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Three dimensional homogenization of masonry
structures with building blocks of finite strength:
A closed form strength domain
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Abstract: The present paper provides a straightforward naetlogy for the estimation
in closed form of the overall strength domain ofiaplane loaded masonry wall by
accounting for the failure of its bricks. The deteration of the overall strength
domain was based on a rigorous definition of therasitructure in three-dimensions,
on convex analysis and on the kinematical approactihe frame of limit analysis
theory. No plane stress or plane strain assumpsian priori made. The formulation
allowed distinguishing the yield surfaces that axtdor the failure of the joints and
the yield surfaces that account for the failuraha& building blocks. The validity and
the efficiency of the derived analytical strengtinahin were investigated by means of
numerical homogenization and experimental evidembe. proposed strength domain

can be used in limit analysis approaches, in firetement simulations and for
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calibrating existing phenomenological models forsoray structures based on the

micromechanical properties and the geometry obtieks and the mortar.

Keywords: masonry; failure; homogenization; microstructumaultisurface plasticity; limit

analysis

1 Introduction

The failure of masonry structures can be studidteeby continuum or discrete type models
(cf. macro-modeling and micro-modeling Lourengo9@P The latter consider the masonry
as an assemblage of blocks (bricks) with explialfined geometry and joints (interfaces),
while the former consider the masonry as a contmmedium. Continuum models are based
on either simplified analytical approaches or ombgenization techniques. Each approach
has advantages and disadvantages that are redaieel tequired computational effort and the
degree of accuracy of the obtained results. Duéh¢oheterogeneous nature of masonry
structures, discrete type approaches seem to hghtfsgcal starting point for the modeling of
the mechanical behavior of such kind of structunessertheless, because of the difficulty in
determining the exact mechanical parameters at nih@olevel and the considerable
computational cost of discrete type approachesjramm approaches continue to attract the
interest of many researchers. In spite of the sg\Wenitations of continuum mechanics for
modeling such kind of heterogeneous systems (adt l&& classical Cauchy continua
(Zucchini & Lourencgo, 2007)) the main reason foingscontinuum models is that they offer
a certain degree of abstraction and allow to upesitee micromechanical characteristics to

the macroscale, i.e. to the scale of the structure.

A considerable number of continuum models for masaiready exist in the literature.
Among others we refer to the works of Heyman (196&)ge (1978), Livesley (1978), Alpa

& Monetto (1994), Pande et al. (1989), Lotfi & S4i(l991), Pietruszczak & Niu (1992),
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Cecchi & Sab (2002), Zucchini & Lourengo (2002, 2Z)MMilani et al. (2006a, 2006b) in the
frame of classical contimmum theory and to SulemM8ihlhaus (1997), Masiani &
Trovalusci (1996), Stefanou et al. (2008, 2010)e®a & de Felice (2009), Addessi, Sacco,
& Paolone (2010), Pau & Trovalusci (2012), Trovalu& Pau (2013) for continuum models
using higher order continuum theories. For a cofmgmsive review of various continuum
models we refer to the article of Lourenco et 2007). As a general remark one could state
that most of the available continuum models desdtile elastic linear behavior of brickwork
by proposing even closed form expressions for tlastie moduli. On the contrary, the
inelastic behavior of masonry is studied in fewarks through non-linear homogenization

approaches that in most of the cases are basex@amsige numerical simulations.

Homogenization theory (Bakhvalov & Panasenko, 198%ensoussan, Lions, &
Papanicolaou, 1978) has been applied in order tvedehe effective linear elastic
constitutive parameters of an equivalent Cauchyticonm based on the microstructure of
the masonry. Based on a kinematic limit analysimdgenization approach and under plane
stress conditions, de Buhan and de Felice (199v¢ karived in closed-form the strength
domain of an in-plane loaded periodic brickwork sisting of infinitely resistant (elastic)
bricks connected with Coulomb interfaces. The dtiyield criteria consist an upper bound
of the strength domain. Considering a polynomiatribution of the stresses and a two
dimensional stress field (imposed plane stress itond), Milani et al. (2006a, 2006b)
proposed a homogenization scheme in order to detera lower bound of the strength
domain of masonry. The aforementioned homogenizatipproach allowed to consider
different yield criteria for bricks and mortar. Mast et al. (2005, 2007) and Zucchini &
Lourenco (2002, 2004, 2007) considered additiorthkybrittle behavior of bricks and mortar
in the frame of damage mechanics theory. Nevedbel¢he strength domain in the

abovementioned approaches does not have an anjlgtased form expression.



The present paper focuses on providing a straigh#fia methodology for the analytical,
closed-form estimation of the overall strength domaf an in-plane loaded masonry wall
made of bricks of finite strength connected witictional interfaces. The determination of
the overall in-plane strength domain was based &mematic limit analysis approach in
three dimensions (3D). It has to be emphasizedttteacommon plane stress or the plane
strain or the generalized plane strain assumptwai® avoided (these terms are used as
defined in Saada (1974)). According to Anthoine9@)0 the aforementioned states of plane
deformation might have little influence on the nuswoopic elastic behavior of masonry
(Addessi & Sacco, 2014; Mistler, Anthoine, & Butesyy 2007), but may significantly affect
its non-linear response (at least for materialsmasd in the damage mechanics framework
which was used in Anthoine, 1997). Therefore, timed dimensional kinematic approach
followed here permits the generalization and extensf the results of de Buhan and de
Felice (1997) by taking into account the out-off@adeformations of the masonry due to
in-plane loading and by considering a finite sttangpr the blocks. Depending on the
constitutive behavior of the masonry units and loé fjoints an analytical closed form

expression for the masonry strength domain is detexd.

