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Abstract

Recently, many academic researchers have implemented different numerical procedures to solve
a dynamic portfolio choice problem especially in incomplete markets. The subsequent numerical
results are sometimes significantly different from one paper to another. Thus, they have all advo-
cated the accuracy of their methods. This paper contributes to this accuracy debate by showing
how to obtain some accurate numerical results without numerical approximations, for a given
investment horizon. We use a dynamic programming approach in continuous-time, and illus-
trate the framework with one risky and one riskless asset under a power utility. The framework
is flexible enough to cover all the HARA class of utility functions.

Keywords: Dynamic portfolio choice; Long-term investing; Time aggregation; Explicit solutions;
Numerical solutions.
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Introduction

Starting from the seminal work of Merton (1971), many results on dynamic portfolio optimization
problems have been obtained. However, it still appears to be difficult to provide accurate numer-
ical results when there is predictability in asset returns, i.e. when investment opportunities are
time-varying. A large number of papers have proposed to use a VAR model to forecast returns and
study their implications on long-term portfolio choice problems. As a result, the academic literature
has followed two main lines. The first one relies on mathematical tools, and then establishes some
theoretical explicit solutions (see among others Kim and Omberg (1996), Liu (2007) and refer-
ences therein). Such solutions exist only in continuous-time. To provide accurate numerical values,
investor must solve a quite complicated issue of time aggregation (Bergstrom (1984) and Campbell
et al. (2004)). The second line of research directly implements in discrete-time some challenging
numerical methods. In fact, Barberis (2000) develops a discretization state space method that serves
as a benchmark. Brandt et al. (2005), Van Binsbergen and Brandt (2007), Garlappi and Skoulakis
(2009) among others use some sophisticated backward induction techniques and evaluate the accu-
racy of their results by comparing them to the discretization state space benchmark. Nevertheless,
in a recent paper, Cong and Oosterlee (2015) implement an improved version of the method of
Brandt et al. (2005), and then compare the resulting numerical values to a benchmark based on

*Érudite, Université Paris-Est, and TEPP, F.Legendre@u-pec.fr.
†
� Érudite, Université Paris-Est, Djibril.Togola@u-pec.fr.

1

http://ees.elsevier.com/ecmode/viewRCResults.aspx?pdf=1&docID=8004&rev=0&fileID=106669&msid={7A03F37F-2EE8-4DE1-B7D4-7A483BB9F124}


the Fourier cosine series expansion. Using a theoretical model, we show how to analytically obtain
similar numerical values.

Some approximation numerical procedures have appeared to be inconsistent. In fact, Detemple
et al. (2005) find that Detemple et al. (2003) procedure is more accurate and more faster than that
of Brandt et al. (2005). Van Binsbergen and Brandt (2007) using regression procedure to approxi-
mate the expectation component of value function claim that the portfolio weight iteration (which
was previously developed by Brandt et al. (2005)) is more accurate than that of the value function.
Garlappi and Skoulakis (2009) challenge this result by showing that certainty equivalent transfor-
mation of value function leads to much more accurate numerical results when the expectation of the
value function is approximated by Gauss-Hermite quadrature with six nodes. Garlappi and Skoulakis
(2011) provide a general discussion on approximations accuracy in discrete-time. However, all dis-
crete numerical procedures approximate directly or indirectly a highly non-linear value function
and cannot explicitly separate the so-called hedging demand from the so-called myopic demand. The
continuous-time model considered in this paper does this separation and provides some very accu-
rate numerical results since it is based on a well-documented explicit solution.

Boyle et al. (2008), Detemple et al. (2005), Detemple et al. (2003), Cvitanić et al. (2003) among
others work in continuous-time, and they implement some numerical methods. They perform some
pure simulation techniques to derive optimal portfolio weights. In fact, these authors achieve a
transformation of portfolio weight as a fraction of instantaneous standard deviation of wealth or
obtain solutions under Malliavin calculus, and then they carry different kinds of Monte Carlo simu-
lations to provide numerical values. Unfortunately, these prominent techniques are intractable with
the assumption of incomplete markets. We propose a direct approach derived from analytical for-
mula with a realistic assumption of incomplete markets that respect a parsimonious VAR process for
risky asset returns.

The framework we use is similar to that of Campbell et al. (2004), except we deal with horizon
which does not need to be necessarily infinite, and we define the continuous state variable as the
market price of risk (also called Sharpe ratio) rather than the risk premium. We focus on the clear
link between the continuous state variable (market price of risk) and the discrete state variable (log
dividend-price ratio). This leads to some comprehensive expressions, which are very fast to be imple-
mented. Campbell et al. (2004) work with an approximate analytical solution for an investor with an
infinite horizon and recursive preferences. In this context, they provide evidence that there should
exist minor discrepancies between results under discrete vs. continuous-time models. Accordingly,
numerical results we derive from continuous-time are indirectly comparable to those of Garlappi
and Skoulakis (2009). We show that, for large degrees of risk aversion and/or small horizons, when
the state variable is close to its unconditional mean, the two numerical results are quite similar.
Otherwise, results under our explicit solution in continuous-time exhibit some discrepancies with
Garlappi and Skoulakis (2009) when risk aversion decreases and/or time horizon increases. We
argue that this is due to the large sensitivity of total demand to the continuous-time state variable
(Sharpe ratio) or equivalently to the discrete-time state variable (log dividend-price ratio).

The paper is organized as follows; Section 1 exposes the way we map the continuous-time invest-
ment opportunity set and the discrete-time one; Section 2 gives some insights into the explicit solu-
tion for a long-term investor with CRRA preferences; Section 3 illustrates some numerical results
based on the econometric model in Brandt et al. (2005) for comparison purposes, and then discusses
accuracy.

1 Investment opportunity sets

First, we propose studying the model in a continuous-time framework, and then in a discrete-time
framework to assess the impact of the predictable component in stock returns. Next, we present the
way we recover continuous-time parameters that are consistent with discrete-time VAR estimates.
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1.1 Opportunity set in continuous-time

We start by assuming that two assets are available for the investor. On the one hand, there exists a
riskless asset that pays back a constant real interest rate 𝑟

d𝑃 𝑓
𝑡

𝑃 𝑓
𝑡

= 𝑟 d𝑡, (1)

where 𝑃 𝑓
𝑡 denotes the real price of this asset at time 𝑡; on the other hand, there is a risky asset

whose real price 𝑃𝑡 satisfies the following diffusion process

d𝑃𝑡
𝑃𝑡

= 𝜇𝑡 d𝑡 + 𝜎 d𝐵𝑝
𝑡 , (2)

where 𝐵𝑝
𝑡 denotes a one-dimensional Brownian motion with zero drift and unit variance rate. The

drift rate 𝜇𝑡 follows a diffusion process as well. It is supposed to be time-varying and state variable
dependent. The volatility of the risky asset is assumed to be constant. This is not a strong assumption
for a long-term investor (see Campbell and Viceira (2002)). Let 𝑋𝑡 denote the Sharpe ratio, i.e. the
market price of risk/reward, for buying/selling one unit of risky asset.

