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We report gravity oscillations of a liquid column partially immersed in a bath of liquid. We stress
some peculiarities of this system, namely~i! the fact that the mass of this oscillator constantly
changes with time;~ii ! the singular character of the beginning of the rise, for which the mass of the
oscillator is zero;~iii ! the sources of dissipation in this system, which is found to be dominated at
low viscosity by the entrance~or exit! effects, leading to a long-range damping of the oscillations.
We conclude with some qualitative descriptions of a second-order phenomenon, which is the
eruption of a jet at the beginning of the rise. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1476670#
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I. EXPERIMENT

A vertical cylindrical glass pipe, closed at its top, is pa
tially immersed in a large bath of liquid. The experime
consists of opening the pipe, and recording the heightZ of
the liquid column as a function of timeT ~Fig. 1!. The pipe
has a centimetric radiusR ~which makes capillary effects
negligible!, and a total length of about 1 m. We denoteH the
depth of immersion, andh the level of liquid inside the tube
before opening. This parameter can be adjusted by ad
with a syringe either liquid or air at the bottom of the colum
before opening the top. We are interested here in liquids
low viscosityh ~such as water or hexane!, so that the motion
of the liquid is dominated by inertia and gravity, leading
numerous oscillations of the liquid column.

Figure 2 shows typical observations of the colum
height as a function of time, obtained thanks to a high sp
camera~;125 frames per second!. For this particular experi-
ment, the immersion depth wasH530 cm, the tube radius
R51 cm, and the initial height of liquid inside the colum
h53 mm. The liquid was hexane, of densityr5660 kg/m3

and viscosityh50.39 mPa s. Both the height and the tim
are made dimensionless in Fig. 2, using the natural len
and time scales, namelyH andAH/g, whereg is the accel-
eration of gravity. We denotez and t as these reduced quan
tities. We can observe in Fig. 2 several features, on which
shall base our discussions:~i! the height first quickly in-
creases~the typical velocity at the beginning is 170 cm/s!,
and reaches a maximumzM51.5260.01 fort53.060.5; ~ii !
then, many oscillations are observed, before approaching
final equilibrium heightz51; the damping is not exponen
tial, since the ratio between two successive maxima of

a!Electronic mail: quere@ext.jussieu.fr
1981070-6631/2002/14(6)/1985/8/$19.00

Downloaded 17 Sep 2003 to 128.103.60.225. Redistribution subject to A
t

ng

of

d

th

e

he

e

function (z21) is not a constant~the four first ratios are,
respectively, 0.61, 0.68, 0.73, and 0.77, and increase w
time!; ~iii ! a pseudoperiod can be deduced from the da
which is 6.360.5; this period is quite well defined for th
first oscillations, but slightly increases~of typically less than
5%! at longer times.

We shall first describe the principal characteristics o
model recently proposed to analyze the nonlinear oscillati
of a liquid column. Then, we shall discuss different effec
such as the speed of invasion, the initial acceleration of
fluid, and the damping. We shall conclude with qualitati
observations related to local properties of the flow.

II. MODEL

A model was recently proposed to describe the capill
motion of a wetting liquid inside a small vertical tube in
tially empty (H5h50), in the inertial regime.1 Then, the
forces acting on the liquid column write 2pRg2rgpR2Z
~denoting g as the liquid surface tension!. Here, the tube
radius is much larger than the~millimetric! capillary length,
so that capillary forces can be neglected and replaced by
hydrostatic pressure as a driving force. Hence, the total fo
F acting on the liquid column is found to exhibit a structu
very similar to the one in the capillary problem:

F5rgpR2~H2Z!. ~1!

It is very instructive to consider first a situation witho
any source of dissipation. Then, the total energyE of the
column is the sum of the kinetic energy and the poten
energyU which can be integrated fromF ~taking U50 for
Z50!. Hence it is expressed as

E5 1
2rpR2ZŻ21 1

2rgpR2Z22rgHpR2Z. ~2!
5 © 2002 American Institute of Physics
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1986 Phys. Fluids, Vol. 14, No. 6, June 2002 Lorenceau et al.
In dimensionless variables~and scaling the mass b
rpR2H!, it reads

e5 1
2zż21 1

2z
22z. ~3!