The kinematic approach leads, in principle, to ppen bound of the exact strength domain of
the system (cf. Salengon, 1990). Therefore, theracy of the abovementioned analytically
derived strength domain was investigated througherical homogenization of the 3D unit
cell and it was compared to the experimental rexaflPage (1981, 1983). The effect of the
thickness of the joints was explored and its infltee was found to be quite limited for thin

joints.

The paper has the following structure. In sectiaghe& overall in-plane strength domain of a
running bond masonry wall is determined based &mematic limit analysis approach and

using a three-dimensional stress and kinematid.figh this section the formulation is
4



general, no plane stress assumption is made anahgqtarticular material is chosen for the
interfaces and the building blocks. The masonry wareated as a thin plate with a periodic
microstructure of finite thickness. In section Be tderived strength domain is compared to
the strength domain found by numerical homogeroratlhe interfaces and the blocks are
considered to obey to a Drucker-Prager criterionorder to avoid possible numerical

problems. Three yield surfaces that account fofaiiere of the joints, and one yield surface
that accounts for the failure of the units are egped in closed form. Their intersection in the
stress space forms the in-plane strength domaiichvwis compared with the strength domain
derived numerically. It is shown that the numerigall the analytical results coincide in the
majority of biaxial load configurations tested. Neweless, under some biaxial load
conditions and for thick joints the resistance lo¢ tmasonry is somehow overestimated.
Finally, in section 4 the analytically derived stggh domain is compared to the experimental
results of Page (1981; 1983) by adopting a Couloritbrion both for the interfaces and the

blocks. The comparison is quite satisfactory.

The derived analytical strength domain can be usdohit analyses in order to assess the
ultimate failure load, in finite element simulatg(e.g. de Felice, Amorosi, & Malena, 2009)
and due to its simple closed-form expression carusexl for the calibration of existing

phenomenological models (e.g. Ottosen, 1977; Syeaial& Asteris, 2001).

2 Threedimensional homogenization of masonry walls

Homogenization theory is applied in order to detaarthe overall in-plane strength domain
of a running bond masonry wall. A kinematic limiadysis approach is followed using a
three-dimensional stress and kinematic field. Iwisrth emphasizing that unlike similar
existing homogenization approaches for masonry ¢edBuhan & de Felice, 1997; Milani et

al., 2006), no plane stress conditions are a passumed and the problem is treated in three
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dimensions. The reason is that the stress statieeirmortar cannot be described precisely
either by plane stress or plane strain condititmgarticular, one can imagine that when the
joints are very thin the mortar is in plane streamditions as the masonry units constrain its
deformation. On the contrary, when the joints agy\thick, the influence of the units on the
deformation of the mortar is small and one can ictemghat the mortar deforms rather under
plane stress conditions. Following the definitiamisSaada (1974), in the absence of lateral
loadings, a masonry wall is in a generalized plaimess state, i.e. the stress is zero at its
lateral sides, but not in every point in its thieks (cf. plane stress conditions). The influence
of plane stress or of generalized plane strain itiond is well-known (Anthoine, 1997,
Mistler et al., 2007) and in the non-elastic regimiéferent states of plane deformation can
have important impact. Generalized plane strain sintblified 3D approximations give
better results as far it concerns the resistaneeasionry (Addessi & Sacco, 2014; Anthoine,
1995). The plane stress assumption is inadequatdifk masonry walls (Anthoine, 1997).
To overcome these issues a three dimensional kinearad stress field is taken into account

and the masonry wall is considered as a platendgéfthickness.

Let the heterogeneous plate occupy the dormaia wx}—%%{ where o R? is the

middle surface (middle plane) artdthe thickness of the plate. The plate consistgarof
elementary cell that it is periodically repeatedlirections 1 and 2 (sddgure ) and its size
is small in comparison to the size of the totalcure. The elementary unit cell is denoted by

the domairy = Ax }—%12[ whereAc R*. The boundarysy of Y is decomposed into

} .

three partspy =oYUo Y Ud Y, with aY;" = {i

N+



[m—
I | Ry

l ! ! ! :

Figure 1. The running bond masonry geometry anditiiecell considered herein.

We assume that the strength of the material ayegp@int y €Yis defined by a convex closed
domain G(y), such thats € G, with c:(aij) the stress tensor arigj =1,2,2. No plane

stress assumption is made and therefefg o,, and o,, are not zero. Such a domain is

uniquely defined by a positive homogeneous functibdegree one, which is called support

function and it is defined as:
z(d)=sup{e:d,6e G < G={c|o:d£7r(d),Vd} (1)
whered = (dij ) denotes a strain rate tensor afidienotes the double contraction.

If the thicknesst, of the 3D-structure (i.e. the thickness of thesamaty wall) is comparable
to the size of the unit cell (i.e. the periodic &y cell), but it is very small compared to the
overall size of the structurep, then, as it was proposed by Sab (2003) and Dé&llSab

(2008a, 2008b), the periodic structure can be neadaks a homogeneous Love-Kirchhoff

plate. LetN :(Naﬁ(xl, xz)) be the macroscopic in-plane (membrane) stress fedultants

for the homogenized plate withx,x)ew and a,f=12, M:(Maﬂ(xl,xz)) the



macroscopic out-of-plane (flexural) stress fielguléants, D=(Daﬂ(x1,x2)) the in-plane
strain rate field,x:(;(aﬁ(xl,xz)) the out-of-plane (curvature) strain rate field and

V=(Vi(%,%)) the plate velocity field. The macroscopic rateldéeare related to the

o

macroscopic virtual velocity field components adlofes: Daﬂ=%(V ,ﬂ+vﬂ) and

Zus =Va,, - Then the convex strength domain of the homogehialate, G,"", can be

determined by solving an auxiliary limit analysi®plem over the unit celly .
2.1 Definition of the homogenized plate strength domain

For every(N,M) the setSA(N,M) of statically admissibléy -periodic 3D stress fielé of

the unit cellY is defined by:

¢|N,, = t<0'aﬂ> M, = t<y30'aﬂ>

SAN,M) = dive=0 onY )

¢ -n skew-periodic oY,
¢-e,=0ondY;

where () is the volume average operator %n

The homogenized strength doma@;“’m, is defined as the set of the generalized stresses
(N,M) such that there is a 3D stress figidn SAN,M) with 6(y)eG(y) forally in Y,

ie. G"={(N,M)|3ce SAN.M),o(y)e Qy).vye ¥.