𝑋𝑡 = 𝜇𝑡 − 𝑟
𝜎 . (3)

Then, the Sharpe ratio is assumed to follow an usual ”Ornstein-Uhenbeck” diffusion process

d𝑋𝑡 = 𝜅(𝜃 − 𝑋𝑡) d𝑡 + d𝐵𝑥
𝑡 𝜅, 𝜃, > 0, (4)

where 𝐵𝑥
𝑡 denotes another one-dimensional Brownian motion with zero drift and unit variance rate.

Parameters 𝜃 and 𝜅 denote, respectively, the unconditional mean and the mean reverting parameter
of the Sharpe ratio 𝑋𝑡. Parameter 𝜅 reflects the rate by which shocks on Sharpe ratio dissipate, and
then 𝑋𝑡 reverts towards its long-term mean 𝜃. Parameter denotes the instantaneous volatility of
𝑋𝑡. It controls the diffusion rate of the process.

The above equations imply that the instantaneous return on stocks d𝑃𝑡/𝑃𝑡 follows a diffusion
process, whose drift is mean-reverting andwhose innovations are correlatedwith those of themarket
price of risk itself, with the correlation coefficient 𝜌. Thus, the following system of equations holds;

d𝑃𝑡/𝑃𝑡 = (𝜎𝑋𝑡 + 𝑟) d𝑡 + 𝜎 d𝐵𝑝
𝑡 , (5)

d𝑋𝑡 = 𝜅(𝜃 − 𝑋𝑡) d𝑡 + d𝐵𝑥
𝑡 , (6)

with d𝐵𝑝
𝑡 d𝐵𝑥

𝑡 = 𝜌 d𝑡. The market price of risk has an undiversifiable risk component meaning
that markets are incomplete (𝜌 ≠ ±1). In fact, the equations (5) and (6) define a continuous VAR
process. To see this, we just apply Ito’s lemma to d𝑃𝑡/𝑃𝑡, and we notice that d𝜃 = 0, so that we can
work with matrices. After rearranging, the result is

d [
ln 𝑃𝑡 + 1

2𝜎2𝑡 − 𝜎 𝜃 𝑡 − 𝑟 𝑡
𝑋𝑡 − 𝜃 ] = [

0 𝜎
0 −𝜅] [

ln 𝑃𝑡 + 1
2𝜎2𝑡 − 𝜎 𝜃 𝑡 − 𝑟 𝑡
𝑋𝑡 − 𝜃 ] d𝑡 +

[
𝜎 0
𝜌 √1−𝜌2] [

d𝑍𝑝
𝑡

d𝑍𝑥
𝑡 ] , (7)

where d𝑍𝑃 ,𝑡 and d𝑍𝑋,𝑡 are two independent Brownian motion processes. This last expression is
indeed a continuous VAR model. It could be rewritten in a compact form as

d𝑌𝑡 = G 𝑌𝑡 d𝑡 + H d𝑍𝑡, (8)
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where

G = [
0 𝜎
0 −𝜅] and H = [

𝜎 0
𝜌 √1−𝜌2] . (9)

Equation (8) is suitable to discretize (Bergstrom (1984)). In fact, it leads to an issue of time aggre-
gation, that we have to solve in order to provide accurate continuous-time parameters, when we
take the predictability in discrete-time as given.

1.2 Opportunity set in discrete-time

The standard model in discrete-time is a restricted VAR(1) process which captures predictability of
stock returns (see Barberis (2000) for instance). We focus on the example analyzed in Brandt et al.
(2005) that was reused in Van Binsbergen and Brandt (2007) and in Garlappi and Skoulakis (2009).
The log excess returns ∆ ln 𝑃𝑡+1 −𝑟𝑓 are assumed to be predictable by the log dividend-price ratio 𝑧𝑡
(𝑟𝑓 denotes the risk-free rate and is equal to 6% on an annual basis). The joint dynamic relationship
between these two variables are specified such that

∆ ln 𝑃𝑡+1 − 𝑟𝑓 = 𝑎𝑟 + 𝑏𝑟𝑧𝑡 + 𝑟
𝑡+1, (10)

𝑧𝑡+1 = 𝑎𝑧 + 𝑏𝑧𝑧𝑡 + 𝑧
𝑡+1, (11)

with

[
𝑟
𝑡+1𝑧
𝑡+1] ∼ N([

0
0] , [

𝜎2
𝑟 𝜎𝑟𝑧

𝜎𝑟𝑧 𝜎2
𝑧 ]) . (12)

In fact, Campbell and Shiller (1988) forcefully claim that, if log returns are predictable, at least,
the log dividend-price ratio should capture some of that predictability. A substantial long-standing
empirical literature has documentedmany properties of these two regressions (see Cochrane (2008)).
Brandt et al. (2005) report the following estimated values (using real data of the CRSP U.S. quarterly
index from January 1986 to December 1995);

𝑏𝑟 = 0.060, 𝑏𝑧 = 0.958,
𝜎𝑟𝑧

𝜎𝑟 𝜎𝑧
= −0.941.

Log returns are weakly predictable; the log dividend-price ratio is highly persistent; and shocks are
strongly negatively correlated. Hence, mean reverting occurs at longer horizons.

1.3 Recovering continuous-time parameters from discrete-time VAR

Closely following Campbell et al. (2004), we recover the parameters of the continuous-time system
eqs (5)-(6) from the restricted VAR(1) eqs (10)-(11). However, Campbell et al. (2004) use the risk
premium as a state variable and consider a specific infinitely lived long term investor; we explore
the case of the Sharpe ratio with a finite or infinite long term investment horizon. We focus on the
clear link between the continuous state variable (market price of risk) and the discrete state variable
(dividend-price ratio).