Consideringe as a constant with time, Eq.~3! can be
integrated, which leads to parabolic oscillations of the eq
tion: z(t)5&t(12t/4&), supposingz(0)50. The maxi-
mum, reached att52&, is z52, far above the maximum
observed in the experiment in Fig. 2. Assuming energy c
servation makes this parabolic behavior periodic~with a pe-
culiarity: whenz comes back to zero, the velocity is max
mum but the mass is zero: there is no inertia and the liq
column can bounce!—but observations clearly reveal
damping of the oscillations.

The second step consists of analyzing the poss
causes of dissipation in the system. We could try to incor
rate the viscous dissipation along the wall of the tube,
this should be negligible at short time, i.e., at a time sc
smaller thanrR2/h, the characteristic time for setting a Po
seuille profile in the tube. This time in these experiments
very large, typically 102– 103 in our dimensionless units. Th
negligible influence of viscosity at short time was confirm
by doing the same experiment with water~three times as
viscous as hexane!, for which we found exactly the sam
positions for the five first maxima and five first minim
~within 1% in error!.

In classical textbooks,2 one can find that a second cau
of dissipation for a liquid of very small viscosity is thesin-

FIG. 1. Sketch of the experiment:~a! before opening the top (T,0); ~b!
when the motion takes place (T.0).

FIG. 2. Height of the liquid column vs time, for a glass tube (R51 cm)
partially immersed at a depthH530 cm in hexane. Initially (t50), the tube
is empty. The height is normalized byH, and the time by (H/g)1/2. The dots
correspond to experimental data and the full line to a numerical integra
of Eq. ~9!.
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gular pressure lossat the tube entrance~if the liquid rises! or
exit ~if the liquid goes down!. This pressure loss is due to th
difference of radii between the tank~of huge radius! and the
tube~of much smaller radius!: because of the abrupt contra
tion between both, some eddies appear at the entrance o
tube, dissipating a certain amount of energy. This press
loss is classically evaluated by applying the Bernoulli eq
tion ~based on the conservation of energy! and the Euler
equation~based on the momentum equation! to the liquid
column, which does not lead to the same result.2 The differ-
ence between these results is the pressure loss. When
ratio of the tube area to the tank area is close to zero~in our
experiment, this ratio is of the order of 1022!, the singular
pressure lossDP has a very simple expression:2

DP5 1
2rŻ2. ~4!

This pressure loss is positive and is simply equal to
kinetics energy per unit volume of the column. The asso
ated energy loss is negative, and has a different sign dep
ing on whether the liquid is going up (dZ.0) or down
(dZ,0). In dimensionless quantities, the energy loss is t
expressed as

de5 1
2ż

2dz ~5a!

when the liquid falls (dz,0), and

de52 1
2ż

2dz ~5b!

when it rises (dz.0). If the situation is quite clear at th
descent@Eq. ~5a! just expresses the loss of kinetic ener
associated with the loss of a fluid jet entering an infinite p
of the same fluid#, it is not the case for the rise, and it ha
been proposed to introduce a numerical empirical coeffic
K for the energy loss in this case:

de52 1
2Kż2dz, ~5c!

whereK should be in the interval@0, 1#. We shall see that ou
experiments are well described by takingK51, but we shall
discuss how the results should be modified for smaller val
of this coefficient.

We first consider the case where the singular press
loss at the tube entrance is the main cause of dissipation
thus neglect the viscous dissipation along the pipe wall. D
ferentiating Eq.~3! with respect tot, and equating the result
ing expression with either Eq.~5a! or ~5b!, we find two dif-
ferent equations, depending on the direction of the motio

zz̈1 ż2512z for dz.0, ~6a!

zz̈512z for dz,0. ~6b!

It is worth noting that Eq.~6a! just expresses Newton’
law of dynamics, for a system of massM and velocityV
driven by a forceF:

d

dt
MV5F2Mg. ~7a!

For the descent, a similar law can be written, taking in
account the thrust associated with the emission of a jet c
ing out of the pipe at a velocityV. Thus, Eq.~7a! must be
corrected in
n

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1987Phys. Fluids, Vol. 14, No. 6, June 2002 Gravitational oscillations of a liquid column
d

dt
MV5F2Mg1ṀV, ~7b!

which is just Eq.~6b!, with dimensions. Note that we did no
consider a term of the formṀV in Eq. ~6a! because the mas
radiates from all the directions in the reservoir to enter
tube, while the jet is directional at the exit: the thrust at t
entrance implies a nearly zero velocity, and thus is its
nearly zero. This defines the caseK51 stated in Eqs.~5b!
and ~5c!—and this result should depend on the shape of
pipe. For example,K should decrease for funnel-shap
pipes, which would drive more smoothly the current line
Note also that Bernoulli, considering in his book o
Hydraulics3 the question of a pipe emptying in a bath, pr
posed Eq.~6b! by writing directly Newton’s law with the
form: MdV/dt5F2Mg—a straightforward derivation, in
deed, but quite hazardous sinceM is changing with time.

