dependent strains are different for the unimodal microstructure. Though
the tri-sphere model anticipates a lower creep strain due to g∗ = 0.74, the nu-
merical results for unimodal microstructures remain close to the other ones [Fig.
15]. Since concrete materials exhibit large g∗, the three methods are relevant to
produce estimates of the overall macroscopic strain.

2.2.3. Interfacial Transition Zone : n + 1 phase spherical model and numerical
estimates

Numerical uniaxial creep tests are performed on the mortar with ITZ defined
in section 1.2.8 on page 21. There is a difference between the estimated overall
strain estimated by the numerical method and the one produced by the n + 1-
phase spherical model : the later seems to slightly underestimate the effect of the
ITZ [Fig. 16].

Inputs are similar up to the mechanical computations. Therefore, representing
the ITZ as successive layers of coating around the inclusions is not precise for
this mortar. At this scale, with this volume fraction of inclusions (50%) and
the given sieve curve, a 10µm-wide ITZ is a percolated phase. Moreover, stress
concentrations occur between close inclusions, that is in the ITZ. It could explain
why the effect of the ITZ is larger than expected by the semi-analytical model.

A two-scale homogenization method was defined by merging the layers of the
ITZ and the matrix first according to the Reuss bound. Then, the inclusions are
introduced through a lower Hashin-Shtrikman bound. Even if this crude method
performs slightly better than the n + 1-phase spherical model on this mortar,
it still underestimates the time dependent strain. The fact that the numerical
estimates are softer than the response of this crude model is a clue than the scale
of the ITZ and the scale of the inclusions cannot be separated.

2.3. Discussions

There are several assumptions to question :

• Are the inclusions perfectly bonded to the matrix ?

• Is viscoelasticity the right frame to model the basic creep of concrete ?

The long-term discrepancies between these two concretes [Tab. 1] may also
be partly due to the chemical reaction between calcium carbonate CaCO3 from
the limestone filler at Paluel and tricalciium aluminate C3A from the clinker. For
the concrete of Paluel, using the model defined by de Larrard [69], the long term
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effect of the additional binder on compressive strength is comparable to 30kg/m3

of cement par cubic meter of concrete.
It is well known that the time dependent behavior of concrete goes beyond

viscoelasticity. The time-depend strain may be separated in different components
: endogenous shrinkage, drying shrinkage, basic creep and drying creep. This
divide-and-conquer strategy is the frame of EU standards Eurocode 2 and models
of Granger [1], Benboudjema [72], de Larrard [69] and B3 model of Bažant [73]
among others. It eases the introduction of moisture content, structural effects
and temperature effects. Rossi pledges instead for a unified strategy in which
basic creep is a self-drying shrinkage under stress [74]. The assumption is that
the creation of microcracks during a creep step (constant load level imposed
during the creep test) generates water transfers which induces some additional
self-drying shrinkage. This model is consistent with records of acoustic emissions
during compressive creep tests [75].

The basic creep of concrete is an ageing phenomenon and the current nu-
merical model could be improved by considering ageing linear viscoelasticity.
Moreover, additional eigenstrains due to shrinkage (autogeneous or drying) could
be introduced, in order to better estimate the local stresses in the matrix and
assess the possible occurrence of damage. The introduction of microcracking, or
damage, would also help to explain non-linear creep above ≈ 40% of compressive
strength. In [74], stress levels are above ≈ 50% of compressive strength whereas
the overall biaxial prestress of containment buildings is below 30% of compressive
strength in each direction (σθθ ≈ 12MPa and σzz ≈ 8MPa) .
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Conclusion

Methods to build various artificial microstructures have been defined and
a numerical frame to study the viscoelastic behavior of concrete as a matrix-
inclusion material is presented. Numerical results do not differ largely from the
Hashin-Shtrikman estimates as long as volume fractions remain below 63% and
the aspect ratio of inclusions and the contrast between phases remain low. Either
the sieve curve and the inclusion shape do not influence creep or the matrix-
inclusion model is too simple to be accurate. Since concretes with close volume
fraction of aggregates exhibit very different long term creep, considering such
concretes as a two-phase matrix-inclusion materials to study creep is questionable.
A heterogeneous cementitious matrix, interfacial zones or decohesion phenomena
might explain such differences.

3D numerical simulations may be performed to assess the correctness of mi-
cromechanics models. For instance, it has been shown that numerical estimates
of creep strains are different from the one obtained by the micromechanics n+ 1
phase spherical model for modeling the Interfacial Transition Zone in a mortar.
The n + 1 phase spherical model assumes that the ITZ is an isolated layer of
around each inclusion whereas the numerical model accounts for the ITZ being a
percolated phase in the mortar.