The first step is to aggregate the continuous-time model over a span of time, taking point obser-
vations at evenly spaced points {𝑡0, 𝑡1, …, 𝑡𝑛, 𝑡𝑛+1, …}, with ∆𝑡 = 𝑡𝑛 −𝑡𝑛−1. Using the discretization
method developed by Bergstrom (1984), we then obtain

[
∆ ln 𝑃𝑡𝑛+∆𝑡 − 𝑟∆𝑡

𝑋𝑡𝑛+∆𝑡 ] = [
(𝜎 𝜃 − 𝜎2/2)∆𝑡 − (1 − e−𝜅∆𝑡)𝜎 𝜃

𝜅
(1 − e−𝜅∆𝑡)𝜃 ] +

[
1 (1 − e−𝜅∆𝑡)𝜎

𝜅
0 e−𝜅∆𝑡 ] [

∆ ln 𝑃𝑡𝑛
− 𝑟

𝑋𝑡𝑛 ] + [
𝑈 𝑝

𝑡𝑛+∆𝑡
𝑈 𝑥

𝑡𝑛+∆𝑡]
, (13)
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Discrete-time world Continuous-time world

Models
Brandt et al. (2005) Kim and Omberg (1996)

∆ ln 𝑃𝑡+1 − 𝑟𝑓 = 𝑎𝑟 + 𝑏𝑟𝑧𝑡 + 𝑟
𝑡+1

𝑧𝑡+1 = 𝑎𝑧 + 𝑏𝑧𝑧𝑡 + 𝑧
𝑡+1

V( 𝑟
𝑡 ) = 𝜎2

𝑟
V( 𝑧

𝑡 ) = 𝜎2
𝑠

Cov( 𝑟
𝑡 , 𝑧

𝑡 ) = 𝜎𝑟𝑧

d𝑃 𝑓
𝑡 /𝑃 𝑓

𝑡 = 𝑟 d𝑡
d𝑃𝑡/𝑃𝑡 = (𝜎𝑋𝑡 + 𝑟) d𝑡 + 𝜎 d𝐵𝑝

𝑡
d𝑋𝑡 = 𝜅(𝜃 − 𝑋𝑡) d𝑡 + d𝐵𝑥

𝑡
d𝐵𝑝

𝑡 d𝐵𝑥
𝑡 = 𝜌 d𝑡

Parameter values
Brandt et al. (2005) Our computations eqs (16)-(21)

𝑟𝑓 0.015
𝑎𝑟 0.227
𝑏𝑟 0.060
𝑎𝑧 −0.155
𝑏𝑧 0.958
𝜎2

𝑟 0.0060
𝜎2

𝑧 0.0049
𝜎𝑟𝑧 −0.0051

𝑟 0.015
𝜃 0.111
𝜅 0.0429
𝜎 0.0775

0.0542
𝜌 −0.941

Table 1: Recovering of continuous-time parameters

where

[
𝑈 𝑝

𝑡𝑛+∆𝑡
𝑈 𝑥

𝑡𝑛+∆𝑡]
= ∫

∆𝑡

𝜏=0 [
1 (1 − e−𝜅∆𝑡)𝜎

𝜅
0 e−𝜅∆𝑡 ] [

𝜎 0
𝜌 √1−𝜌2] [

d𝐵𝑝
𝑡𝑛+𝜏

d𝑍𝑥
𝑡𝑛+𝜏] , (14)

with d𝐵𝑥
𝑡 = 𝜌 d𝐵𝑝

𝑡 + √1−𝜌2 d𝑍𝑥
𝑡 where 𝐵𝑝

𝑡 and 𝑍𝑥
𝑡 are two independent Brownian terms.

Appendix A.1 derives the equations (13) and (14).
The second step considers a matrix form of the estimates of the discrete-time VAR system,

eqs (10)-(11)

[
∆ ln 𝑃𝑡+1 − 𝑟𝑓

𝑧𝑡+1 ] = [
𝑎𝑟
𝑎𝑧] + [

0 𝑏𝑟
0 𝑏𝑧] [

∆ ln 𝑃𝑡 − 𝑟𝑓

𝑧𝑡 ] + [
𝑟
𝑡+1𝑧
𝑡+1] . (15)

Then, we apply a linear transformation for the process 𝑋𝑡 in (13). This allows us to relate the
parameters of the transformed systems in (13) and (15). Hence, when we normalize the time
span ∆𝑡 = 1, since everything is in quarterly frequency, we get (for 𝑏𝑧, 𝑏𝑟 > 0)

𝑟 = 𝑟𝑓 , (16)

𝜃 =
𝑎𝑧𝑏𝑟

𝜎𝑟(1−𝑏𝑧) + 𝑎𝑟 + 𝜎2
𝑟 /2

𝜎𝑟
, (17)

𝜅 = − ln(𝑏𝑧), (18)

𝜎 = 𝜎𝑟, (19)

= 𝑏𝑟
𝜎𝑧
𝜎𝑟

, (20)

𝜌 =
𝜎𝑟𝑧

𝜎𝑟 𝜎𝑧
. (21)

Appendix A.2 proves these results. Table 1 illustrates the values of the parameters of the continuous-
time VAR implied by the Brandt et al. (2005) estimates.

5



2 Portfolio choice problem in continuous-time with CRRA preferences

We can now solve the portfolio choice problem of the investor with a long-term horizon, who is
confronted with the investment opportunity set described in section 1.1. We rely on recent advances
in Honda and Kamimura (2011), who use the verification theorem to show that the explicit solution
provided in continuous-time is, in fact, an optimal solution, especially for risk aversion greater than
one.

Let’s consider an investor with a positive initial wealth 𝑊𝑡0
> 0, who could only invest in two

assets, for instance, a riskless short-term bond and a well-diversified stock index. Markets are incom-
plete. Furthermore, the investor can undertake continuous trading; he has no labor incomes and
only cares about the utility of terminal wealth 𝑊𝑇 > 0, where 𝑇 is the finite or infinite plan-
ning horizon. The dynamics of price changes are described by (1) and (5)-(6). If 𝛼𝑡 defines
the share of wealth invested in stocks, the instantaneous wealth would be given by d𝑊𝑡/𝑊𝑡 =
𝛼𝑡 d𝑃𝑡/𝑃𝑡 + (1−𝛼𝑡) d𝑃 𝑓

𝑡 /𝑃 𝑓
𝑡 . Properly substituting the dynamics of d𝑃𝑡/𝑃𝑡 and d𝑃 𝑓

𝑡 /𝑃 𝑓
𝑡 , wealth

dynamics (also called the budget constraint) become

d𝑊𝑡 = (𝛼𝑡𝜎 𝑋𝑡 + 𝑟)𝑊𝑡 d𝑡 + 𝛼𝑡𝜎 𝑊𝑡 d𝐵𝑝
𝑡 . (22)

Notice that the wealth process reflects uncertainty in instantaneous returns (d𝐵𝑝
𝑡 term) and in the

state variable (term in 𝑋𝑡). Given this formalization of the wealth process, at time 𝑡0, the investor’s
optimization problem can then be expressed as

max
𝛼𝑡

E𝑡0
𝑢(𝑊𝑇 ) s.t. (22), 𝑊𝑡0

fixed. (23)

where E𝑡0
denotes the operator of conditional expectation at date 𝑡0, starting the process at 𝑡 = 𝑡0,

and 𝑢(⋅) the utility function defined over terminal wealth. Since only the utility of terminal wealth
does matter, no time discount parameter would be required. Let 𝐽(𝑊𝑡0