The energy loss associated with Eqs.~7a! and ~7b! can
be calculated in a general way. The energyE is 1/2MV2

1U, denotingU as the potential from which the forces ca
be derived. Using Eq.~7!, the way the energy varies as
function of time can be deduced, and a unique expressio
found for both the rise (Ṁ.0) and the descent (Ṁ,0):

dE

dt
52 1

2uṀ uV2. ~8!

Equation~8! is found to be identical to Eqs.~5a! and~5b!. It
expresses more generally the energy loss related with an
trained mass~dE/dt50 if Ṁ50!. It thus concerns similar
questions such as the bursting of a soap film4 or even the
academic problem of a rope wound on a pulley and drawn
a constant weight.

Equations~6a! and ~6b! can eventually be integrate
once, introducing two constantsA andB:

1
2z

2ż21 1
3z

32 1
2z

25A, ~9a!

1
2ż

21z2 ln z5B. ~9b!

If z50 at t50, the constantA is zero, and Eq.~9a! can be
integrated once again, which provides the trajectory of
liquid column:

z~ t !5tS 12
t

6D . ~10!

Thus, the beginning of the rise should be linear~z;t, for t
!6!, before the weight makes the velocity smaller and
trajectory parabolic. The maximum is reached fort53, and
is found to bezM51.5. The latter point is in close agreeme
with the data displayed in Fig. 2, which stresses that ind
energy loss is present in the system, even at short time.

Note that if we take as an expression for the energy l
at the rise the more general expression~5c!, the maximum
height can also be calculated analytically. We find:zM5(K
12)/(K11), which varies between 2 and 3/2 whenK varies
between 0 and 1. The first value corresponds to energy
servation@Eq. ~3! and below#, while the second to the maxi
mum of singular pressure loss. Our experimental data exh
Downloaded 17 Sep 2003 to 128.103.60.225. Redistribution subject to A
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a maximum very close to 1.5~but slightly larger, as expecte
sinceK51 is the maximum possible value!, so that we shall
takeK51 in all the rest of this study.

We now focus on different peculiarities of this system
order to discuss more carefully some details of the mode

III. DISCUSSION

A. Constant velocity regime

Initially, the beginning of the rise is linear, which can b
explained by balancing inertia with the pressure for
(rgHpR2) exerted on the liquid column. This behavior
reminiscent of similar systems with a mass varying linea
with z, and driven by a constant force and resisting inertia
This indeed leads to a constant velocity, as observed for
retraction of a liquid sheet,5 the bursting of a soap film,4,6 the
dewetting of a film of small viscosity7 and the first steps o
capillary rise.8,9 Note that in all these problems, conservati
of energy also leads to a constant velocity, but similarly ov
estimates the numerical coefficient of this velocity.10

We measured the initial velocity of the liquid column a
a function of the depth of immersionH. Since the dimension-
less law at short time (t!6) just readsz5t, introducing
dimensional quantities implies a quick variation of the c
umn velocity withH. Then, Eq.~10! just is expressed as

Z~T!5AgHT. ~11!

We did experiments with hexane, and found that indeed
heightZ of the liquid column increases linearly with time a
short time~practically for t,1.5, which corresponds to 1
data points!. Thus, we could report its velocityV as a func-
tion of the square root of the depth height~Fig. 3!, varyingH
from 2 to 35 cm, and indeed found a linear relation with
slopeAg, as predicted by Eq.~11!. Conservation of energy
in Eq. ~3! for a system starting fromz50 also predicts a
regime of constant velocity, but with a higher slope~A2g
instead ofAg!. Thus this regime of constant velocity als
allows us to stress the existence of an energy loss in
system. Note also that the observed curve does not inter
the origin, which will be shown to be due to an entran
effect, characterized by a length of orderR. Thus, our model
only holds in the limitH@R.

