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Piecewise-Planar 3D Reconstruction
with Edge and Corner Regularization

Alexandre Boulch, Martin de La Gorce, Renaud Marlet

Université Paris-Est, LIGM (UMR CNRS 8049), ENPC, F-77455 Marne-la-Vallée

Figure 1: Reconstruction by [CLP10], and by our method with regularization based on area, edge length and number of corners.

Abstract

This paper presents a method for the 3D reconstruction of a piecewise-planar surface from range images, typi-
cally laser scans with millions of points. The reconstructed surface is a watertight polygonal mesh that conforms
to observations at a given scale in the visible planar parts of the scene, and that is plausible in hidden parts. We
formulate surface reconstruction as a discrete optimization problem based on detected and hypothesized planes.
One of our major contributions, besides a treatment of data anisotropy and novel surface hypotheses, is a regu-
larization of the reconstructed surface w.r.t. the length of edges and the number of corners. Compared to classical
area-based regularization, it better captures surface complexity and is therefore better suited for man-made en-
vironments, such as buildings. To handle the underlying higher-order potentials, that are problematic for MRF
optimizers, we formulate minimization as a sparse mixed-integer linear programming problem and obtain an ap-
proximate solution using a simple relaxation. Experiments show that it is fast and reaches near-optimal solutions.

Categories and Subject Descript@ascording to ACM CCS) 1.2.10 [Arti cial Intelligence]: Vision and Scene
Understanding—3D/stereo scene analysis, 1.4.8 [Image Processing and Computer Vision]: Scene Analysis—
Range data, 1.5.4 [Pattern Recognition]: Applications—Computer vision

1. Introduction geometry. A market is in fact developing to offer model re-
construction services for existing buildings. It is based on
Many applications make use of 3D models representing the processing of dense 3D data obtained by laser scanners
bUildingS and urban areas. It includes virtual naVigation, ur- or photogrammetry. Model creation consists in manua”y ad-
ban planning, quantity survey as well as physical simulations justing geometric primitives to parts of the point cloud. It is
for thermal performance, acoustics, lighting and shadow |ahor intensive, error prone, and time and money consuming.

casting, pollutant dispersion, solar panel deployment. Qual- Automatic building reconstruction has thus been an active
itative applications, whose goal is to provide visual under- e|d of research in the last years.

standing, are generally based on detailed meshes with realis-

tic rendering. On the contrary, quantitative applications call ~ We present here a method for constructing a piecewise-
for a simpli ed geometry, that is better suited for simulation planar approximation of an observed surface provided as
and for scaling up to large scenes. An increasing number of range images. While most of our experiments are motivated
applications also require semantic information, e.g., build- by building and city reconstruction, the method is general
ing information models (BIM) or 3D city models (e.g., with  and can be applied to any scene in man-made environments,
CityGML). Creating this information, manually or automati-  where surfaces are mostly planar and where there are strong
cally [BHMT13], is much easier on models with a simplied = geometric priors, such as orthogonality and parallelism.
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Challenges. One characteristic of buildings and urban en- cretization. Other methods assume that all planes are ori-
vironments is that, because of ubiquitous occlusions, many ented toward one of the three orthogonal dominant direc-
observations are required to see the whole scene. It goes betions [FCSS09a, FCSS09b, BB10, VAB12]. This Manhattan-
yond seeing all parts of concave areas and regions maskedworld assumption works well but is often too restrictive for
by pillars or open doors. Some areas are actually bound to indoor and detailed urban scenes. In [CLP10], planar regions
remain hidden (e.g., behind or under furniture), to be hardly can have long extensions in hidden areas. Detected planes
accessible to a device standing on a tripod (e.g., complete are used to partition the 3D space into a polyhedral cell com-
steps of a staircase), or to require many acquisitions (e.g., plex, and the reconstructed surface is de ned as the interface
all intervals between exposed ceiling beams). A major chal- of a volumic cell assignment (empty or full). It ensures a wa-
lenge is thus the reconstruction of plausible surfaces for tertight surface without self-intersection. Moreover, to pro-
missing regions, to reduce the need for observations, and vide plausible completions in hidden areas, additional hid-
thus also to reduce the cost and time of data acquisition. We den plane hypotheses (called “ghosts”) are considered. They
address it using robust plane hypotheses and an energy min-are generated after regions are approximated by polygons,
imization with powerful higher-order regularization terms. based on their edges. The idea is that, in a man-made envi-
ronment, a straight edge of a planar region is likely to also
be the edge of another planar region, often with a right an-
gle. However, polygonization in [CLP10] is based on alpha

Another challenge is sampling anisotropy. Laser scans are
often considered simple to treat as they have less noise and

outliers compared to photogrammetric or Kinect-like data. ) o . . .
. . shapes, which are sensitive to noise and sampling anisotropy,
They may however feature anisotropic data. Parts of the o . :
resulting in wrong or spurious plane hypotheses. More im-

scene that are more distant from the scanner are less densely . - S
) o portantly, the prior used to regularize surfaces in hidden parts
sampled than closer parts. Sampling of low-incidence sur-