, 𝑋𝑡0
, 𝑡0) define the value of

the investor’s problem at time 𝑡0

𝐽(𝑊𝑡0
, 𝑋𝑡0

, 𝑡0) = max
𝛼𝑡

E𝑡0
𝑢(𝑊𝑇 ). (24)

The Bellman principle of optimality generalizes this problem to every time 𝑡, so that

𝐽(𝑊𝑡, 𝑋𝑡, 𝑡) = max
𝛼𝑡

E𝑡 𝐽(𝑊𝑡+ d𝑊𝑡, 𝑋𝑡+ d𝑋𝑡, 𝑡+ d𝑡). (25)

The Bellman equation in (25) emphasizes on the idea that current optimal decision is made by
assuming that we will make optimal decisions in all future periods. Hence, we take into account that
our current decision provides the maximum expected utility we can reach respecting all the future
optimal decisions. The expectation E𝑡 𝐽(𝑊𝑡+ d𝑊𝑡, 𝑋𝑡+ d𝑋𝑡, 𝑡+ d𝑡) depends on 𝛼𝑡. Applying Ito’s
lemma to the Bellman equation, we obtain

0 = max
𝛼𝑡 (

𝜕𝐽
𝜕𝑊𝑡

(𝛼𝑡𝜎 𝑋𝑡 + 𝑟)𝑊𝑡+
𝜕𝐽
𝜕𝑡 + 𝜕𝐽

𝜕𝑋𝑡
𝜅(𝜃 − 𝑋𝑡) + 1

2
𝜕2𝐽

𝜕2𝑊𝑡
𝜎2𝛼2

𝑡 𝑊 2
𝑡 +

1
2

𝜕2𝐽
𝜕2𝑋𝑡

2 + 𝜕2𝐽
𝜕𝑊𝑡𝜕𝑋𝑡

𝜎 𝛼𝑡 𝜌 𝑊𝑡). (26)

The first order condition of equation (26) with respect to 𝛼𝑡 implies that

𝛼⋆
𝑡 = − 𝜕𝐽/𝜕𝑊𝑡

𝜕2𝐽/𝜕2𝑊𝑡

1
𝑊𝑡

𝑋𝑡
𝜎 − 𝜕2𝐽/(𝜕𝑊𝑡𝜕𝑋𝑡)

𝜕2𝐽/𝜕2𝑊𝑡

1
𝑊𝑡 𝜎 𝜌. (27)

Merton (1971) was the first to propose such additive decomposition between amyopic demand (first
term) and a hedging demand (second term) of the optimal allocation to stocks on the right hand side
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of (27). As special cases, there is no hedging demand when the opportunity set is nonstochastic
( = 0), or when the opportunity set is uncorrelated with asset returns (𝜌 = 0). Otherwise, to solve
the problem, we need to explicitly define the function 𝐽(⋅).

The first conjecture is
𝐽(𝑊𝑡, 𝑋𝑡, 𝑡) = 𝑢(𝑊𝑡) [𝑓 (𝑋𝑡, 𝑡)]𝛾 , (28)

where 𝑓(⋅) is an auxiliary function with the terminal condition 𝑓(𝑋𝑇 , 𝑇 ) = 1. We consider a CRRA
preferences 𝑢(𝑊𝑡) = 𝑊 1−𝛾

𝑡 /(1−𝛾), where 𝛾 is the coefficient of relative risk aversion. Thus, the
hedging demand in (27) could straightforward be expressed as

𝜕𝑓 /𝜕𝑋𝑡
𝑓 𝜎 𝜌 = 𝜕 ln 𝑓

𝜕𝑋𝑡 𝜎 𝜌.

Then, under CRRA preferences, the optimal allocation to stocks becomes

𝛼⋆
𝑡 = 1

𝛾
𝑋𝑡
𝜎 + 𝜕 ln 𝑓

𝜕𝑋𝑡 𝜎 𝜌. (29)

So, the Bellman equation (26) could be rewritten as

0 =
𝑓 ′

𝑡
𝑓 + 1−𝛾

𝛾 𝑟+ 1−𝛾
2 𝛾2 𝑋2

𝑡 + 𝑓 ′
𝑥

𝑓 [
1−𝛾

𝛾 𝑋𝑡𝜌 + 𝜅(𝜃 − 𝑋𝑡)]+ 𝑓 ″
𝑥𝑥
𝑓

2

2 +(
𝑓 ′

𝑥
𝑓 )

2 1−𝛾
2

2(𝜌2−1), (30)

where we use intuitive notations for the derivatives of the function 𝑓(⋅). Equation (30) is a partial
differential equation which admits analytical solutions especially if utility is logarithmic (𝛾 = 1 by
l’Hopital’s rule) or if markets are complete (𝜌 = ±1).

The second conjecture is to assume

𝑓(𝑋𝑡, 𝑡) = exp (𝐶0(𝑡) + 𝐶1(𝑡) 𝑋𝑡 + 1
2𝐶2(𝑡) 𝑋2

𝑡 ) , (31)

where 𝐶0(𝑡), 𝐶1(𝑡) and 𝐶2(𝑡) are some undetermined time varying coefficients (with 𝐶0(𝑇 ) =
𝐶1(𝑇 ) = 𝐶2(𝑇 ) = 0). Under this conjecture, using equation (29), the intertemporal optimal allo-
cation to stocks is

𝛼⋆
𝑡 = 1

𝛾
𝑋𝑡
𝜎 + [𝐶1(𝑡) + 𝐶2(𝑡) 𝑋𝑡]𝜎 𝜌. (32)

We only need to recover 𝐶1(𝑡) and 𝐶2(𝑡) coefficients.
The conjectures in (28) and (31) are due to Kim and Omberg (1996) followed by Liu (2007)

among others. More recently, Honda and Kamimura (2011) analytically show that the explicit solu-
tion derived from the Bellman equation is in fact, an optimal solution to the problem of the long-term
investor with CRRA preferences and risk aversion greater than one.