For every(D,y) the set of the kinematically admissible velocitglds of the unit cell,

v=(V), is defined as follows:

KA(D,) ={V|V®°v=D+y+V®u™,u *Y-peiodic| 3)



where V®°V is the symmetric part of the gradient operatod eﬁ)w =D, D;=0,

Hop = Xapr Xi3=0-

The setsSAN,M) and KA(D,y) are conjugate in virtual power on the unit celé. i
Ve e SAN,M) and Vv e KA(D,x), N:D+M :x:t<o:(V ®° v)> Therefore,G)*" (Sab,

2003; Salengon, 1990b; Suquet, 1983) becomes:

ﬂgom(D,x): inf {t<7r(V®S V)>} (4)

veKA(D %)
2.2 Definition of the homogenized in-plane strength domain

The in-plane strength domain is defined as the €ét, of the symmetric second order
in-plane stress tensoE:(Eaﬂ) defined byZ € G* or equivalentlytX e G". G' is the
intersection ong"m with the subspac(eN,M =O) or equivalently, as it will be shown below,
the projection ofG)™" to the subspacéN,M =0), i.e. G ={N|3M,(N,M)e G} . Its
corresponding support function is" (D)=7""(D,0). Hence, according to the static

definition of GQO”‘ , XeG" if there exists & -periodic stress fields=(aij) of the 3D unit

cell verifying:

< Jaﬂ> =2
dive=0onY ()
¢ -n skew-periodic oy,
¢-e,=0o0ndY;

Using Eg.(5)c and the boundary conditions, it can dhown that the average of the

out-of-plane componentigig}, of a stress tensos satisfying Eq.(5) are zero. It is worth



mentioning thate is not a plane stress field but a generalizedepkiress field according to
the definition of Saada (1974). Egs. (5) definerthenerical homogenization problem solved
in section 3.2 in order to validate the upper boahthe strength domain derived in sections

2.4 and 2.5.
The kinematic definition of5” is as follows:

G*={z=(z,)IZ:D<7*(D),vD=(D, )} (6)

where 7~ is the support function dB~ and it is given by:

7 (D)=t"7"(D,0)= inf {(z(verv)) (7)

veKA(D,0)
In the general case of € KA(D,0) the correspondingi®™ (y,, Y, ¥;) in Eq.(3) has three
componentsf, = 0) and it isY -periodic. Therefore, the average out-of-plane coments of

d=V®&’Vv for ve KA(D,0) are not zero.

In other Words,<daﬂ>= D,; and (di3>¢0 in the general case. In this sense the 3D uniit cel

problems described in Egs.(5) and (7) cannot besidered as plane stress or plane strain

problems.

A periodic plate issymmetric if one can extract a centro-symmetric unit cell (

yeY<-yeY) such thatG(y)=G(-y) VyeY. In this caseG" coincides with the
intersection of GQ"”‘ with the subspace(N,M :0). This means that the conditions
<y3aaﬂ>:0 can be added to the static definition®f (see Eq.(5)) and that the infimum in

Eq.(7) can be taken over alle KA(D,x) and ally (Appendix).
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2.3 In-plane strength domain for running bond masonry

Running bond masonry is made of identical paraieked bricks of sizéb in the horizontal
direction 1 (length), a in the vertical direction2 (height) andt in the third direction
(thickness). The building blocks are separated byizbntal continuous bed joints and

alternate vertical head joints as showrFigure 1 e, is the thickness of the horizontal joints

and e, is the thickness of the vertical joints. Let algobe the chosen unit cell (Figure 2),

G’ the strength domain of the joint§” the strength domain of the bricks and, 7% the

support functions ofG’ and G* respectively. The aforementioned strength domaies

considered known and they are assumed to be convex.

o
o

Figure 2. The unit cell.

The idealization of the masonry mortar joints afite thicknesse (e,,g,) into two-

dimensional interfaces of zero thickness is commdhe modeling of masonry structures. In
the frame of linear elasticity, Cecchi and Sab @0fave demonstrated the validity of the

aforementioned idealization through asymptotic hgemization. Regarding plasticity,

Sahlaoui, Sab, & Heck (2011) have shown that areuppound of z* is asymptotically

obtained as the thickness of the joints tendstto @e— 0, 2D interface):

11



z* (D)< inf {<7z8r(V®SV)>Y*+‘Yi*

veKA™(D,0)

jf(n@S[[v]])de} (8)

J

@

where KA" is the set of kinematically admissible velocitglfis (Eq.(3)) of the unit celY”

that is obtained fron¥ ase,, e — 0, n is the normal to the middle surface of the joints

and [[v]]zﬂu”er]] is the jump of the velocity fieldy and U in Eq.(3) across the middle

surface®’ in the directionn (Figure 3). The second term in the right hand sitkhe above

equation, Eq.(8), expresses the dissipation ofctireesponding 2D interface model for the
joints. Using standard duality techniques, the rfate yield strength domaim”’ is the

convex domain of the three-dimensional space o$tiess vectot =6 -n defined by:
teg’ et-u<z’(n®°u), vu (9)

In the following paragraphs we will consider theeaf infinitely thin joints é,,e, — 0) and

we will use Eq.(8) to propose upped boundsdrin closed form.