FIG. 3. Rise velocityV of the liquid column at short time (t,1.5), as a
function of the square root ofH, the depth of immersion in water~closed
diamonds! or in hexane~open square!. The full line has a slopeAg, as
expected from Eq.~11!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1988 Phys. Fluids, Vol. 14, No. 6, June 2002 Lorenceau et al.
More generally, Eqs.~6a! and ~6b! indicate that a solu-
tion of constant velocity can only be found at the rise and
gravity can be neglected~dz.0 andz!1!, or in the case
where a horizontal pipe is connected with the bottom o
very large tank, which only generates an entrance flow.
the other hand, Eq.~6b! shows that the velocity is neve
constant during the descent, and the only analytical regim
this case is a regime of constant acceleration: leaving a liq
column flow downwards from a very large height (z0@1)
yields z̈521.

B. Oscillations, and their two regimes of damping

At longer times, gravity cannot be neglected and E
~9a! and ~9b! can be integrated numerically. This solution
drawn in full line in Fig. 2, and compared with data obtain
with hexane~for H530 cm andR51 cm!.

The agreement between the theory and the experime
excellent during the first oscillations: both the positions
the extrema and the periodicity are well predicted by
model. In particular, the first half-oscillation is the parabo
derived in Eq.~10!. After typically ten oscillations, a sligh
shift appears, and the damping is observed to be quicker
predicted. We interpret this ‘‘overdamping’’ as due to t
usual viscous friction along the tube, which must be tak
into account as soon as a parabolic Poiseuille–Hagen pr
has been established. This is achieved after the time ne
sary for the boundary layer to diffuse on a lengthR, which
scales asrR2/h, with a numerical coefficient of order 0.11
as shown in Ref. 11. This time mainly depends on the t
radius, which can be easily checked by doing the same
periment in a thinner tube. Figure 4 shows the data obtai
using a tube twice thinner (R55 mm).

While the first oscillations remain quite well describe
by Eq. ~9!, it is indeed observed that the overdamping tak
place much earlier: deviations toward Eq.~9! are observed
aroundt515, instead oft560 ~in agreement with the scalin
for the time of diffusion of the viscous boundary layer,
R2!.

One of the remarkable features of this system is the p
sistence of the oscillations~typically, more than 20 oscilla-
tions can be observed!. This is due to the particular source o

FIG. 4. Same experiment as in Fig. 2, in a thinner tube (R55 mm). The
dots are experimental data obtained with hexane. The full line corresp
to a numerical integration of Eq.~9!, and the thin one to an integration o
Eq. ~17!.
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dissipation in Eq.~9!. If the damping were just caused by th
viscous dissipation along the pipe, this would provide a
creasing exponential law for the maxima. In the case we
mainly interested in~short time behavior!, the damping is
due to the singular pressure loss at the entrance~or exit! of
the pipe. The following argument allows us to understa
why it is so low. From Eqs.~3! and ~5!, we can derive an
equation for the energy loss:

d

dt ~zż21~z21!2!52użuż2. ~12!

We set z(t)511a(t)sint, with a!1, and suppose a
slow variation fora. During a period, the mean value of th
quantitiesużuż2 and (zż21(z21)2) are 4ua3u/3p and a2,
respectively. Thus, an equation for the oscillation amplitu
a is obtained from Eq.~12!:

da2

dt
52

4ua3u
3p

, ~13!

which yields

a~ t !56
3p

2t
. ~14!

Even if this linear approximation should mainly conce
the oscillations of small amplitude, it helps to understa
that the damping is unusually long, due to this hyperbo
behavior. Furthermore, a hyperbolic damping is in fair agr
ment with our data even for oscillations of non-negligib
amplitude, as shown in Fig. 5 where the maxima and mini
corresponding to Fig. 2 are displayed versus time in a lo
log plot.

It is observed that~apart from the first maximum!, the
damping is close to being hyperbolic in time~the full line
indicates the slope21!, before accelerating~the two last
points!, because of the additional dissipation due to the l
uid viscosity. The latter can of course be evaluated by inc
porating in the model a viscous Poiseuille friction along t
pipe. If the liquid front progresses by a lengthdz, the corre-
sponding energy loss writes~in the same dimensionless var
ables as previously!

de52Vzżdz, ~15!

ds
FIG. 5. Successive maximaaM ~triangles! and minimaam ~circles! of the
oscillation amplitude as a function of time. The data are taken from Fig
and the full line has a slope21.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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where the numberV compares viscosity with inertia:

V5
16hH1/2

rR2g1/2 . ~16!