The gains of 3D numerical simulation are the ability to handle aging behaviors
and, to a certain extent, the access to the magnitude of stress concentrations.
Large scale computations are required to study concrete or other heterogeneous
materials with a large representative volume element, especially if a non-linear
phenomenon is introduced at the local scale.

Appendix A. FFT solvers

Algorithm 1 Basic FFT scheme

Initial strain field ε0(x) and prestress σ0(x) are provided
Initial strain field ε̂−1(ξ) is set
while erroreq > 10−7 × erroreq,0 do
σi(x) = C(x)εi(x) + σ0(x)
σ̂i = FFT (σ)
Compute error on equilibrium erroreq
ε̂(ξ)i+1 = ε̂(ξ)i − Γ0(ξ) : σ̂i(ξ) and ε̂(0)i+1 = E
εi+1 = FFT−1(ε̂i+1)

end while
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Algorithm 2 Accelerated FFT scheme

Initial strain field ε0(x) and prestress σ0(x) are provided
Initial strain field ε̂−1(ξ) is set
while erroreq > 10−7 × erroreq,0or errorbc > 10−7 × errorbc,0 or errorcomp >
10−7 do
σi(x) = C(x)ei(x) + σ0(x)
if i%5==0 then
σ̂i = FFT (σ)
Compute error on equilibrium erroreq

end if
τ(x) = (C(x)− C0)e

i(x) + σ0(x)
τ̂ = FFT (τ)
êb(ξ) = −2Γ0(ξ) : τ̂(ξ) and êb(0) = 2E
eb = FFT−1(êb)
ei+1(x) = (C(x) + C0)

−1 : (τ(x) + C0 : eb(x)− σ0(x))
Error on boundary conditions : errorbc =< ei+1 > −E
Error on compatibility : errorcomp = ||ei+1−eb||2

||ei+1||2
end while

Appendix B. Hashin-Shtrikman bound and Laplace-Carson transform

Appendix B.1. The correspondence principle

The non-aging linear viscoelastic problem corresponds to elastic problems
thank to the Laplace-Carson transform. The transform of a function g(t) is ĝ(p) =
p
∫∞
0 g(t)e−ptdt. The transform of its derivative ġ(t) is ˆ̇g(p) = pĝ(p)− p.g(0).
In our case, elastic inclusions (volume fraction fi) are embedded in a vis-

coelastic matrix modeled by a single Kelvin chain. The relaxation problem reads
:

div σ(x, t) = 0 x ∈ V
σ(x, t) = Ciε(x, t) x ∈ inclusions
σ(x, t) = Cmε(x, t) + τCmε̇(x, t) x ∈ matrix
ε(x, t) = E(t) +∇su(x, t) x ∈ V
u(x, t) periodic x ∈ ∂V

σ(x, t) ·n(x) skew − periodic x ∈ ∂V
In the Laplace-Carson space, for each p, this set of equation corresponds to

the elastic problem :
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div (σ̂(x, p)) = 0 x ∈ V
σ̂(x, p) = Ciε̂(p) x ∈ inclusions
σ̂(p) = (1 + pτ)Cmε̂(x, p) x ∈ matrix

ε̂(x, p) = E(p) +∇sû(x, p) x ∈ V
û(x, p) periodic x ∈ ∂V

σ̂(x, p) ·n(x) skew − periodic x ∈ ∂V
The Hashin-Shtrikman bound is an analytical model which provides estimates

of the macroscopic response of the elastic material.
< σ̂(p) >= ˆCHS(p) < ε̂(p) >= ˆCHS(p)E

ˆCHS−(p) is isotropic and its bulk modulus and shear modulus are :
Km(p) = (1 + pτ)Km,µm(p) = (1 + pτ)µm

KHS−(p) = Km(p) +
fi

1
Ki−Km(p) + 3(1−fi)

3Km(p)+4µm(p)

µHS−(p) = µm(p) +
fi

1
µi−µm(p) + 6(Km(p)+2µm(p))(1−fi)

5µm(p)(3Km(p)+4µm(p))

The Laplace-Carson transform of the macroscopic stress < σ̂ > (p) is com-
puted and the last stage is inverting this transform.

Appendix B.2. Inverting the Laplace-Carson transform

Lots of methods are available to invert the Laplace-Carson transform. In this
study, the Gaver-Stehfest formula [62] has been used :

g(t,M) =

2M∑
k=1

ξk
k
ĝ(
k ln(2)

t
)

and ξk = (−1)M+k

min(k,M)∑
j=E( k+1

2
)

jM+1

M !