Figure 3. Representation of a plane joint and \iglgemp [[V]] =V'-V.

2.4 Upper bound of the strength domain for infinitely resistant building blocks
A first upper bound is obtained by restricting thmimization in Eq.(8) to rigid body motion
of the building blocks. This means that the analysirestricted to those velocity fields in

KA"(D,0) of Y", which are piecewise rigid on each block with juss jumps
12



(discontinuities) at the interfaces. It has beemwshby Cecchi and Sab (2002) that the jump
of these velocity fields at the interfaces depemaly on D and on one single undetermined

rotation Q. According to the above rigid-body kinematics aetbcity jumps, Eq.(8) holds:

#*(D)<z" (D) =inf {‘Yijw‘(n ®S|IV]])da)J} (10)

J

@

where 7~ is the support function of the in-plane domd&i of a running bond masonry

configuration consisting of infinitely resistantidks interacting at their interfaces. Hence,

G cG.
2.5 Upper bound of the strength domain for blocks of finite strength

Let G® be the in-plane stress strength domain of th&k&riG” is the convex set of in-plane

stress tensoréaaﬂ) such that the 3D second order stress teoswith ¢-e,=0 is in G .
Its support functiomb((daﬂ)) is obtained by taking the infimum of™ over all possible

3D second order strain rate tensors having the saiplane componenl(sdaﬂ):

7°((d,,)) = inf {;zBf (d, )} (11)

d13’d23'd33
Using in Eq.(8) the continuous velocity fieldre KA"(D,0) with u(y)=cy,,

w(y)=cy; and u}*(y)=c,y, leads to the following homogeneous strain ratéhe unit

cell Y*:
Dll DlZ %
vVe'v=|D, D, C—22 (12)
& &
2 2 &
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Here, c,, ¢, andc, are arbitrary real numbers. Taking the minimunthef right-hand side of

Eq.(8) over allc;, c,, c, gives:

7* (D)< x"(D) (13)

HenceG* c G and
G*'c(G"NG)=G" (14)

The above equation gives an upper bound for theabsrength domain of a running bond
masonry wall independently of the materials chofenthe joints and the bricks. Its
performance will be investigated in the next paaphs by means of numerical

homogenization and experimental evidence.

3 Finite Element validation of thein-plane strength domain

This section focuses on the validation of the oVeteength domain of masonry, which was
derived in the above section based on a kinemaiproach (Eg.(14)). The validation is
performed by comparing the derived strength domaaih the exact domain determined by
numerical homogenization (Egs.(5)). For this pugydbe materials for the bricks and the

joints have to be specified.

Bricks and mortar are geomaterials, which are coniyndescribed by Coulomb failure
criterion. Nevertheless, the numerical treatmentColulomb yield surfaces can provoke
numerical problems related to the non-smoothnesshisf criterion. Therefore, for the
numerical analyses performed in this section thekbrand the joints are considered to obey
to a Drucker-Prager criterion. An alternative tauEker-Prager criterion could be the Lade-
Duncan or the Matsuoka-Nakai yield criteria, bu¢ithmathematical expression is more

complex than the mathematical expression of a BmuEkager yield surface.
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3.1 Analytical expression of the overall strength domain for Druger-Prager materials

The Drucker-Prager failure criterion has the folilogvform:

ceG@f(c)SOWithf(c):qu ps - k (15)

where pzétr(c) is the hydrostatic stress=6—pl is the deviatoric stresaz‘/gs:s ,

and S, k the Drucker-Prager parameters. We distinngIstﬁ) :(kJ ,ﬁ") for the joints and

(k.8)=(K®,B®) for the bricks.

According to Salencon (1983), in the case of iaees (Figure 3), the Drucker-Prager

function coincides with the Coulomb support funotit

H J J nJd
o390 gt = EL (16)
{3+ sinp’ tang

¢’ is the Coulomb friction angle ane’ is the Coulomb cohesion for the joints. In this

case, the support function becomes:

C.]

r(ne[v])~{mnp LI 1[I0 [[VEsing

+00 otherwise

(17)

Where[[v]] is the velocity jump across the joint interfaod .

According to de Buhan and de Felice (1997) and @&03) for Coulomb interfaces the

analytical expression of the strength dom@in is:

‘ij‘ +tang’ 2;,< 0
LeG” 1 (1+ mtang’ )|T;,| + NE},+ tap’T,< 0 (18)

(m+tang’ )[2y,|+ mtanp’ £3,+37,< 0, ifmtag’ >

15



J
Wheremzé andX , =% , - ¢ -
b tang

S

The strength domain of the building block3”, is obtained by setting,; =0,,=0,,=0 in

Eq.(15). Hence, an upper boudl of the system (Eg.(14)) can be analytically deteed

by adding the following criterion to Egs.(18):

w/zf+z§—zlzz+ﬁs¥—k3so (19)

where £,, X, are the principal stresses which are expressadrins of the stress tensor

components as follows:

y - le+222+\/(211—2 22)2 +42212
L=
2

(20)
2
Y - Z:11"'222_\/(211_222) +42212
, =
2
3.2 Numerical homogenization
The in-plane stress may be expressed as followsié@iconditions):
cosy¥-¢ —sin?
X=X _ , ~>0 (22)
-sin2) —cos?-¢&
or
1- ycos? sin2
r=3| % d 22)
ysinZ 1+ y cos?