. fth ne is area minimization, which is not an ropriat
faces also produces curved 3D lines of densely sampled otthe scene s area ation, which Is notan appropriate

points where the distance between lines can be one or two measure of surface simplicity for man-made environments.
orders of magnitude larger than the distance between points  One of our main contributions is the use of higher-order
on a line. Besides, for rotating laser scanners, regions close regularization terms that penalize the length of edges and/or
to poles of the sampling sphere are much more densely sam-the number of corners in the reconstructed surface. Such
pled than at the equator, typically with factors more than one higher-order priors have been used for greedy mesh simpli-
thousand. Many approaches have robustness and accuracycation but are challenging to incorporate in a global mini-
problems with this issue. We address it by normalizing sam- mization for surface reconstruction. Note however that, con-
pled data at each stage of the reconstruction process. trary to a number of mesh simpli cations approaches, we
minimize the sum of the lengths of edges between non copla-

Related work. Many approaches have been proposed for
reconstructing surfaces from point clouds with missing parts
[BTS 14]. A number of them complete surfaces by infer-

ring smooth geometry in areas with missing data [PBL10],

nar faces only, thus ignoring edges between coplanar faces.
Therefore, our method ignores the problem of obtaining a

good triangulation of each planar face and concentrate on the
actual surface estimation problem. Our approach bares some

which is inadequate for buildings and indoor scenes as they similarity with some methods used for 2D image segmenta-
are mainly composed of planar regions and contain sharp tion that also rely on higher-order regularization terms such
features. Methods that handle these aspects rst detect ge-as region boundary curvature [SKC09,SKR12]. In[SK11], a
ometric primitives [SWKO07, FP13], then reconstruct sharp 3D surface is completed based on higher-order priors using a
features where primitives intersect. The choice of intersect- global binary labelization of a volume partition, similarly to
ing primitives is often based on proximity criteria and rely us. However it requires a mesh as input and does not enforce
on the presence of observed points close to the intersectionvisibility constraints available from range images. Besides,
[LA13, CCO08, LWC 11, JKSO08]. These approaches are not reconstruction quality is limited as it relies on a regular vol-
suited for completing large regions with missing data when ume tessellation based on a few discrete plane directions.
primitive intersections occur in hidden areas or far from ob- Last, it minimizes the mean curvature and produces a smooth

served points. User interaction might be needed in this case surface, while we aim at reconstructing sharp features.

to select primitives and recover surfaces [CC08, AB3.

Only a few methods are able to complete large miss-
ing regions. In [Cas02], partially visible regions are ex-
tended until edges intersect, or intersect the wall or the
oor. But this extension is made on a per-polygon basis,
it does not prevent self-intersection and holes in the re-
sulting surface. In [SDK09], a graph cut is performed on
a graph aligned with a regular voxel grid favoring cuts
close to detected primitives. However, it reconstructs only
visible regions, possibly with artifacts due to voxel dis-

Our goal is not to reconstruct the most accurate surface,
but to produce a simple piecewise-planar approximation at a
given level of detaik. Depending on the use, e.g., quantity
survey or simulation, features such as baseboards, window
ledges, roof tiles or chimneys may or may not be consid-
ered as useful pieces of information. This also matches with
usual tolerances in the construction industry, e.g., an offset
of 1cm every 2m for walls. To address the data anisotropy
issue, a kind of information normalization is required so that
the same choices are made in all regions of the scene, at any
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distance and any incidence from the observation points. This 2. Surface hypotheses
normalization concerns both high-density areas and regions
where the distance between points is higher than the scale
of analysis. A standard way to handle anisotropy is to vox-
elize the point cloud [CLP10], which however has a num-
ber of drawbacks. First, it may introduce artifacts as the re-
constructed surface may follow discrete voxel boundaries in
addition to regression surfaces. Second, it introduces a new
parameter, the voxel size, which can however be set to some
value related to the requested level of detall, typically a frac-
tion of the scale of analysis. Yet it only makes sense if not o
too small, as it rapidly introduces complexity issues. Last, it 2-1. Space partitioning
tends to introduce holes in regions whose density is low with  Two main partition methods have been used in the context
respect to the scale of analysis; otherwise, voxel size is to be of surface reconstruction: a regular voxel grid and a Delau-
set higher, but then details of interest can be lost. Rather than nay triangu|ation of 3D poin’[sl The Computationa| cost of
voxelizing the scene, we directly normalize the in uence of 3 voxel grid can grow cubicly with the desired level of de-
each 3D point, which prevents missing fragments in areas tajl. It also has a bias in the estimation of surface areas and
where the density is low compared to the scale of analysis. creates aliasing for surfaces not aligned on the grid. More-
over, it is hardly compatible with a sensible measure of edge
Overview. Our approach can be summarized as follows:  |ength and corner count. In practice, because of noise in
the data, Delaunay triangulations do not contain multi-face
planes. [LA13] alleviates this issue by removing points near

The resulting planes are organized in an arrangement, rep- & detected plane and uniformly resampling it, which guaran-
resenting plane hypotheses for the reconstructed surface. t€€s that the visible parts of the plane are covered by a set of
The edges of primitives are then extracted and classi ed. [aces inthe triangulation. [vKvLV13] detect planar polygons
Edges considered as occluding create extra “ghost” plane and use a conforming constrained Delaunay triangulation to

hypotheses in the arrangement as scene priors. Ghosts parMake sure polygons are preserved.