A difference with the energy loss due to pressure
trance is thatde ~energy variation associated with a motio
dz of the column! has the same expression whatever the
rection of the motion, sinceż anddz always have the sam
sign. Taking into account this viscous friction modifies E
~6!, which becomes

zz̈1 ż2512z2Vzż for dz.0, ~17a!

zz̈512z2Vzż for dz,0. ~17b!

Unlike Eq. ~6!, Eq. ~17! cannot be integrated analyt
cally, but only numerically: such an integration is perform
in Fig. 4 ~in thin line!. The resulting curve fits quite well th
extrema of the oscillations, but a shift in time appears, wh
remains unexplained. The use of a simple Poiseuille frict
law for this oscillatory behavior could be questioned. T
dissipation in the menisci could also become non-neglig
in these regimes of approach of the equilibrium.

In the particular case of very largeV, inertia can be
neglected, and the equation for the column motion simpl
expressed as

Vzż512z, ~18!

which is often referred to, in the context of dynamic capilla
rise, as the Washburn equation.12 At short time ~but large
enough so that inertia can be neglected!, z is small (z!1),
and integration of Eq.~18! shows that the rise follows a
diffusion-type law: z(t)5At/V. Then, when approachin
equilibrium (z→1), we find an exponential relaxation:z(t)
512exp(2t/V).

An interesting feature of Eq.~17! is that it allows us to
predict if the system will exhibit oscillations, or not. We sa
that at large viscosities~V@1!, the system just relaxes to
ward equilibrium, without any overshoot of the equilibriu
height. Thus, a critical numberVc does exist, below which
oscillations develop. Close toVc , we can linearize Eqs
~17a! and ~17b!, which both reduce to

z̈1Vż1z50, ~19!

where we have set:z511z, with z!1. This equation only
leads to oscillations ifV,Vc52, i.e., for small enough vis
cosities. Written dimensionally on the depth of immersio
this criterion reads

H,Hc5
r2gR4

64h2 . ~20!

This criterion is largely fulfilled in the series of experimen
presented previously: with water and centimetric tubes,Hc

is of order 1 km! But this height rapidly decreases wh
making the tube thinner: for a tube of radius 3 mm and
liquid 10 times more viscous than water,Hc becomes of
order 10 cm.
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C. Very short time behavior

1. Starting of the liquid column

Let us come back to the beginning of the rise, start
from z50. We showed that it obeys a very simple law, sin
the height of the column increases linearly with time@Eq.
~11! and Fig. 2#. An interesting question is the way the sy
tem finds its constant velocityV. At t50, the system is at
rest and there is a regime of transition during which t
velocity quickly increases from 0 toV. Then, the column
weight is negligible, and Eq.~6a! can be written as

zz̈1 ż251. ~21!

This equation has no solution which verifies bothz50 and
ż50 for t50, because of the singularity atz50 @then, a zero
velocity implies an infinite acceleration for Eq.~21! to be
obeyed#. But physically, this singularity does not exist, b
cause of the mass of liquid entrained below the pipe. Th
Eq. ~21! can be rewritten, taking into account this addition
mass from the beginning:

~z1z0!z̈1 ż251, ~22!

where z0 is the height below the pipe where the liquid
entrained. Because the velocity field in the bath quickly va
ishes as a function of the distance to the entrance, we ex
Z0 ~the dimensional version ofz0! to be of orderR, the
radius of the tube. More precisely, by integrating the veloc
profile from the entrance of the tube to infinity, Szekel
et al. ~in the context of capillarity!13 calculated an entranc
lengthZ057/6R.

The general solution of Eq.~22! can be written as

z~ t !1z05A~a1z0!21t2 ~23!

denotinga5h/H as the height of liquid initially present in
the tube@as sketched in Fig. 1~a!#. At very short time, Eq.
~23! leads to a parabolic behavior~acceleration stage!:

z~ t !'a1
t2

2~a1z0!
. ~24!

FIG. 6. Heightz vs time t, in the very first steps of the rise~R520 mm,
H530 cm, andh51.9 cm!. The data, obtained with water, are successiv
fitted by a parabola of equationz(t)5a1t2/2(a1z0) @Eq. ~24!#, from
which the coefficientz0 can be deduced, and by a straight line of equat
z(t)5t @Eq. ~11!#.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Later (t@a1z0), it matches the solution of constant veloci
z5t analyzed previously~Fig. 3!.