The first case, Eq.(21), corresponds to the statstress depicted in Figure 4a, while the
second, Eq.(22), corresponds to that of Figure dband y are non-dimensional real

parameters varying between -1 and +1 ani$ the angle of the principal axis with respect to

the bed joints direction (direction 1) as showrrigure 4. Therefore, all biaxial states can be
16



reproduced, i.e. tension/compression (Eq.(21xfer0 ), compression/compression (Eq. (22)

for T < 0) and tension/tension (Eq.(22) far> 0).

2, =2—|x3

AN
2, =(1-&)% ““‘21=2+|;{Z|
A S NN
)

|

Figure 4. In plane stresses representing, on thedasion/compressiore(> 0) and on the

right compression/compressiob £ 0) or tension/tensiony > 0).

By means of a Finite Element (FE) software, the imam value ofZ =X™ in Egs.(21) and
(22), such thaft e G*, can be determined for certain valuesgoind & or . Inthe frame
of perfect associate elasto-plasticity, failurelwitcur whenX = ™. Herein, the elasto-
plastic three-dimensional problem of the unit cepicted in Figure 1, was solved using the
commercial Finite Element code ABAQUS amd®™ was determined for Drucker-Prager
materials according to the fitting parameters giverEq.(16). In Table 1 we present the
parameters used for the analyses. The blocks wai@ @o holes) and their size was
a=38mm, b=115mm andt = 55mm. The effect of the joints’ thickness was invesigghby

varying (%, Q,). Both the blocks and the joints were modeled hittee dimensional solid

elements.

17



Table 1. Mechanical parameters for the bricks &ednortar used for the comparison of the

numerical and analytical homogenization schemes.

Bricks

Coulomb cohesiong” 4.3 MPa
Coulomb friction anglegp” 30°
Elastic modulus 6740 MPa
Poisson ratio 0.17
Mortar

Coulomb cohesiong’ 0.35 MPa
Coulomb friction angleg”’ 40°
Elastic modulus 1700 MPa
Poisson ratio 0.05

It is worth mentioning that the selected Young'sdulo were only used for the numerical
homogenization scheme presented in this sectioithwh performed in order to validate the
analytical strength domain derived through Eq.(14).the frame of perfect associate
elastoplasticty the analytical and numerical honmixggion schemes should provide the same
ultimate strength independently of the chosen ielasoduli. Different approaches (e.qg.
damage mechanics) may show a dependence on thie efasiuli and may provide more
accurate results (provided that the necessary meamtiaparameters can be adequately
calibrated based on experimental tests) but thargdge of the present approach is that it
leads to an analytical expression of the strengimain based on a solid theoretical

framework.

18
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Figure 5. Section of the unit cell along the midgliene of the masonry and notation of its

interactions with the adjacent cells (see also féidy.

Periodic boundary conditions were imposed at the aell. Therefore, the nodal degrees of
freedom at opposite faces were paired. In Figura B ,C,D,E,F denote the six faces of
the boundary of the unit cell. Notice that thenité microstructure, i.e. the geometry of the
elementary cell, remains invariant to translatibgps/ectors joining node (5) with node (1) or
(3) and vectors joining node (4) with node (6) &8). (Consequently, fac& should be
matched by periodicity conditions with fad, face D should by matched with facA and

face F with faceC . Hence, the periodic conditions at the unit cedt a
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V(yE)_V(yB):D'(yE_ yB): —

V(yD)_V(yA):D'(yD_ yA): (b+ Q) L, (23)

V(ye)-v(¥)=D-(% - %) =| ~2E% b, +(ar ¢) D,

where v are the degrees of freedom of ndde1,2,...,€ as shown in Figure 5. It should be

mentioned that as far it concerns the numericalempntation and homogenization in static
conditions, there is no need to distinguish betwsesdacities and displacements, and strains

from strain rates. Equations (23) may be used teraene the components @ in terms of

the nodal degrees of freedork=1,2,...,€. Indeed setting the nodal degrees of freedom

vl =0 we obtain:

D11: , D12: , D22:—21 (24)

Furthermore, EQs.(23) may be expressed in ternteseohodal degrees of freedow and
the periodic boundary conditions may be set nodadae in the finite element model of the
unit cell. Using Egs.(24), the kinematic scalariafale, £, which is conjugate in energy with

the stress scalar variablg, (Eqg.(21)), for tension/compression is given by:

g:izzD:cosﬂ—fv(g)J{_l cos2+é surﬂzj\}s)_ COPZE o g

) bre ' (2 are brg) * a e
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and for tension/tension or compression/compredsyon

1 1—;(0033\/(3)_(_1 ¥y cos@2 2 SQHJV(?,)JFH;(COSZ\}S) (26)
2

e=—X:D= A A
z b+e 2 at+e br e a e

The numerical simulations of the three dimensiamat cell were performed by increasiisy

until the ultimate load that corresponds 26**. In Figure 6 we present an example of the
deformation of the three dimensional unit cell twats used in the numerical homogenization

scheme. The contours represent the minimum prihstpesses in MPa developed in the unit
cell for uniaxial compression normal to the bechisi( =1, =0 and g, = e =5mn).

Notice the excess deformation of the joints intretato the deformation of the block. It is
worth mentioning that the mortar is in a triaxitless state and not in plane stress or plane
strain conditions. This justifies, the general fatation presented in section 2 and the fact
that a three dimensional stress and kinematic figce employed during the homogenization

procedure.