allel to primitives are generated too, that are well suited  Asin [CLP10], we partition the 3D space (within a bound-
for thin at objects without enough data on their border.  ing box) into a polyhedral cell complex using a plane ar-
Next, we associate to each cell of the complex a binary rangement structure. Each plane corresponds to a surface hy-
variable representing its occupancy status: a reconstructedpothesis. There are two kinds of hypotheses: planes detected
surface is de ned as the interface between empty and oc- as geometric primitives in the point cloud (cf. Section 2.2),
cupied cells. And we de ne an energy on cell occupancy and “ghosts”, that are unobserved but possible planar sur-
that penalizes deviations to observations as well as struc- faces associated to detected primitives (cf. Section 2.3). The
tural complexity (to regularize invisible regions). arrangement is constructed by inserting each plane one after
Last, the corresponding discrete optimization problem is another. Each inserted plane cuts the volume into two half-
turned into an integer linear program. The nal occupancy spaces, resulting in a new set of cells, which are all convex
status is extracted from a solution to the relaxed problem, as they correspond to the non-empty intersections of all half-
which experimentally proves to be relatively tight. spaces generated so far. We maintain adjacency information
as we insert new planes, which allows an access to adjacent
cell, edges and vertices in constant time. We defdtee -

We present a thorough treatment of sampling anisotropy. nal set of cells. It does not depend on insertion order. In con-
We propose new schemes for generating plane hypothesestrast to [LA13, vKvLV13], this volume partition guarantees

in hidden areas and for thin objects. that planar primitives can be expanded far beyond their visi-
We introduce new regularization priors that encode the bility area. It also allows the use of unseen plausible planes.
length of edges and the number of corners in a recon-
structed surface, possibly with angle preferences.

We show how to ef ciently minimize an energy based on
these regularization terms.

We illustrate on various experiments how these plane
hypotheses and higher-order regularization terms signif-
icantly improve the quality of 3D reconstruction.

We formulate the surface reconstruction problem as an opti-
mum binary labeling of the 3D space as empty or occupied.
The reconstructed surface corresponds to the boundary of all
the occupied volume. This ensures that the surface is water-
tight and without self-intersection. To make it amenable to
a discrete optimization method with good optimality guar-
anties, we partition the 3D space a priori into a set of regions
whose boundaries are plausible components of the surface.

Planar primitives are detected in the point cloud, and pos-
sibly merged to recover from potential over-segmentation.

Our main contributions are the following:

As the complexity of building such a plane arrangement is
cubic in the number of planes in the worst case, it is better to
restrict to planes that have good chances to be used in the re-
construction. The number of cells can be reduced too by lim-
iting the extension of some planar primitives, using planes
already in the arrangement as bounding surfaces. However, it
creates a bias in plane insertion order. [CLP10] proposes two
The paper is organized as follows. Section 2 describes plane different strategies to limit planes. For aerial data, horizontal
hypotheses. Section 3 details the energy. Section 4 explainsplanes are inserted rst; vertical planes are then inserted us-
the optimization. Section 5 shows experimental validation. ing horizontal planes as limiting planes; oblique planes are
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Figure 2: Segmentation by region growing (left), plane fusion (middle) and line segments selected for ghosts generation.

Unit sphere

Laser image

Figure 3: Sensitivity to plane insertion order.

Figure 4: Distance to line in range image for segment fusion.

inserted last using both horizontal and vertical planes as lim-
iting planes. For ground-level data, vertical planes are in- 2.3. Ghost primitives

serted before horizontal ones. We show in the experiment ) .
section that these strategies are often too aggressive and noWe want to build a 3D cell complex whose facets include,
}or the visible parts of the scene, the detected primitives, and

suited for indoor scenes. Figure 3 illustrates the sensitivity for invisible parts of the scene, plane hypotheses supported

to plane insertion order, showing widely different results for ) A S
. . by the occluding edges of primitives. These ghost primitives
the two strategies. As described below, we not only have sur- ) . .
are plausible surfaces that do not originate from direct obser-

face hypotheses different from [CLP10], we also use a less . A . o
. Y vation, but that are likely enough given detected primitives
aggressive strategy for plane limitation in the arrangement. ) . -
and scene priors. In a man-made environment, an occluding

straight edge of an observed planar primitive is likely to be
2.2. Observed primitives the intersection with another, orthogonal plane. The gener-
ation of ghosts requires rst the determination of primitive

Many approaches have been proposed for detecting planes N oundaries as well as their occlusion status.

a 3D point cloud, e.g., based on RANSAC [SWKO07] or re-

gion growing. We exploit here the structure of the laserrange ~ One way to de ne the boundaries of a planar primitive de-
images by segmenting the point cloud into planar regions us- ned from 3D points is to project the points on the support
ing a region growing algorithm as in [PVBPO08]. Points are plane and to build theia-shape, as done in [CLP10] with
rst ordered according to their degree of planarity. A prim- a= s2. As a-shapes tend to over-segment boundaries, post-
itive is then grown iteratively from locally planar seed re- processing is required to simplify the polygonal contours,
gions, adding neighboring points when close to the plane such as greedy iterative edge merging [CLP10]. But a ma-
and with a similar normal. The plane is re-estimated each jor drawback of using alpha shapes to de ne boundaries is
time the region is grown using an incremental estimate of that points are disconnected fromashape as soqn as their
the covariance. We estimate the normals of points with a ro- distance to other point of the primitives is larger thaa, re-
bust method that preserves sharp features [BM12]. sulting in truncated primitives. It occurs typically for distant

It differs from [CLP10] in that we consider as neighbor- planes with high incidence such as ceilings and oors.