By taking pictures at a high rate~typically 1000 frames
per second!, we could record the very beginning of the ris
Such data are reported in Fig. 6. It is observed that the
havior at a very short time (t,0.15) can indeed be fitted b
a parabola@Eq. ~24!#, from which two coefficients can be
deduced. One~a50.064, in Fig. 6! is indeed found to be the
initial height of liquid in the tube, while the second~a1z0

50.126, in Fig. 6! provides the value ofz0 . Note that at
larger time, the parabolic regime meets the linear one
cussed in Sec. III A@Eq. ~11!#.

We plotted in Fig. 7 the value ofZ0 ~deduced from fits
such as the one in Fig. 6!, as a function ofR, the pipe radius.
The results are found to agree closely with Szekele
predictions:13 Z0 varies linearly withR, with a numerical
coefficient of order 1.

We also considered the influence ofh on Z0 , and fo-
cused on the case of an empty tube (h→0). Then, as
stressed previously, the problem should become sing
Practically, it is not; Fig. 8 shows thatZ0 does not depend on
h, which is consistent with the hypothesis of an added m
below the tube entrance. Even in the limit of a tube initia
empty (h→0), the mass of accelerated fluid is not zero a
the acceleration remains finite.

Since the flow inside the tube perturbs the reservoir o
length of orderR, all the conclusions and interpretations pr
sented previously~Secs. III A and III B!, for which we had

FIG. 7. Entrance lengthZ0 vs R, the radius of the tube~H520 cm andh
'1 cm!. The data are obtained with water.

FIG. 8. Entrance lengthZ0 vs h the height of water initially present at th
bottom of the pipe~R51.2 cm andH530 cm!.
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Z@R, remain unchanged. The corrections mainly conc
the very first steps of the trajectory, in the accelerating
gime illustrated in Fig. 6. Other modifications are quite ne
ligible: for example, the positionzM of the first maximum is
found to be slightly modified by taking into account the e
trance length, from 1.5 to 1.51z0/2 ~i.e., about 1.53 for the
data in Fig. 2, very close to the observed value!.

2. Jet eruption

We have up to now focused our discussion on the mot
of the whole column, but local deformations of the free s
face were also observed at short time. Figure 9 shows a
view of the tube forZ of about 2R, where it can be seen tha
a liquid finger develops at the center of the tube. This fin
rises during the first oscillation and collapses beforez
reaches its maximum valuezM ; this structure is local and
does not impact the more macroscopic observations repo
earlier.

The maximum sizeA of the finger depends on the heig
h of liquid initially in the tube, as shown in Fig. 10. Note tha

FIG. 9. Early stage of the rise~R520 mm,H530 cm, andh50 mm!. The
front is flat, except at the tube center where a liquid~here, water! finger
develops.

FIG. 10. Maximum amplitude of the water finger vs the initial height
liquid h. The experiment was carried out in a tube of radiusR520 mm and
for H530 cm.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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h can even been made negative, by injecting air bubb
inside the empty pipe, before the rise takes place.

For largeh ~.6 mm!, the size of the liquid finger doe
not depend onh. In this regime, we still observe some osc
lations of the interface due to the abrupt contraction betw
the reservoir and the tube. Such oscillations were descr
by Taylor,14 in the case of a tank with an oscillating wall. H
showed that free standing waves could set up in the ta
with a shape very close to the one observed in the tube.
smallerh, a strong dependence can be observed: the sm
the height, the longer the finger. We were interested in
dynamics of the finger growth. Figure 11 reports differe
series of experiments.

Besides theh dependence ofA stressed previously, Fig
11 shows that the finger grows after some delay~typically
0.02 s!, whateverh. This implies that a simple scenario~ei-
ther a convergence of the flow lines, or a kind of Rayleig
Taylor instability due to the pulse of acceleration at the
ginning of the rise! cannot explain the phenomenon. To g
further, we took detailed films of the very beginning of th
rise, focusing on the shape of the front interface. A series
snapshots taken at short time from above the tube is
played in Fig. 12.

These pictures show the existence of a circular r
which sets near the wall of the tube, and closes as time g
on. The collapse of this surface wave produces a jet~last
picture of the series!, as observed in similar situations.15 The
speed at which the liquid crater closes could be dedu
from series similar to Fig. 12. Figure 13 shows how t
diameterD of the liquid crater varies versus time.