Let us substitute the second conjecture into the equation (30)

0 = (
d𝐶2
d𝑡

+ 𝑎 𝐶2
2 + 𝑏 𝐶2 + 𝑐) 𝑋2

𝑡 + (
d𝐶1
d𝑡

+ 𝑏
2𝐶1 + 𝜅 𝜃 𝐶2 + 𝑎 𝐶1𝐶2) 𝑋𝑡 +

(
d𝐶0
d𝑡

+ 1−𝛾
𝛾 𝑟 + 𝜅 𝜃 𝐶1 +

2

2 𝐶2 + 𝑎
2𝐶2

1 ) , (33)

where 𝑎 = [1 + (1−𝛾)(𝜌2−1)] 2, 𝑏 = 2[ 𝜌(1−𝛾)/𝛾 − 𝜅] and 𝑐 = (1−𝛾)/𝛾2. As whatever the value
of 𝑋𝑡, the equation (33) must hold, all terms within parentheses in (33) are simultaneously set to
zero in order to solve the equation for 𝐶0(⋅), 𝐶1(⋅), and 𝐶2(⋅). Defining the discriminant 𝐷

𝐷 = 𝑏2 − 4 𝑎 𝑐,
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Figure 1: Myopic (dashed line) and hedging (solid line) demands as function of risk aversion for
𝑋𝑡0

= 𝜃

one can verify that if 𝛾 > 1, then 𝐷 > 0. Thus, the two solutions of interest would be given by

𝐶2(𝑡) =
2 𝑐 (1 − e−𝛿(𝑇 −𝑡))

2 𝛿 − (𝑏 + 𝛿) (1 − e−𝛿(𝑇 −𝑡))
(34)

𝐶1(𝑡) = 4 𝑐 𝜅 𝜃
𝛿

(1 − e−𝛿(𝑇 −𝑡)/2)
2

2 𝛿 − (𝑏 + 𝛿) (1 − e−𝛿(𝑇 −𝑡))
, (35)

where 𝛿 denotes √𝐷. In a context of HARA utility functions, Kim and Omberg (1996) call the
implied portfolio, the normal solution, and they discuss about some alternative solutions those are
beyond the scope of this paper. The appendix A.3 provides details on the derivation of (34) and (35).
It is easy to see that, at each point in time, 𝐶1(⋅) is proportional to 𝐶2(⋅), and 𝐶1(⋅) takes the sign
of 𝐶2(⋅). Thus, for 𝛾 > 1, then 𝐶1 and 𝐶2 are always negative. As a result, since 𝜌 < 0, the hedging
demand is always positive when the preferences are not logarithmic (more precisely for 𝛾 > 1)
and the market price of risk is positive. Such consistent theoretical result could be used to provide
numerical values.

3 Numerical results

As mentioned above, for the purposes of comparison, as in Garlappi and Skoulakis (2009), we illus-
trate our approach using the well documented econometric model in Brandt et al. (2005). Table 1
collects the continuous-time parameters recovered from this example. We also collect in table 3 a
sample of numerical results in Garlappi and Skoulakis (2009) by means of a sophisticated numerical
method.

Figure 1 and table 2 help to understand the long-term investor problem. For 𝛾 = 1 i.e., the case
of logarithmic utility, no hedging demand is required. In this case, the dynamic portfolio choice is
reduced to the static one, whatever the time horizon. Otherwise, for 𝛾 > 1 and horizons longer
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𝛾 = 5 𝛾 = 15
𝑇 𝑋(10) 𝑋(30) 𝑋(50) 𝑋(70) 𝑋(90) 𝑋(10) 𝑋(30) 𝑋(50) 𝑋(70) 𝑋(90)

10 MD −34.0 3.0 28.6 54.2 91.1 −11.3 1.0 9.5 18.1 30.4
HD −10.9 3.5 13.5 23.6 38.0 −4.6 1.5 5.7 9.9 15.9

20 MD −34.0 3.0 28.6 54.2 91.1 −11.3 1.0 9.5 18.1 30.4
HD −15.9 10.8 29.2 47.7 74.3 −7.2 4.9 13.3 21.6 33.7

30 MD −34.0 3.0 28.6 54.2 91.1 −11.3 1.0 9.5 18.1 30.4
HD −16.0 19.8 44.7 69.5 105.3 −7.7 9.8 21.9 34.1 51.6

40 MD −34.0 3.0 28.6 54.2 91.1 −11.3 1.0 9.5 18.1 30.4
HD −13.2 29.1 58.3 87.6 129.8 −6.5 15.5 30.7 46.0 68.0

For each risk aversion 𝛾 , the first line reports the myopic demand (MD) and the second line the hedging
demand (HD) without short sale constraints. We present the results for 5 different initial values of the Sharpe
ratio 𝑋. Each value corresponds to the 𝑝-th percentile of the unconditional distribution of 𝑋, defined by
equation (59) and denoted by 𝑋(𝑝), where 𝑝 takes values 10, 30, 50, 70, and 90 (then 𝑋(50) = 𝜃).

Table 2: Myopic and hedging demands for investment horizon of 𝑇 quarters (%)

than one, under CRRA preferences and mean reverting returns, the agent should have a positive
hedging demand to prevent adverse changes in investment opportunities (Merton, 1971). However,
for 𝛾 → +∞, more specifically for a very conservative agent, stocks are not attractive. Thus, he
would not invest in stocks, since the total demand (sum of myopic and hedging demands) converges
towards zero. Our results recover all these important basic features.

The total demand is sensitive to risk aversion. Results from previous studies imply that myopic
and hedging demands are more sensitive to small values of risk aversion. We confirm this result
and argue that the sensitivity of hedging demand to a state variable is maximal near the critical
point 𝛾 ≈ 2. Equation (32) and figure 1 illustrate this point. To quantitatively highlight this result,
just evaluate the derivative of 𝛼⋆ with respect to 𝑋.

Table 2 reports the evidence that both myopic and hedging demands are sensitive to initial values
of the Sharpe ratio. Each element of these two components of optimal allocation monotonically
increases with the percentile of the Sharpe ratio unconditional distribution. Thus, the total demand
exhibits the same behavior. This is consistent with Garlappi and Skoulakis (2009) and Campbell
et al. (2004) among others. In fact, high Sharpe ratio or equivalently high risk premium relative to
volatility, signals better investment opportunities. Therefore, optimal fraction to allocate in stocks
should increase.

Myopic demand is independent from time horizon, while hedging demand increases nonlinearly
with time horizon. However, table 2 quantitative figures suggest that this relation is almost linear,
but small changes in horizon induce substantial hedging demand. Horizon effect is important and
quite linear for a given percentile of the state variable unconditional distribution. All changes in
total demand for fixed risk aversion and state variable are due to changes in horizon and are large
for small risk aversion (see figure 2).

With regard to optimal allocation, the horizon effect on hedging demand is important, because
it widely dominates at longer horizons. In fact, when the horizon is greater than 20 quarters,
hedging demand is always greater than myopic demand, when the Sharpe ratio initial values do lie
between 30 and 70 percentiles (table 2).