ing points the 8-pixel neighbors in the range image instead  To prevent it, we consider boundaries in the range image,
of thek-nearest neighbors in 3D. It is much faster and, more i.e., pixel chains of primitive contours, discarding small re-
importantly, it prevent problems due to anisotropic data, in gions for robustness to noise and clutter. The primitive edges
particular when laser sampling produces a series of (curved) are then given by a simpli cation of the contour lines that ab-
lines of densely sampled points for high-incidence surfaces. stract from the aliasing (discretization) effect, which is dom-
This is not sensitive in the range image, but if region growing inant here w.r.t. noise, yielding a polygon with holes. For
is based ok-nearest neighbors as in [CLP10], ittendsto nd this, we iteratively merge two adjacent segmeatisandbc

all neighbors on a single line and thus to segment lines indi- into segmentc if the distance ob to ac is below a xed
vidually. And if k is increased, then robustness and accuracy pixel thresholdd, starting with points with the smallest dis-
are reduced for smaller primitives. In addition to [CLP10], tance. With a spherical acquisition, straight 3D lines appear
we also perform plane fusion to recover from possible over- as curves in the range image. To measure the deviation of
segmentation, based on ef cient and robust statistical criteria a 2D pointb with respect to a 2D linac, we consider their

for merging primitives [BM14] (see Figure 2). projectionA; B;C on the unit sphere (see Figure 4). B3be

This is the accepted version of the following artidRiecewise-Planar 3D Reconstruction with Edge
and Corner RegularizatioAlexandre Boulch, Martin de La Gorce and Renaud Marlet Symposium
of Geometry Processing 2014 Computer Graphics Forum, which has been published in nal form at
[http://onlinelibrary.wiley.com/doi/10.1111/cgf.12431/abstract ]


http://onlinelibrary.wiley.com/doi/10.1111/cgf.12431/abstract

A. Boulch, M. de La Gorce, R. Marlet / Piecewise-Planar 3D Reconstruction with Edge and Corner Regularization

the geodesic projection & on the geodesic linAC, and let ity cone, i.e., rays from the scanner center to observed points.
b° be the projection oB%on the range image. Segmeats Thicknesses are tried with increasing values based on a con-
andbc are merged intac if the distance between andb® stant increment, thus yielding a maximum thickness. For ro-

(rather tharac) is below the xed pixel threshold. To make bustness to noise, we include some tolerance when testing

sure that edges do not drift, we actually keep track of all ray intersection and consider a thickness as too large only if
points merged into lines segments and ensure at each itera-a minimum number of intersecting rays are found.

tion that new segments stay within the same pixel distance

to_the onglnal contour. The Hau_ssdc_)rf distance betv\{een the 3 gyrface reconstruction

original pixel contour and the simpli ed polygon, adjusted

according to spherical projection, is thus also bounded.by ~ We want to reconstruct a surface that mostly conforms to
observations in the visible planar parts of the scene, that does

Projecting the 2D segments onto their 3D support planes, not intersect the lines of sight of observed points, and that is
we obtain bounding 3D segments for each primitive plane. plausible and simple in hidden parts.
There are three kinds of segments: adjacency segments (at
the visible intersection of two observed primitives), occlud-
ing segments (when the primitive boundary is signi cantly
in front of what lies on the other side of the segment) and
occluded segments (when the primitive boundary is signif-
icantly behind what lies on the other side of the segment).
Generating a ghost for adjacency segments is not necessary
if not inaccurate or wrong. As the surface at occluded seg-
ments is likely to continue behind what occludes it, we gen-
erate ghost planes for occluding segments only (see Fig. 2).
For robustness to anisotropy, we identify occluding seg-
ments as segments such that (1) a majority of segment points
in the range image lies close to points behind the plane, and
(2) the segment is not an adjacency segment, which excludes E(X) = Egata(X) *+ Eregui(X) Q)
salient edges. Two primitives are considered as adjacent if at
least two points, one in each projection of a primitive on
its support plane, are mutual neighbors, and a segment is an
adjacency segment if it intersects in the range image the re- Notations. Each pointp 2 P belonging to a primitiveP
projected line of intersection of the two 3D planes. based on plangy is assigned to a facd, of the cell com-
plex, given by the projection gb on Pp. The assignment of

We formulate the surface reconstruction problem as an
optimal binary labeling (occupied or empty) of each 3D cell
of the complex de ned in Section 2. The surface is given
by the set of facets that lie on the interface between empty
and occupied regions, i.e., facets adjacent to both an empty
and an occupied cell. This guarantees watertightness and the
absence of self-intersections. To represent the occupation as-
signment, we associate a discrete variab2f 0; 19 to each

cell c 2 C, where 0 represents an empty cell and 1 an oc-
cupied cell. We de ne the energy of an occupation assign-
mentx = (Xc)c2c @s composed of two terms, a data term
and a regularization term:

The regularization term acts as a prior to favor plausible sur-
faces of man-made environments, mainly in hidden regions.