The liquid crater closes at a constant velocity, which
1.3 m/s in the above-given example, of the order of the
locity AgH of the rising column~1.4 m/s, in the same ex
periment!. Note that this wave starts propagating during t
acceleration phase of the column. We saw that in this ph
the acceleration is of the order ofgH/R ~for h50!, signifi-

FIG. 11. Amplitude of the water finger as a function of time~H530 cm and
R520 mm!. The liquid column starts rising atT50 and the finger starts
developing at the arrow.
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cantly larger thang. Hence, for a wave vectork, a typical
wave velocity should scale asAgH/kR, of the order ofAgH
for k;1/R. The time needed for shutting down the crater
a pipe of radius 20 mm is 26 ms, of the order of the de
measured in Fig. 11.

The origin of the crater can also be questioned, and
lated to local flows at the pipe entrance. An effervescent d
placed below the tube provides indications on the flow:
gas bubbles reveal the existence of a circular vortex wh
remains close to the entrance as fluid sinks into the tube~Fig.
14!. This vortex is related to the contraction of the flow lin
entering the tube jet~the so-calledvena contractaphenom-
enon!, which traps some fluid at this place.

If h is negative, the initial conditions are different. The
some air can be trapped in the tube creating a vortex ring
air rather than a liquid one~as seen in the preceding par
graph!. This phenomenon could be enhanced by placin
diaphragm at the tube entrance, as seen in Fig. 15. The
umn then adopts the diameter of the diaphragm, with
modulation of frequency 184 Hz.~In addition, the finger pre-
viously described is still here, above the main column,
observed in Fig. 15.! The column modulation is probably du
to the stationary pressure waves of the air trapped into
tube. The frequency of such a resonant tube~open at one end
and closed at the other! is

f n5nC/4Y, ~25!

whereC is the sound speed,Y the total length of the tube~1.6
m in the experiment!, andn the mode of oscillation. Forn
51, we find f 15187 Hz, in very good agreement with th
measured frequency. This agreement remains excellent i
tube length is changed. Another cause of modulation of
cylindrical column of liquid could be the liquid surface ten
sion ~Plateau–Rayleigh instability!, but it would lead to a

FIG. 13. Diameter of the water crater vs time~R520 mm andH520 cm!.
FIG. 12. Set of pictures taken from above each 2.7 ms~R520 mm,H520 cm, andh53 mm!. These pictures correspond to the first points~before the arrow!
in Fig. 11. It can be observed that a cavity forms and closes, producing a water jet~last picture!.
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totally different wavelength~higher than the column perim
eter, i.e., of the order of 10 cm instead of the observed c
timeter in Fig. 15!.

IV. CONCLUSION

We have studied the gravitational oscillations of a liqu
column initially empty~or nearly empty! and partially im-
mersed inside a large reservoir. We have stressed that
problem has different analytical solutions, depending on
liquid viscosity. For very viscous liquids, the rise shou
obey the classical laws of impregnation~height proportional
to the square root of time, followed by an exponential rela
ation toward equilibrium!. But the interesting case is the lo
viscosity limit, for which different features were observe
and analyzed, focusing in particular on the first steps of
rise ~inertial regimes!: after an accelerating phase~where the

FIG. 14. Visualization of eddies using small bubbles as a tracer for the
of water~R520 mm andh57 mm!. The pictures are taken before the eru
tion of the jet.

FIG. 15. Water column rising in a tube (R520 mm) where a diaphragm~of
radius 10 mm! partially closes the bottom.
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liquid entrained was mainly the one below the tube!, the
velocity of rise was found to be a constant fixed by the de
of immersion. Then, the rise was observed to slow do
~because of the column weight!; we have shown that the
trajectory is parabolic, reaching as a first maximum 1.5 tim
the depth of immersion. This value confirms that energy
indeed dissipated in this inertial phase, because of the sud
contraction endured by the moving liquid which passes fr
a large reservoir to a finite pipe. After this first maximum
many rebounds were observed, which was understood
evaluating the long range damping associated with this
ergy loss: the envelope of the height/time dependence
found to be hyperbolic~instead of exponential, as it is th
case for usual viscous damping!. At long time, viscosity must
of course also be considered, which provides a quic
damping of the oscillations. We finally described qualit
tively an instability of the liquid/air interface during the firs
steps of the rise: then, a liquid jet is emitted while the c
umn develops. A complete study of this jet remains to
done.
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