(
M

j

)(
2j

j

)(
j

k − j

)
Computing the binomial coefficients requires high precision and the long dou-

ble type (IEEE 754, decimal on 128 bits) provided it. If M is too low, the formula

lacks precision [63]. If M is too high, small errors on ĝ(k ln(2)t ) may trigger large
errors on the outcome. M is set to 7.

Therefore, to estimate the response at time t, about 14 elastic computa-
tions are required. This formula does not seem to be practical for FEM since
it lacks stability or precision. It is suitable as long as the numerical error in
the Laplace-Carson space remains very low. This algorithm is useful when the
Hashin-Shtrikman analytical formula or self-consistent estimate are computed in
the Laplace-Carson space.
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for linear composites, Comptes Rendus Mécanique 333 (2) (2005) 187 – 195. doi:http:

//dx.doi.org/10.1016/j.crme.2004.10.003.
URL http://www.sciencedirect.com/science/article/pii/S1631072104002256

[42] E. Gal, R. Kryvoruk, Meso-scale analysis of {FRC} using a two-step homogenization ap-
proach, Computers & Structures 89 (11-12) (2011) 921–929, computational Fluid and Solid
Mechanics 2011 Proceedings Sixth MIT Conference on Computational Fluid and Solid Me-
chanics. doi:http://dx.doi.org/10.1016/j.compstruc.2011.02.006.
URL http://www.sciencedirect.com/science/article/pii/S0045794911000393

[43] M. Ostoja-Starzewski, Material spatial randomness: From statistical to representative vol-
ume element, Probabilistic Engineering Mechanics 21 (2) (2006) 112 – 132. doi:http:

//dx.doi.org/10.1016/j.probengmech.2005.07.007.
URL http://www.sciencedirect.com/science/article/pii/S0266892005000433

[44] A. Lachihab, K. Sab, Aggregate composites: a contact based modeling, Computational
Materials Science 33 (4) (2005) 467 – 490. doi:http://dx.doi.org/10.1016/j.commatsci.
2004.10.003.
URL http://www.sciencedirect.com/science/article/pii/S0927025604002642

[45] K. L. Scrivener, A. K. Crumbie, P. Laugesen, The interfacial transition zone (itz) be-
tween cement paste and aggregate in concrete, Interface Science 12 (2004) 411–421,
10.1023/B:INTS.0000042339.92990.4c.
URL http://dx.doi.org/10.1023/B:INTS.0000042339.92990.4c

[46] S. Diamond, J. Huang, The {ITZ} in concrete – a different view based on image analysis

33

http://dx.doi.org/10.1520/D2488-09A
http://www.ias-iss.org/ojs/IAS/article/view/791
http://www.ias-iss.org/ojs/IAS/article/view/791
http://www.sciencedirect.com/science/article/pii/S0927025610003563
http://www.sciencedirect.com/science/article/pii/S0927025610003563
http://dx.doi.org/http://dx.doi.org/10.1016/j.commatsci.2010.06.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.commatsci.2010.06.009
http://www.sciencedirect.com/science/article/pii/S0927025610003563
http://www.sciencedirect.com/science/article/pii/S0965997812001846
http://www.sciencedirect.com/science/article/pii/S0965997812001846
http://dx.doi.org/http://dx.doi.org/10.1016/j.advengsoft.2012.12.002
http://www.sciencedirect.com/science/article/pii/S0965997812001846
http://www.sciencedirect.com/science/article/pii/S0020768303001434
http://www.sciencedirect.com/science/article/pii/S0020768303001434
http://dx.doi.org/http://dx.doi.org/10.1016/S0020-7683(03)00143-4
http://dx.doi.org/http://dx.doi.org/10.1016/S0020-7683(03)00143-4
http://www.sciencedirect.com/science/article/pii/S0020768303001434
http://www.sciencedirect.com/science/article/pii/S0022509697000161
http://dx.doi.org/http://dx.doi.org/10.1016/S0022-5096(97)00016-1
http://dx.doi.org/http://dx.doi.org/10.1016/S0022-5096(97)00016-1
http://www.sciencedirect.com/science/article/pii/S0022509697000161
http://www.sciencedirect.com/science/article/pii/S1631072104002256
http://www.sciencedirect.com/science/article/pii/S1631072104002256
http://dx.doi.org/http://dx.doi.org/10.1016/j.crme.2004.10.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.crme.2004.10.003
http://www.sciencedirect.com/science/article/pii/S1631072104002256
http://www.sciencedirect.com/science/article/pii/S0045794911000393
http://www.sciencedirect.com/science/article/pii/S0045794911000393
http://dx.doi.org/http://dx.doi.org/10.1016/j.compstruc.2011.02.006
http://www.sciencedirect.com/science/article/pii/S0045794911000393
http://www.sciencedirect.com/science/article/pii/S0266892005000433
http://www.sciencedirect.com/science/article/pii/S0266892005000433
http://dx.doi.org/http://dx.doi.org/10.1016/j.probengmech.2005.07.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.probengmech.2005.07.007
http://www.sciencedirect.com/science/article/pii/S0266892005000433
http://www.sciencedirect.com/science/article/pii/S0927025604002642
http://dx.doi.org/http://dx.doi.org/10.1016/j.commatsci.2004.10.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.commatsci.2004.10.003
http://www.sciencedirect.com/science/article/pii/S0927025604002642
http://dx.doi.org/10.1023/B:INTS.0000042339.92990.4c
http://dx.doi.org/10.1023/B:INTS.0000042339.92990.4c
http://dx.doi.org/10.1023/B:INTS.0000042339.92990.4c
http://www.sciencedirect.com/science/article/pii/S0958946500000652
http://www.sciencedirect.com/science/article/pii/S0958946500000652