The overall stress components, =<aaﬂ> are computed by averaging the stress values at
the Gauss points. Figure 7 shows the obtained ssstesin (2,8) curve in the case of

uniaxial compression normal to the bed joints @f timit cell, i.e. foré =1 and #=0", and
for ¢ =e =5mn. The ultimate stres&™ is obtained as the asymptotic value 2f for
increasing¢ (Figure 7). According to Eq.(21), the ultimate wi#& compressive strength is

equal to X,,=-22"™. In the next paragraphs we present the results ftioe various

numerical analyses performed in order to validate

21



S, Min. Principal
(Avg; 75%)
+1023e-01
g -
21,6658+ P e oo
ey 0 N
-4.2158+00 FRE ST e
-5,198e+00 ¢
-6.082e+00
-6.965e+00
-7.84%e+00
-8.732e+00
-8.616e+00
-1,050e+01

o
=

e
T
o

Joints

S A A A SRS

H
i
i
H
i
]
H
H
i
N
H
&
H
4
3

s

e,

L F S A S F ST

e,

i
LA o E A S S ST
B A S TSR TETTEES

Figure 6. Example of the deformation of the thremeshsional unit cell that was used in the

numerical homogenization scheme. The contours septeéhe minimum principal stresses
(in MPa) developed at the unit cell for uniaxiahgaression normal to the bed joints €1,
6 =0 ande, = g =5mn). Notice the excess deformation of the mortahatsints in relation

to the deformation of the block. The mortar is imiaxial stress state.
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Figure 7. Example of a stress-stra(iEw) curve derived through numerical homogenization

of the unit cell for vertical compressiod €1, =0 ande, = € =5mn). The ultimate stress
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>™ is obtained as the asymptotic value3offor increasings (dotted line). The uniaxial

compression strength of the masonry is thegn= -2 (see Eq.(21))

3.3 Comparison of theanalytical and numerical in-plane strength domains

The in-plane strength domain that was derived dicaljy in the previous paragraph&()

consists an upper bound of the strength domaihefitasonry structuréX"). Therefore, a

comparison of the analytical result with the sttendpmain that was calculated by means of
numerical homogenizatior@""™) is presented in this paragraph.

Several numerical simulations were performed onelbenentary cell for different angles
and loading combination2,,X,). In particular, the following biaxial configuratis were
investigated: £ =1.0 (uniaxial compression normal to the bed joinis=0, =, =-2%),
£=0.8, £=0.5 £=0.0, £=-0.5 and £=-1.0 (uniaxial tension normal to the head joints
X, =2¥, X,=0). Moreover, three different joint thicknesses wetensidered, i.e.

g, =¢€=0.1mn, g =¢=2.0mn and g =¢ =5.0mn corresponding respectively to the

0.3%, 5.3% and13.2% of the height of the block.

In Figure 8 to Figure 13 the numericdb"™) and the analytical@") strength domains are
juxtaposed for the three different joint thicknessé is worth mentioning that all the
analytical calculations in the present paper haenlperformed with the symbolic language
mathematical package Wolfram Mathematica. The nicalestrength domain is traced for

different values of the angle. As it was previously described the overall aneftstrength
domainG" is the intersection of three domains. These aesttength domain of the blocks
G° (Eq.(15)) and the strength domains of the bed({Bjya&b) and head (Eq.(18)c&d) joints

(G®). In Figure 10 the aforementioned strength domaire clearly distinguished. If the
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failure of the blocks was not taken into accouetshrength domain of the masonry would be
unbounded, which is unrealistic. The numericallicafated ultimate stresses coincide with

the analytical yield surfaces that correspond ® fdulure of the joints in all the biaxial

configurations tested (Figure 4). For instancefigure 11 we observe that fa0°<6< 90
the ultimate strength falls exactly at the boundafythe analytical strength domain.

However, this is not the case when the failuréhefunit cell is attributed to a combination of
the failure of blocks and of the failure of thentsi (e.g. Figure 8 fol <6<40 and #=90

, Figure 11 for@=0 etc.). In this case the thickness of the jointypla crucial role and the

ultimate stresses derived by numerical homogemizdéll inside the analytical yield surface.

This is not an astonishing result as the analyst@ngth domain is an upper bound of the
exact strength domain of the system. This discreypas stressed also by Milani et al.
(2006b). In Figure 14 we present the ratio of themate strength that was calculated by
numerical homogenization=("™) over the upper bound of its value that was derive

analytically by the limit analysis theory() in function of the joints’ thicknese=¢ = ¢

for various values of and forg =0°. Similar results are also obtained for the biastates

described in Figure 4b as it is shown in Figure 15.

Generally, the thinner the joints are, the betahe convergence of the numerical results to
the analytical yield surface. This behavior cangbealitatively explained by comparing the
plastic deformations of the different analyses gened with different joint thicknesses. In

particular, at Figure 16 and Figure 17 we preskeatrmagnitude of the plastic deformations
for £=1, #=30 and, respectively, fore=0.Imm and e=5.0mm. According to the
numerical results (see Figure 8 and Figure 14)atiaytical strength domain approximates

quite well the numerical one far= 0.1mm, while there is an error of approximate 20% for

the case ok =5.0mm (13.2% of the height of the block). Focusing on Figurewlé observe
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that the resulting plastic deformations at the bklae almost homogeneous and therefore the
assumed homogeneous deformation in the unit celthfe analytical determination of the
yield surface (Eq.(12)) is consistent. Howevers ikinot the case for the thicker joints, where
the plastic deformations are clearly not homogese(tigure 17) and consequently the
considered kinematic admissible field that was oeticed through EqQ.(12) is not

representative.
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Figure 8. Comparison of the strength domains faeaxial compressiond =1) and for

various angle . The shaded region represents the analyticalgttrefomain G*) and the

markers the ultimate strength of the unit cell thas derived by numerical homogenization.