In [CLP10], ghosts are generated for each edge of the ™™ . ! -
polygonal contour of each primitive, unless the edge is con- points to facets is done when the plane is put in the arrange-

sidered as adjacent to another primitive, i.e., at a distance me.nt and update_d as more planes are insert.ed and faf:ets are
less than the observation scaleCompared to us, this sys- split. The subscript is dropped when unambiguous. Given a

tematic generation of ghosts for all edges (except adjacency facetf 2F in th? complex, we noté” and f_ . the_5|des' .
edges) results in many spurious ghosts for edges of occludedOf f correspondlng respectlvely_ o the positive (|..e., VIS
primitives, on the order of twice too many. It greatly reduces ble_) a_qd negative (i.e., hidden) sides of the underlying plane
speed and scalability because of the cubic complexity of (prlmlt_lve or ghost). We_also notey~ andcg  the corre-
plane addition into the arrangement. It also reduces accuracy SP2"dINg cells on both sides 6f andx;+:x; - = Xg. X

by introducing dummy planes that can be chosen when the

surface is reconstructed. Note however that deciding whether 3.1. Data terms

a point on the edge of a primitive occludes another primitive
is dif cult with unstructured 3D point sets, especially when
there are several visibility points and density variations.

To mostly conform to visible features of the scene, the data
term penalizes different kinds of deviations from observa-
tions. Itis composed of two terms, a primitive teEyim (X)

Finally, typical indoor scenes also contain thin plane- 2and a visibility termEyis(x):

parallel objects for which only one plane is visible, e.g., an Edata(¥) = Eprim (X) + Eyis(X) )
open door or a table top, whose edges are too thin to be de-

tected as planar primitives. To reconstruct such an object, we Primitive term. Epyim (X) penalizes primitive points that are
need to generate a plane hypothesis for the hidden oppositenot on the reconstructed surface, with proper orientation. A
plane. It requires an estimation of the object thickness. For penalty is given to poinp if its corresponding facet is not
this, we extrude the planar region in the direction opposite to part of the reconstructed surface with appropriate orienta-
its normal, trying various thickness hypotheses and checking tion, i.e., if the cell on the positive side ¢fis not empty and
that the extruded volume does not intersect with the visibil- if the cell on the negative side dfis not occupied.
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Figure 5: Tolerance for the points-on-primitive penalty.

As there may be some measurement error in the position
of p and in the detection of the underlying plaRg we ac-
tually add some tolerance arouRgl We consider the facets
intersected by a line segment of lengthorthogonal taPp,
and starting at the orthogonal projectionpén Py, on both
sides ofPp (see Figure 5). Lef,‘?+ be the facet whose in-
tersection point with this line segment is on the positive side
of Pp, is at most at distance to Pp, and is the most distant
from Pp. (There is at least one such facéitself.) Symmet-
rically, let fS be the facet with the same de nition on the
negative side oPp. Letcy™ andcy be the cells on the posi-
tive and negative sides ¢f " andf; , andxy";x} be the
corresponding variables. The penalty is de ned as the sum of
>§p+ and1 xp , which should both be 0. Note that the cells
betweert:%+ andc% , if any, are ignored. Imposing a single
empty-to-occupied transition on the line of sight arourid
not necessary in practice thanks to regularization.

To take sampling anisotropy into account, we assign a dif-
ferent weight to each observation point. The weight mea-

sures the area of the reconstructed surface that does not com-

ply to observations, relatively to the scale. Itis adimensional,

homogeneous to a number of area units w.r.t. scale, i.e., a

number of timess?. It is related both to the local density
of observation rays, which is higher near the pole, and to
their incidence on planes. We consider here a rotating 3D

laser scanner that acquires a spherical view of the surround-

Finally, the actual primitive term is as follows:

Epim()= & WA"O(Pp) X" +(1 3 )
p2P

(4)

Visibility term. E,js(X) penalizes reconstructed surfaces
between observed points and the sensor. For each ppint
we consider the line of sight betweg@rand its observation
pointw (the laser center). There should be no matter, hence
no reconstructed surface, on the my. For that, we forbid

the cell containingv to be occupied (with an in nite cost)
and we penalize facets that are transitions between occupied
and empty cells along observation rays. A penalty is paid
each time an interface is traversed, from inside or outside.

di >0
/:> visibility penalization for f;

> c—

X f2 (d:<a

= no visibility penalization for fo

Figure 6: Tolerance for the visibility penalty.

Like for the primitive term, to be robust to measurement
errors in the position of, we actually add some tolerance
and do not penalize facefswhose planePs is at most at
distances from p (see Figure 6). As for the primitive term
too, we take sampling anisotropy into account and weigh the
penalty of an interface facétby the relative area of the sam-
pling ray on the surface interface, i.af"*°(Ps). However,
contrary to the primitive term, all observed points are taken
into account here, whether they belong to a primitive or not:
Eyis(X) = )

[*]
a
p2P ; f2F
wp\ f6;;d(p;Pr) s

W?)niso( Pr) X¢+ X

Compared to [CLP10], we separate the penalty of ob-
served points into primitive reconstruction requirements and
visibility issues. Also, for visibility, we penalize all planes,
not only reconstructions relying on the negative side of a

ing scene with measures taken on a sequence of vertical plane. More importantly, [CLP10] counts a constant cost for

planes. Data points are given by an azimuth ag@€d0; 2p[

in the horizontal plane and a polar andl€ [0;p] (mea-
sured from the zenith direction) in the corresponding ver-
tical plane. Sampling discretizes the range of angles with
constants stepSy; andDs. We consider a poinp, acquired

in direction(q;f) and observed at distanceon a planeP
with incidence anglg 2 [0;p=2[ w.r.t. the observation ray.
We give it a weight that is the relative area of the projection
on P of the patch on the unit sphere corresponding to the an-
gular discretization step;  Dr, made relative to the polar
angle to cope with the variation of sampling density:

sinf
cosy

. d2
weo(p)= & oyDy @

all disagreeing observed points, whereas we weigh penalties
depending on point density. It also provides a unit common
ground to balanc&,is(x) andEpim (X) into a single term.