and {SEM} observations, Cement and Concrete Composites 23 (2–3) (2001) 179 – 188, spe-
cial Theme Issue on Image Analysis. doi:http://dx.doi.org/10.1016/S0958-9465(00)

00065-2.
URL http://www.sciencedirect.com/science/article/pii/S0958946500000652

[47] A. Hussin, C. Poole, Petrography evidence of the interfacial transition zone (itz) in
the normal strength concrete containing granitic and limestone aggregates, Construction
and Building Materials 25 (5) (2011) 2298 – 2303. doi:http://dx.doi.org/10.1016/j.

conbuildmat.2010.11.023.
URL http://www.sciencedirect.com/science/article/pii/S0950061810005519

[48] C. Neubauer, H. Jennings, E. Garboczi, A three-phase model of the elastic and shrinkage
properties of mortar, Advanced Cement Based Materials 4 (1) (1996) 6 – 20. doi:http:

//dx.doi.org/10.1016/S1065-7355(96)90058-9.
URL http://www.sciencedirect.com/science/article/pii/S1065735596900589

[49] E. Garboczi, J. Berryman, Elastic moduli of a material containing composite inclusions:
effective medium theory and finite element computations, Mechanics of Materials 33 (8)
(2001) 455 – 470. doi:http://dx.doi.org/10.1016/S0167-6636(01)00067-9.
URL http://www.sciencedirect.com/science/article/pii/S0167663601000679

[50] F. Grondin, M. Matallah, How to consider the interfacial transition zones in the finite
element modelling of concrete?, Cement and Concrete Research 58 (0) (2014) 67 – 75.
doi:http://dx.doi.org/10.1016/j.cemconres.2014.01.009.
URL http://www.sciencedirect.com/science/article/pii/S0008884614000106

[51] M. Vandamme, F.-J. Ulm, Nanoindentation investigation of creep properties of calcium
silicate hydrates, Cement and Concrete Research 52 (0) (2013) 38 – 52. doi:http://dx.

doi.org/10.1016/j.cemconres.2013.05.006.
URL http://www.sciencedirect.com/science/article/pii/S0008884613001191

[52] J. Nadeau, Water–cement ratio gradients in mortars and corresponding effective elastic
properties, Cement and Concrete Research 32 (3) (2002) 481 – 490. doi:http://dx.doi.

org/10.1016/S0008-8846(01)00710-4.
URL http://www.sciencedirect.com/science/article/pii/S0008884601007104

[53] S. Diamond, The microstructure of cement paste and concrete––a visual primer, Cement
and Concrete Composites 26 (8) (2004) 919 – 933, scanning electron microscopy of cements
and concretes. doi:http://dx.doi.org/10.1016/j.cemconcomp.2004.02.028.
URL http://www.sciencedirect.com/science/article/pii/S0958946504000447

[54] R. A. Cook, K. C. Hover, Mercury porosimetry of hardened cement pastes, Cement
and Concrete Research 29 (6) (1999) 933 – 943. doi:http://dx.doi.org/10.1016/

S0008-8846(99)00083-6.
URL http://www.sciencedirect.com/science/article/pii/S0008884699000836

[55] E. Lee, Stress analysis for linear viscoelastic materials, Rheologica Acta 1 (4-6) (1961)
426–430. doi:10.1007/BF01989085.
URL http://dx.doi.org/10.1007/BF01989085
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