For thin joints the numerical results approachahalytically derived upper bourf@’ . For

6 = 0° the uniaxial compression strength of the masamfgund by multiplyingZ™ by a

factor of two (see Eq.(21)).
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Figure 9. Comparison of the strength domainséer0.8 and for various angleg. The

shaded region represents the analytical strengtraoio(G") and the markers the ultimate

strength of the unit cell that was derived by nuoathomogenization. For thin joints the

numerical results approach the analytically derivpger bounda".
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Figure 10. Comparison of the strength domains&er0.5 and for various angleg. The

shaded region represents the analytical strengtraoio(G") and the markers the ultimate

strength of the unit cell that was derived by nuoahomogenization. For thin joints the

numerical results approach the analytically derivpger bounds".
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Figure 11. Comparison of the strength domains&fer0.0 and for various angleg. The

shaded region represents the analytical strengtraoio(G") and the markers the ultimate

strength of the unit cell that was derived by nuoahomogenization.
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Figure 12. Comparison of the strength domainsifer-0.5 and for various angleg. The

shaded region represents the analytical strengtraoio(G") and the markers the ultimate

strength of the unit cell that was derived by nuoahomogenization.
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Figure 14. Ratio of the ultimate strength of thé gall that was calculated by numerical

Num
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homogenizationY™") over the upper bound of its value that was dereealytically by the

theory of limit analysis £*) in function of the joints’ thicknese= g, = ¢ for various values
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4 Comparison with experimental results

The effect of the thickness of the joints and thifeence of the analytically derived strength
domain with the numerical one was quantified anstified in the previous section. The
analytical model overestimates the strength ofntlasonry in some biaxial load cases. This
difference is of the order of 20% for the thickemnis (Figure 14, Figure 15). Moreover, the
non-homogeneous stress field inside the masonng dmat was discussed in the previous
section leads to the development of tensile stsegsé Figure 16 and Figure 17).
Consequently, the analytical model might also ostareate the resistance of the masonry due
to the fact that it does not take into accountlihttle behavior of the bricks in tension and
the related crack formation. In particular, expenns performed by Sahlaoui et al. (2011) on
non-uniformly loaded masonry units (Figure 18) shduwhat the ultimate compressive load is
on the average 60% lower than the ultimate commedsad of the same units under
uniform loading. This is a well-known issue in masgostructures and a similar drop of the
compressive strength was also noticed by Page (I19BB). According to Page, the mean
compressive strength of four-high stack bondedsprass 65% the compressive strength of
half-scaled bricks. In particular the mean compwesstrength of the half-scale bricks was
15.41 MPa (coefficient of variation of 18%) whileetmean compressive strength of the four-

high stack bonded piers was only 9.85 MPa (coettficof variation of 9%).

Finally, due to scale effects that are inherentgémmaterials and due to experimental
difficulties related to the influence of the fricti between the specimen and the plates of the
loading frame (Brencich, Corradi, & Gambarotta, &00Kourkoulis & Ganniari-
Papageorgiou, 2010) the determination of the cosspre strength and generally the

assessment of the mechanical characteristics oh#s®nry based on the strength of its units
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is not a trivial issue. Therefore, the determimatid the overall strength of masonry based on

the individual strength of its constituents is, esimentally, not an easy task.

Figure 18. Schematic representation of tests pagdron non-uniformly loaded bricks (left)
and on uniformly loaded masonry units (right). Besaof the vertical (head) joints of
thicknesse, the stress field developed inside the bricksisumiform leading to tensile

stresses and crack formation.

In the early 1980s, Page published the results s¥rees of experimental tests of masonry
panels subjected to in-plane biaxial monotonic llegdHere we use these results in order to
assess the validity of the proposed analyticallyved strength domain. A classical Coulomb
yield surface is considered for the masonry urkits. the reasons presented above (brittle
behavior, effect of joint thickness, scale effecéxperimental difficulties) the in-situ

compressive strength of the bricks will be takenado the resistance of the four-high stack
bonded piers tested by Page (1981, 1983), i.e| énd® MPa. Moreover, in order to account
for the failure of the mortar and the mortar-brié&bonding and similar to Page (1978), a

bilinear Coulomb criterion is considered hereintfee interfaces (Figure 19).
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O-n,

Figure 19. Schematic representation of a bilineaul@nb criterion for the interfaces (solid

lines). 7 is the shear stress anq is the normal stress at the interface.

It follows from Eq.(10) that the same relationsim€q.(18) hold in the case of interfaces
obeying to a bilinear Coulomb criterion. Accorditg Eq.(14) the strength domain of the

masonry is expressed in closed form as follows:

[2,|+tang) £,,-¢’ < 0

J

(1+ mtangp;)‘le‘ + M2, + tap) ¥ ,—C) {W
v

+1]s 0, ifm tap) < 1
(27)
1

(m+ tang’ )‘212‘ +mtanp’ =, +3,, - ¢’ (w

+mJ£ 0, ifmtap’ > 1

|2, -2 | +(Z,+2,)sing® — 2c® cosp® < 0

where y =1 or 2. The mechanical parameters of the masonry coesttuare given in Table

2. It is worth emphasizing that the values for thenensions and for the mechanical
properties of the bricks and the joints could roelxtracted from the articles of Page. Similar
values as in Milani et al. (2006b) were taken iatwount for the dimensions and for the

compressive to tensional strength ratio of thekKstidn particular the dimensions of the
. 3 2a . . .
bricks were 110x50x3%nm (m=F=O.9) and the compressive to tensional strength ratio

was considered equal to 6.
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Table 2. Estimation of the mechanical parameterthefbricks and of the mortar that were

used for the comparison of the analytically derigtbngth domain and the experimental

results of Page (1981).

Bricks

Coulomb cohesiong” 2 MPa
Coulomb friction anglegp” 45°
Mortar

Coulomb cohesiong; 0.35 MPa
Coulomb friction anglep; 39°
Coulomb cohesiong, 2 MPa
Coulomb friction angleg; 17°

In Figure 20 to Figure 22 we present the comparidotine analytical strength domain with

the experimental results of Page (1981) for varianglesé. A quite good agreement is

observed.