3.2. Regularization terms

As we want to reconstruct the simplest plausible surface in
hidden parts of the scene, regularization terms penalize sur-
face complexity. Note that surface regularization applies to
the whole scene, not just the visible part. Yet, the weight of
regularization terms is lower than the weight of data terms
to make sure that the reconstruction mostly conforms to ob-
servations, unless a few observed points can be considered
as outliers and traded for a greater surface simplicity.
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CQ - Non-penalized con gurations

L ':""1' T %
C1 4 P,

s((l Py) = 1 s(es, P) =1

';(1(‘= (1;2) =0 e J C 4 s(ez, Po) = —1

Figure 8: Possible con gurations of the 4 cells adjacent to
an edge and corresponding penalization. Other con gura-
tions can be obtained by rotation and occupancy inversion.

)

he(x) = V121 + Voxo + V33 = T3 — T3

Figure 7: Computation of weights(c; €) and edge measure
function k(x) in the case of 3 adjacent cells.

valuejhe(x)j is equal to 0 when there is no material edge,
. L to 1 when there is 1 edge (re-entrant or salient) and to 2 when
We introduce three regularization terms, that can be used nere are 2 re-entrant and 2 salient edges. Itis independent on

separately, or jointly with relative weights: an area term, an the convention for assigning a sign to the supporting planes.
edge term and a corner term:
This term corresponds in the 4-cell case to a 4th-order po-

Eregui(X) = | areaBarea(X) + | edgeFedge(X) + | comerEcomer(X)  tantial in the context of MRFs, and in the 3-cell case to a
2nd-order potential as one variable then has a null factor. It

Areaterm. Earea(X) penalizes the area of the reconstructed can be shown that this 4th-order potential cannot be made

surface, i.e., the sum of the areqf facetsf separatingan  regular in Kolmogorov and Zabih's sense [KZ04]. We actu-

empty cell from an occupied one, relatively to scale ally penalize edges in the reconstructed surface by:
— 2 o . .
_ 3 . . Wi = =S Eedge(X) = @ Wejhe(X)] (10)
Barea()= & wiihi (0 where L0 200 (@) a

f2F
wherewe is a weight associated ® This weight is made

proportional to the edge length to make the total length

of material edges independent of plane splitting in the com-
plex. It is made relative to scatetoo. It can also re ect the
inadequacy of the anghke between the two planes efwith
respect to an expected angle distribution. We penalize here
angles far from 90°, using two parameters: the é¢ost hav-

ing a anglea in the scene widely different from a right angle,
and the expected standard deviationf an angle w.r.t. the

It can be seen as a sum of submodular pairwise potentials in
the context of Markov Random Fields (MRF). This kind of
term has been widely used in surface reconstruction methods
based on energy minimization [CLP10].

Edge term. Egqge(X) penalizes the length of edges in the re-
constructed surface. An edge E in the cell complex lies
on the intersection line of two non-parallel planes, with end
points at the intersection with two other planes in the com- © . )
plex. It has 4 adjacent cells in general, but may have only 3 right angle. The angular weighitang(a) is de ned as:
as ghosts just introduce half-planes in the arrangement; one (a p=2)2

cell then lies alone on one side of a plane (see Figure 7). To Wang(a) = A+ (1 A)exp( T)
model both cases, we introduce a functgdhat associates a
sign to each cell-plane pair:

11

The weightwang(a) is equal to 1 ifa = p=2, and rapidly
reached\ as soon aa departs fronp=2 with an offset more

< +1ifcison the positive side d? thanr . Finally, we de ne the edge weighte as:
s(c;P) = | 1if cis on the negative side &f (8) |
" 0if cis on both sides oP We= — Wang(ae) (12)
S

An edge in the complex that has 4 adjacent cells is an actual

“material” edge of the reconstructed surface if and only if Cornerterm. Ecomer(X) penalizes the number of corners in
one only of the 4 cells is empty (re-entrant edge) or one only the reconstructed surface. A verte V in the complex is

is occupied (salient edge), see Figure 8. An edge that has 3the point of intersection of three non-parallel planes. It has 8
adjacent cells is a material edge iff the two cells lying on the adjacent cells in general, but can have only 6 or 4 as ghosts
same side of the plane have different values. In both cases,introduce half-planes. The existence of an actual “material”

the existence of a material edgeeatan be expressed by: corner in the reconstructed surface can be expressed by:
he(x) = é n(c;e)xc where n(c;e) = C~) s(c;P)  (9) hy(x) = (;°1 n(c;v)xc where n(c;v) = C~) s(c;P) (13)
c2 Adjc(e) P2 AdjP(e) 2 Adjc(v) P2 AdjP(v)

Adjc(e) is the set of cells adjacent tand AdjRe) the set n(c;v) is a sign used as a linear weight associated to each
of adjacent planes, which are accessed in constant time (cf. adjacent cell (see Figure 9hy(x)j is equal to 0 when there

Section 2.1), anah(c;€) a sign used as a linear weight as- is no material corner, to 1 when there is a single solid or
sociated to each adjacent cell (see Figure 8). The absoluteempty corner, and can rise up to 4 in complex corner cases.
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Figure 9: Possible con gurations for the 8 cells adjacent
to a corner and their corresponding penalization. Penalized
con gurations are in the red zone. Other con gurations can
be obtained by rotation, symmetry and occupancy inversion.