Finally, let’s take the case of the common assumption of no-borrowing and no-short-sale con-
straints. Thus, in table 3, we restrict all portfolio weights between 0 and 1. It can be noticed that we
generally obtain values fairly close to those of Garlappi and Skoulakis (2009), while frameworks are
not the same. Garlappi and Skoulakis (2009) work in discrete-time and initial values of their state
variable are drawn for the unconditional distribution of quarterly dividend-price ratios. They use a

9



0 5 10 15 20 25 30 35 40
Horizon in quarters (𝑇 parameter)

0

20

40

60

80

100

A
llo

ca
tio

n
to

st
oc

ks
(%

)

𝑋𝑡0 = 𝑋(10)

𝑋𝑡0 = 𝑋(30)

𝑋𝑡0 = 𝑋(50)

𝑋𝑡0 = 𝑋(70)

𝑋𝑡0 = 𝑋(90)

0 5 10 15 20 25 30 35 40
Horizon in quarters (𝑇 parameter)

0

20

40

60

80

100

A
llo

ca
tio

n
to

st
oc

ks
(%

)

𝑋𝑡0 = 𝑋(10)

𝑋𝑡0 = 𝑋(30)

𝑋𝑡0 = 𝑋(50)

𝑋𝑡0 = 𝑋(70)

𝑋𝑡0 = 𝑋(90)

Figure 2: Optimal allocation to stocks as function of horizon for 𝛾 = 5 (first panel) and for 𝛾 = 15
(second panel) for 5 different initial values of the Sharpe ratio 𝑋 (as in table 2 or 3)
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𝛾 = 5 𝛾 = 15
𝑇 𝑋(10) 𝑋(30) 𝑋(50) 𝑋(70) 𝑋(90) 𝑋(10) 𝑋(30) 𝑋(50) 𝑋(70) 𝑋(90)

10 LT 0.0 6.5 42.1 77.7 100.0 0.0 2.5 15.2 27.9 46.3
GS 0.0 13.3 43.2 73.1 100.0 0.0 4.3 15.4 27.0 44.7
∆ 0.0 −6.8 −1.1 4.6 0.0 0.0 −1.8 −0.2 0.9 1.6

20 LT 0.0 13.7 57.8 100.0 100.0 0.0 5.9 22.8 39.7 64.1
GS 0.0 24.4 57.2 89.7 100.0 0.0 10.7 25.1 40.4 63.2
∆ 0.0 −10.7 0.6 10.3 0.0 0.0 −4.8 −2.3 −0.7 0.9

30 LT 0.0 22.8 73.2 100.0 100.0 0.0 10.8 31.5 52.1 81.9
GS 0.0 32.8 68.4 100.0 100.0 0.0 17.5 35.2 54.0 80.7
∆ 0.0 −10.0 4.8 0.0 0.0 0.0 −6.7 −3.7 −1.9 1.2

40 LT 0.0 32.0 86.9 100.0 100.0 0.0 16.5 40.2 64.0 98.3
GS 0.0 38.8 77.6 100.0 100.0 0.0 24.1 44.5 65.7 94.6
∆ 0.0 −6.8 9.3 0.0 0.0 0.0 −7.6 −4.3 −1.7 3.7

With the restriction of no levered positions, for each risk aversion 𝛾 , the first line reports our results (LT –
optimal allocation to stocks in continuous-time), the second line the Garlappi and Skoulakis (2009) results
(GS – optimal allocation to stocks in discrete-time), and the third line reports the difference between them.
We present the results for 5 different initial values of the Sharpe ratio 𝑋, calibrated using the same estimates,
involving dividend-price ratio as in GS. Each value corresponds to the 𝑝-th percentile of the unconditional
distribution of 𝑋, defined by equation (59) and denoted by 𝑋(𝑝), where 𝑝 takes values 10, 30, 50, 70, and
90.

Table 3: Optimal allocation to stocks for investment horizon of 𝑇 quarters (%)

sophisticated numerical optimization technique. We work in continuous-time (no numerical opti-
mization) and our initial values are computed using the unconditional distribution of the continuous
Sharpe ratio, that we discretize in point observations and recover using the same quarterly dividend-
price ratios. However, a closer inspection of table 3 figures points out that the optimal allocation
to stocks is more sensitive to the state variable and the time horizon than the sensitivity obtained
by Garlappi and Skoulakis (2009). We ran some numerical simulations, within the discrete-time
framework, to evaluate our results in order to find the causes of the discrepancies between the two
frameworks. We were unable to qualitatively or quantitatively invalidate our results.

To test our results, we ran some forward pure simulations in discrete-time. More precisely,
for instance, we illustrate the critical case where the initial value of the Sharpe ratio is the 30-th
percentile (𝑋𝑡 = 𝑋(30)), the relative risk aversion is equal to 5 (𝛾 = 5), and the planning horizon
is set to 10 (𝑇 = 10 quarters). Within this configuration, when we get an initial optimal allocation
to stocks of 0.065, Garlappi and Skoulakis (2009) obtain twice as many (0.133, see table 3). That
discrepancy is significant. Thus, we first build a sample of size 100 000 for 𝑧𝑡+1, 𝑧𝑡+2, …, 𝑧𝑡+10
and ∆ ln 𝑃𝑡+1, ∆ ln 𝑃𝑡+2, …, ∆ ln 𝑃𝑡+10 using the restricted VAR(1) eqs (10)-(11). We choose the
grid 𝑔 = {0.05, 0.10, 0.15, 0.20, 0.25} for trial allocations to stocks, to overlay both our and Garlappi
and Skoulakis (2009)’s solutions. Then, for each path in the sample, the value of terminal wealth is
computed from the Cartesian product 𝑔 × 𝑔 × ⋯ × 𝑔 of all possible strategies. The computational
burden is very high, as we evaluate 510 = 9 765 625 strategies. Figure 3 shows that the forward path
in discrete-time (no numerical optimization) is close to the path of our explicit solution, particularly
at the critical starting point, the 30-th percentile of the state variable for small risk aversion (𝛾 = 5).
Furthermore, the resulting portfolio weight is 0.05, which is very close to 0.065, the value we find.

When we take predictability of returns as given, even if the market price of risk is unobservable,
one can definitely compute its first and second moments (see appendix A.2) at every time 𝑡, and then
derive explicit tractable relations for all the continuous-time parameters. We use such a framework to
provide numerical results we were unable to reject. We consider CRRA preferences; however, when
the discrete VAR model considered in this paper is relevant, one could provide similar numerical
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Figure 3: Path of optimal allocation to stocks for 𝛾 = 5, 𝑋0 = 𝑋(30), and 𝑇 = 10 obtained by
explicit solution (solid line) and by simulation and trial {0.05, 0.10, 0.15, 0.20, 0.25} grid (dashed
line)

results for all the HARA class of utility functions based on Kim and Omberg (1996) theoretical
results, since the equations (16)-(21) and (59) hold.

Conclusion

In this paper, we analytically address the issue of numerical accuracy of a dynamic portfolio choice
problem, with CRRA preferences, for a given time horizon. Based on some theoretical advances on
the subject, we demonstrate that numerical values1 provided by explicit solutions are very accurate.
Intensive simulations support this conclusion.