Note that the saddle point (4th case on the rst line in
Figure 9) is not penalized. This can be justi ed from a com-
plexity point of view: assuming that putting two cuboids in

models that contain such higher-order non-submodular po-
tentials. We tested various methods that can handle higher-
order potentials in the OpenGM library [KAH.3], includ-

ing tree-reweighted belief propagation and lazy ipper, with-
out much success in terms both of running time and quality
of the found optimum.

Mixed-integer programming formulation. Instead of us-

ing an MRF formulation, we express the problem as a linear
integer program. The main idea is to reformulate each ab-
solute value in each term of the energy as a linear program
using a continuous auxiliary variable as we have:

X = y x vy 17

miny Sst:

y y
Based on this idea, we introduce a set of continuous auxiliary
variablesy for each facet, edge and corner, and a set of linear
constraints on these variables:

8
< 8f2F; 'yt h(X) w
(xy)2C, 8e2E; Ye he(X) Ve (18)
8v2V; w hv(X) w

We can then reformulate the minimizati&(x) as the mini-
mization of a linear function of both sets of variabkesndy,

contact should not be measured as more complex than two which becomes a mixed-integer linear program of the form:

separate cuboids, the saddle points that it can create (up to 4)
should not be penalized. As for edges, these terms do notde- E Ux:y) =

pend on the convention for assigning a sign to the supporting
planes. They correspond to potentials of order up to 8 in the
context of MRFs. We actually penalize corners with:

Ecomer(X) = é, Wy jhv(X)] (14)
2V

wherewy is a weight associated to Indeed, we may want

to discourage 3D corners that do not feature right angles. We
consider the three angléay; )i 1,0.35 between each pair of
plane passing through As with edges, the corner penalty is
then made proportional to the following weight:
&io 1239(@i  P=2)?

Wang(@1;a2;a3) = A+(1 A)exp e

)
(15)
Itis independent of plane order. Finally we de ne:

Wy = Wang(ay;apz;a3) (16)

4. Optimization

We estimate the surface to reconstruct through the mini-
mization of energyE(x). It could be done using a discrete
optimization method based on an MRF formulation with
higher-order potentials, up to 8th-order for the corner term.

= z+  wixe+ & Wiys + & waye+ & Wiy (19)

c2C f2F &2 V2V
. T .. 8c2C x:2f 0;1g
rrl(lnE(x) = min E'(x;y) st (xy) 2 C (20)

Optimization using LP-Relaxation. Solving a integer pro-
gram is NP-Hard in general. We take the classical approach
that consists in relaxing the problem by allowing each vari-
ablesxc to take values in the interv@d; 1]. This leads to a
linear programming (LP) problem that can be solved ef -
ciently using of-the-shelf solvers. The method based on the
dual simplex in Mosek®© has been successfully used in our
experiments. In case we only use area penalization, all terms
are submodular, the relaxation is tight, and solving the re-
laxed problem yields an integral solution that is the global
optimum of the corresponding integer programming prob-
lem. When using the higher-order regularization terms, we
obtain fractional values that have to be rounded, yielding a
suboptimal integral solution. We use the most simple round-
ing strategy that consists in rounding each primary variable
xc independently of other variables. After this rounding step,
we solve the linear program again by constraining each pri-
mary variablesc to remain xed to the rounded value. It
re-estimates the slack variables given the chosen solution of
the primary variables, and thus estimates the increase of the

However such higher-order terms are known to be challeng- objective function caused by the rounding. We observed ex-
ing for most MRF inference techniques. Ef cient graph-cut perimentally that this energy increase is small in general:
methods can be used if we have submodular pairwise po- up to 8% when using only corner regularization and up to
tentials, which is the case only if we do not use the edge 6% with edge regularization, depending on scene complex-
and corner terms (as in [CLP10]), but they are not suited to ity. It shows we nd solutions that are almost as good as the
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global optimum. We also experimented with the minimiza-
tion of the original integer programming problem using the
“branch & bound & cut” algorithm implemented in Mosek©
and obtained running times that where much longer for only
a marginal improvement of the reconstructed surface.

Figure 10: Edges (left) vs corners (right).
5. Experiments

We evaluated our surface reconstruction method on interior
scenes sampled with a 3D laser scanner. We compared to the
general piecewise-planar reconstruction method in [CLP10],
at the same scals. (Comparison only makes sense with
methods that feature surface completion in hidden area and
piecewise-planar priors. We thus did not compare with Pois-
son or other smooth reconstruction approaches because they
are not appropriate for the kind of scene we target and be-
cause they produce a complex geometry that is not suited
for quantitative applications. We did not compare either with
approaches based on a Manhattan-world assumption, which
present obvious artifacts.)

Figure 11: Corners (left) vs edge+corner (right).

For all the experiments reported here, we used10 cm.
When using one kind of regularizer only, we de neglea =
10 4, | egge = 10 3 and | comer = 10 2 When using a
combination of edge and corner regularization, we de ned
ledge=5 10 *andl comer = 10 2. The idea is that we
want rst of all to favor corner minimization, but that be-
tween two solutions with equal or similar number of corners,
the one with the minimum number of edges should be pre-
ferred: 1 corner can only be traded &r corner=l egge= 2mM
of edges. It somehow acts as a kind of approximate lexico-
graphical order. These coef cients make regularization neg-
ligible compared to the data term, which stays preeminent.

Figure 12: Meeting room 2 with corner regularization.

As shown on Figure 1 (1st image), the parts of the scene
that are distant from the observation point are not well recon-
structed with [CLP10], due to anisotropy sensitivity. Playing
with the scales of [CLP10] does not improve results, but on
the contrary degrades them: if smaller, distant parts of the
scene are not reconstructed; if larger, details are lost. On the window jambs), whose edges are too small to be detected as
contrary, our method is robust to the anisotropy of sampling. planar primitives. Note that the images are seen from a dif-
However, area regularization still introduces unwanted ef- ferent viewpoint than the observation point. For instance, the
fects, such as a hole on the ground in the invisibility cone laser scanner was to low to acquire any data of the treads on
under the laser tripod (2nd image on Figure 1), which hap- the top half of the stairway, and could only sample parts of
pens to reduce the area of the reconstructed surface. Regu-the risers. Still, a full staircase is reconstructed.
larizations with edges and corners (3rd and 4th image) are
much better as leaving a hole in this invisible region is now
penalized because of useless edges or corners.

Figure 13: Stairs scan and corner regularization.

Some execution times are provided in Table 1. The total
running time is a few minutes. Although our system could
handle a laser acquisition with tens of millions of points,

There is only a marginal difference between corner and
edge regularization in Figure 1. But Figure 10 provides an
example where corner minimization is clearly better than
edge minimization. Yet, both regularizers used jointly can be

superior to corner regularization alone, as can be seen in Fig-

as provided by full-resolution scans, we found it effective

enough to work on downsampled images (with a factor 25).
Indeed, the bottleneck is the time to construct the arrange-
ment, which is independent of the number of points. The
number of variables in the linear program also does not de-

ure 11. Figures 12 and 13 provide other examples. Despite a pend on the number of points, although the weights add up

few errors due to clutter in the original scene, the reconstruc-
tion is mostly correct, including for thin objects (e.g., tables,

the information of each data point, with a cost of intersecting
each line of sight with the arrangement.
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Scene #points| Normals| Detection Fusion | Ghost generatiopArrang.| Optimization| Total
Meetingroom 1st. 1 658k| 18s |0s|72prim.|2s|39 prim.| 27s| 344 plane§ 54s |corner| 52s|153s
Meetingroom 1st. 2 642k| 24s |1s|{48prim.|1s|27 prim.| 23s| 211 plane§ 57s |corner| 505|156 S|
Meetingroom 1st. 3 663k| 22s |1s|52prim.|1s|26 prim.|23s| 276 plane§ 32s |corner| 16s| 95s
Meetingroom 1st. 4 667k| 23s |2s|56 prim.|1s|26 prim.| 24s| 230 plane§ 52s |corner| 42s|144s|
Meeting room 2 1054k| 49s |2s|36prim.|1s|21 prim.| 34s| 232 plane§y 64s |corner| 18s|168s
Stairs 680k| 18s |0s|51prim.|1s|40 prim.| 26s| 160 plane§ 47s |corner| 45s|137s|
Table 1: Computation time of surface reconstruction stages for various scenes.
6. Conclusion [CLP10] CHAUVE A.-L., LABATUT P., PoNS J.-P.. Robust

We have presented an effective method for reconstructing
surfaces from range images, that infers plausible comple-
tions in hidden regions using priors adapted to man-made [FCSS09a]

environments. Compared to [CLP10], which we build on

and improve in many respects, it has no artifact due to voxel [FCSS09b]

discretization nor to the order of plane insertions in the ar-

rangement, and it handles sampling anisotropy and thin ob-
jects. Moreover, as shown by our experiments, our edge and [
corner regularizations are unquestionably superior to area

minimization to reconstruct plausible surfaces in hidden re-
gions. Our formulation for these regularizers is solved ef -
ciently by LP relaxation, reaching near-optimal global so-
lutions. Note that these regularizers and their optimization

are not restricted to range images; they can be used in other

contexts, e.g., to treat photogrammetric data as in [CLP10].

Although we can treat a laser scan with millions of points,

piecewise-planar 3D reconstruction and completion from large-
scale unstructured point data. GVPR(2010), pp. 1261-1268.
1,2,3,4,5,6,7,8,9,10
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P13] FAYoLLE P.-A., lasko A.: Segmentation of discrete
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[JKS08] ENKE P., KRUCKEBERG B., STRASSERW.: Surface
Reconstruction from Fitted Shape Primitives. MWV (2008). 2

[KAH 13] KAPPESJ. H., ANDRES B., HAMPRECHT F. A.,
SCHNORR C., NowozIN S., BATRA D., KiM S., KAUSLER
B. X., LELLMANN J., KOMODAKIS N., ROTHER C.: A com-
parative study of modern inference techniques for discrete energy
minimization problem. ICVPR(2013). 8

[KZ04] KoLMOGOROV V., ZABIH R.: What energy functions

we cannot process hundreds of such scans to reconstruct a can be minimized via graph cut®AMI (2004). 7

whole building. A challenge now is to ef ciently combine
multi-view partial reconstructions while ensuring geometric

consistency and a global (near-)optimum. Semantizing the [LWC 11]

reconstructed geometry also is a major issue.
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