Previous numerical approximation techniques that deal with the problemwe consider, are subject
to some numerical errors. Therefore, they do not always provide accurate numerical results. Using
an explicit solution, we show how to obtain both conditional and unconditional distributions of the
market price of risk, which are consistent with an econometric model; then, we derive tractable ana-
lytical expressions for all the continuous-time parameters. Such analytical expressions are consistent
with all the HARA class of utility functions (see Kim and Omberg (1996)). Numerical results with
CRRA preferences highlight that 1- portfolio weights are more sensitive to changes in risk aversion
than sensitivities reported in the literature; 2- the sensitivity of total demand to risk aversion is not
uniform along the unconditional distribution of state variables; 3- hedging demand dominates at
longer horizons, and it is very sensitive to state variables, especially when risk aversion decreases
and/or time horizon increases. These findings could partially explain the low accuracy of some
discrete numerical methods, especially along the tails of the unconditional distribution of a state
variable.
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Appendices

A.1 Discretization of continuous VAR model

We aggregate the continuous VAR model over a span of time taking point observations at evenly
spaced points {𝑡0, 𝑡1, …, 𝑡𝑛, 𝑡𝑛+1, …} with ∆𝑡 = 𝑡𝑛 − 𝑡𝑛−1. Thus, following Bergstrom (1984), the
discrete version of our equation (8) becomes

𝑌 𝐷
𝑡𝑛+∆𝑡 = e(∆𝑡 G)𝑌 𝐷

𝑡𝑛
+ 𝑈 𝐷

𝑡𝑛+∆𝑡, (36)

where

𝑈 𝐷
𝑡𝑛+∆𝑡 = [

𝑈 𝑝
𝑡𝑛+∆𝑡

𝑈 𝑥
𝑡𝑛+∆𝑡]

= ∫

∆𝑡

𝜏=0
e(∆𝑡−𝜏) G H d𝑍𝑡𝑛+𝜏 . (37)

The matrices G and H are defined in (9) such that

G = [
0 𝜎
0 −𝜅] and H = [

𝜎 0
𝜌 √1−𝜌2] .

To derive analytical discrete version of (36), we need to evaluate two exponential forms, those
involve square matrices. Starting by iterating forward integer powers of the matrix G, we obtain

G𝑛+1 = [
0 (−𝜅)𝑛𝜎
0 (−𝜅)𝑛+1] . (38)

Since G is a square matrix, using Taylor series expansion of an exponential function, we can write:

I + G1

1 ! + G2

2 ! + ⋯ + G𝑛+1

(𝑛 + 1) ! + ⋯ = eG ⟺
+∞

∑
𝑚=0

G𝑚

𝑚 ! = eG. (39)

More details about such transformation could be found in Gradshteyn and Ryzhik (2007, p. 1074).
A direct application of this formula, given an arbitrary constant 𝜐, leads to

+∞

∑
𝑚=0

(G𝜐)𝑚

𝑚 ! = eG𝜐, (40)

then

I +
+∞

∑
𝑚=1

G𝑚 𝜐𝑚

𝑚 ! = [
1 0
0 1] +

+∞

∑
𝑚=1

⎡
⎢
⎢
⎢
⎣

0 (−𝜅)𝑚−1𝜐𝑚𝜎
𝑚 !

0 (−𝜅)𝑚𝜐𝑚

𝑚 !

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

1
+∞

∑
𝑚=1

(−𝜅)𝑚−1𝜐𝑚𝜎
𝑚 !

0 1 +
+∞

∑
𝑚=1

(−𝜅)𝑚𝜐𝑚

𝑚 !

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

1 −𝜅
−𝜅

+∞

∑
𝑚=1

(−𝜅)𝑚−1𝜐𝑚𝜎
𝑚 !

0
+∞

∑
𝑚=0

(−𝜅)𝑚𝜐𝑚

𝑚 !

⎤
⎥
⎥
⎥
⎥
⎦

. (41)

Thus

eG𝜐 =

⎡
⎢
⎢
⎢
⎢
⎣

1 −𝜎
𝜅

+∞

∑
𝑚=1

(−𝜅𝜐)𝑚

𝑚 !

0
+∞

∑
𝑚=0

(−𝜅𝜐)𝑚

𝑚 !

⎤
⎥
⎥
⎥
⎥
⎦

. (42)

14



It directly follows that

eG𝜐 = [
1 𝜎

𝜅 (1 − e−𝜅𝜐)
0 e−𝜅𝜐 ] . (43)

The last expression involving eG𝜐 holds for every constant 𝜐. Thus, substituting it into equation (36),
equations (13) and (14) follow.

A.2 Proof of continuous VAR recovering by discrete VAR

The matrix (15) could be rewritten as

∆ ln 𝑃𝑡+∆𝑡 − 𝑟𝑓 = 𝑎𝑟 + 𝑏𝑟 𝑧𝑡 + 𝑟
𝑡+∆𝑡, (44)

𝑧𝑡+∆𝑡 = 𝑎𝑧 + 𝑏𝑧 𝑧𝑡 + 𝑧
𝑡+∆𝑡. (45)

Equations (44) and (45) describe a bivariate econometric model in which 𝑧 denotes the log dividend-
price ratio. The corresponding discretized version of the continuous-timemodel in matrix (13) could
be rewritten as

∆ ln 𝑃𝑡𝑛+∆𝑡 − 𝑟∆𝑡 = (𝜎 𝜃 − 𝜎2/2)∆𝑡 − (1 − e−𝜅∆𝑡)𝜎 𝜃
𝜅 + (1 − e−𝜅∆𝑡)𝜎

𝜅 𝑋𝑡𝑛
+ 𝑈 𝑝

𝑡𝑛+∆𝑡, (46)

𝑋𝑡𝑛+∆𝑡 = (1 − e−𝜅∆𝑡)𝜃 + e−𝜅∆𝑡 𝑋𝑡𝑛
+ 𝑈 𝑥

𝑡𝑛+∆𝑡. (47)

Comparing the expectations of (44) and (46), we get

𝑧𝑡 = −𝑎𝑟
𝑏𝑟

+ 𝜎 𝜃 − 𝜎2/2
𝑏𝑟

∆𝑡 − (1 − e−𝜅∆𝑡) 𝜎 𝜃
𝑏𝑟 𝜅 + (1 − e−𝜅∆𝑡) 𝜎

𝑏𝑟 𝜅 𝑋𝑡𝑛
. (48)

Iterating forward (48) ∆𝑡 periods ahead and using (45), we obtain

−𝑎𝑟
𝑏𝑟

+ 𝜎 𝜃 − 𝜎2/2
𝑏𝑟

∆𝑡 − (1 − e−𝜅∆𝑡) 𝜎 𝜃
𝑏𝑟 𝜅 + (1 − e−𝜅∆𝑡) 𝜎

𝑏𝑟 𝜅 𝑋𝑡𝑛+∆𝑡 =

𝑎𝑧 + 𝑏𝑧 (
𝜎2/2 − 𝜎 𝜃

𝑏𝑟
∆𝑡 + (1 − e−𝜅∆𝑡) 𝜎 𝜃

𝑏𝑟 𝜅 − (1 − e−𝜅∆𝑡) 𝜎
𝑏𝑟 𝜅 𝑋𝑡𝑛) + 𝑧

𝑡+∆𝑡. (49)

After some algebra, we find that

𝑋𝑡𝑛+∆𝑡 = − [
𝑎𝑧𝑏𝑟

𝜎 + (1−𝑏𝑧) (𝜃 + 𝑎𝑟
𝜎 − (𝜃 − 𝜎/2)∆𝑡)]

𝜅
1 − e−𝜅∆𝑡 + 𝑏𝑧 𝑋𝑡𝑛

− 𝜅
1 − e−𝜅∆𝑡

𝑏𝑟
𝜎

𝑧
𝑡+∆𝑡.

(50)
Notice that lim𝜅∆𝑡→0 (1 − e−𝜅∆𝑡) = 𝜅∆𝑡. As a matter of fact, comparing equation (50) to (47),
equations (16)-(18) directly follow. To compute the associated second moments, one can compute
the variance of 𝑈 vector in (14).

V [
𝑈 𝑝

𝑡𝑛+∆𝑡
𝑈 𝑥

𝑡𝑛+∆𝑡]
= ∫

∆𝑡

𝜏=0
F F′

[
d𝜏
d𝜏] , (51)

where

F = [
1 (1 − e−𝜅∆𝑡)𝜎

𝜅
0 e−𝜅∆𝑡 ] [

𝜎 0
𝜌 √1−𝜌2] . (52)

Using amatching procedure involving equations (44)-(51), we could directly reset equations (19)-(21).
Furthermore, when the hypothetical points 𝑡𝑛 = 𝑡, the resulting conditional second moments for
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every ∆𝑡 become

V(𝑋𝑡+∆𝑡) =
2

2 𝜅 (1 − e−2 𝜅∆𝑡), (53)

Cov(𝑋𝑡+∆𝑡, ∆ ln 𝑃𝑡+∆𝑡) =𝜌 𝜎
𝜅 (1 − e−𝜅∆𝑡) + 𝜎 2

𝜅2 (1 − e−𝜅∆𝑡) − 𝜎 2

2 𝜅2 (1 − e−2 𝜅∆𝑡) , (54)

V (∆ ln 𝑃𝑡+∆𝑡) = (𝜎2 + 2 𝜌 𝜎2

𝜅 +
2𝜎2

𝜅2 ) ∆𝑡 − 2 𝜌 𝜎2

𝜅2 (1 − e−𝜅∆𝑡)

− 2
2𝜎2

𝜅3 (1 − e−𝜅∆𝑡) +
2𝜎2

2 𝜅3 (1 − e−2 𝜅∆𝑡) , (55)

where the instantaneous standard deviation of 𝑋 denoted is given by equation (20). Again,
notice that, for small 𝜅, i.e. when 𝜅∆𝑡 → 0, the term (1 − e−𝜅∆𝑡) → 𝜅∆𝑡. So when ∆𝑡 = 1, all
conditional second moments could be approximated by their instantaneous counterparts. Other-
wise, when ∆𝑡 ≠ 1, these kinds of approximations become no longer valid. Campbell et al. (2004,
p. 2208) discuss about pitfalls resulting for this case. Taking this into account, for instance, one
could compute the terminal conditional variances by just setting ∆𝑡 = 𝑇 and 𝑡 = 0.

The unconditional moments of 𝑋 that have been used in this paper are derived from equa-
tion (48) when ∆𝑡 is normalized to one.

𝑋𝑡𝑛
=𝜎

2 + 𝑎𝑟 + 𝑏𝑟 𝑧𝑡
𝜎 , (56)

E(𝑋𝑡𝑛
) =𝜎

2 + 𝑎𝑟 + 𝑏𝑟 E(𝑧𝑡)
𝜎 = 𝜎

2 +
𝑎𝑟 + 𝑏𝑟 𝑎𝑧/(1−𝑏𝑧)

𝜎 . (57)

Hence, the unconditional mean of 𝑋 is

𝜃 =
𝑎𝑧 𝑏𝑟

𝜎𝑟 (1−𝑏𝑧) + 𝑎𝑟 + 𝜎2
𝑟 /2

𝜎𝑟
. (58)

In fact, we have used the result 𝜎 = 𝜎𝑟 in equation (19) and 𝑧𝑡 follows an AR(1) process (Brandt
et al. (2005) followed by Garlappi and Skoulakis (2009) among others). Thus, the unconditional
moments of 𝑧𝑡 are known, E (𝑧𝑡) = 𝑎𝑧/(1 − 𝑏𝑧) and V (𝑧𝑡) = 𝜎2

𝑧 /(1 − 𝑏2
𝑧) (Hamilton (1994, p. 53)).

So, under equation (48), one can match all unconditional percentiles 𝑧(𝑝) with their unconditional
counterparts 𝑋(𝑝) (where 𝑝 denotes the 𝑝-th percentile), and get optimal policies for those val-
ues. We directly draw 𝑋(𝑝) from the unconditional distribution of the point observations 𝑋𝑡𝑛

of our
continuous-time state variable 𝑋. Thus, 𝑋(50) = 𝜃, and the following unconditional distributions
hold:

𝑧 ∼ N(
𝑎𝑧

1 − 𝑏𝑧
,

𝜎2
𝑧

1 − 𝑏2
𝑧 ) ⟹ 𝑋 ∼ N(𝜃, 𝑏2

𝑟

1 − 𝑏2
𝑧

𝜎2
𝑧

𝜎2
𝑟 ) . (59)

A.3 Derivation of parameters 𝐶1 and 𝐶2

Regarding (33), the solution for 𝐶2 could be derived from the equation

d𝐶2
d𝑡

+ 𝑎 𝐶2
2 + 𝑏 𝐶2 + 𝑐 = 0. (60)

This equation could straightforward be rewritten as

∫

𝑇

𝑡

1
𝑎 𝐶2

2 + 𝑏 𝐶2 + 𝑐
d𝐶2 = −(𝑇 − 𝑡). (61)
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Since parameters 𝑎, 𝑏 and 𝑐 are constant over time, given 𝐶2(𝑇 ) = 0, integral table provides the
solution for 𝐶2 as in (34). Substitute this into the following equation

d𝐶1
d𝑡

+ 𝜅 𝜃 𝐶2 + (
𝑏
2 + 𝑎 𝐶2) 𝐶1 = 0 (62)

that we derived from equation (33). Again using the terminal condition 𝐶1(𝑇 ) = 0 and the constant
variation method, we get the solution for 𝐶1 as reported in (35).