The finite strength of the building blocks may hete important for structural applications.

For instance, if we consider the simple examplea ahasonry panel subjected to vertical

compression{;1=X1,=0 and,,<0 (compression},;=0 andX,=%,,<0) Eqs.(27) become:

J
c
X, <—F
J
tang,

J

tang; | tanp

> <c’
S Ltangoj
2c® cosp®
22 1 snot
— sing

CJ
3, <—7 [ m +1], if mtang? < 1

+ mj, if mang’ >1

(28)

The first three inequalities are automatically sfagd for vertical compressiorE£{,<0). In

other words the joints do not fail. This is in amtance with building standards which they do

37



not account the compressive strength of the martathe case of thin joints (triaxial

state/confinement). On the contrary the resistaricdaasonry is limited by the resistance of
the blocks. The strength domain is not unboundedcompression. In particular the
homogenized compression strength is approxima®lg6- MPa. The consideration of the
finite resistance of the blocks might play a cruotde in reducing the load bearing capacity

of masonry and change the failure mechanism.

The analytically derived strength domain (Egs.(1&)) and more generally the domain
given in Egs.(14)) covers any macroscopic in-plateess state. Therefore, it can be
implemented in appropriate Finite Element codetas multisurface plasticity in order to
solve more complicated structural examples. Needts, such examples exceed the scope

of the present work, which focuses on the constgudescription of masonry.
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Figure 20. Comparison of the analytical strengtimdm (shaded region) with the

experimental results of Page (1981) fo 0° .
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Figure 21. Comparison of the analytical strengtimdm (shaded region) with the

experimental results of Page (1981) for 22.5 .
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Figure 22. Comparison of the analytical strengtimdm (shaded region) with the

experimental results of Page (1981) fox 45 .

5 Conclusions

It is well known that the macroscopic mechanicaparties of masonry differ from the

mechanical properties of its constituents, i.ehefbuilding blocks (bricks) and of the mortar
(if present). Generally, in structural analysisnedisonry structures, the determination of the
ultimate/limit strength of masonry is a quite imgamt topic. Due to the complexity and the
heterogeneity of the material, most of the failarigeria that are generally proposed in the
literature are based on macroscopical and phendogoal considerations. In the present
paper, a micromechanical model is formulated thlég into account the three-dimensional
non-elastic behavior of the microstructure of aiqui#c masonry wall structure. Based on a
rigorous definition of the microstructure and byngsbasic tools of convex analysis and limit

analysis theory, it was made possible to pursuthdurthe results of de Buhan & de Felice
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(1997) and derive analytically the overall strengkbmain of a masonry wall made of
building blocks of finite strength and mortar. Ankmatic limit analysis approach was
followed using a three-dimensional stress and katenfield. Unlike similar homogenization
approaches for masonry (e.g. de Buhan & de Feli®87; Milani et al.,, 2006), no plane
stress conditions are a priori assumed in the pteserk and the problem is treated in three
dimensions. The reason is that the stress statieeirmortar cannot be precisely described

either by plane stress or plane strain conditions.

In order to assess the validity and the efficientyhe derived domain, which is an upper
bound of the exact one, a numerical homogenizatiteme was used for certain geometrical
and mechanical parameters of the unit cell. It Weasd that the difference between the
analytical strength domain and the numerical onasgnificant for masonry structures with
thin joints. However, for structures with thickeints the error increases and the analytical
domain overestimates to some extent the ultimaength. Finally, the derived strength
domain was compared to the experimental resulBagle and a quite good agreement was

observed.

The proposed strength domain is general enouglaecalrding to the mechanical resistance
of the masonry constituents it can be expressedigir simple closed-form inequalities. The
dimensions of the units, the frictional behaviortleé mortar-brick interfaces and the in-situ
mechanical strength of the masonry units have tahzracterized in order to define the

analytical strength domain of the brickwork. Thesrameters can be determined from
simple experiments of the mortar-brick interface ahthe masonry units. Nevertheless, due
to the brittle behavior of the bricks, the effettlwe joint thickness, the inherent scale effects
of geomaterials and the experimental difficultiesdbtaining the compressive strength of the
bricks, the determination of the in-situ strengfhtlte masonry constituents is not trivial.

Experimental tests of single masonry piers in casgion seem to be more representative for
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characterizing the in-situ compressive strengtithef masonry units and can be used for

selecting the appropriate parameters.

The proposed strength domain can be used for éinatyses or for finite element simulations
of a brickwork (e.g. de Felice et al., 2009). Né¢weless, the application of the present model
to masonry structures with comprehensive examplesséructural applications exceeds the
scope of the present work and it will be presemnted future publication. Finally, existing
phenomenological models (e.g. Ottosen, 1977; Syemiak& Asteris, 2001) may be
calibrated using the derived analytical anisotrggrength domain. In this way numerous and

laborious experiments on masonry panels can belegoi

Appendix

In this appendix we extend the results of Dallo6&b (2008a, 2008b). Symmetric periodic

plates have interesting features which are detduérdafter. Recall thd®" is the projection

of Gg"m on the subspac@N,M = 0). Similarly,
G" ={M|3N,(N.M)e G} (A.1)

is the projection oiGg"m on the subspac@\l :0,M) and its corresponding support function
is:
7" (1) =7;""(0.x) (A2)

The intersection OGSom with the subspacgN,M =0) is noted:

G"? ={N|3(N,0)eG"} (A.3)
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Its corresponding support function is:

7" (D) =inf 7" (D,y) (A.4)
x

p

Finally,

G ={M|3(0M)eGy"] (A.5)
is the intersection ofGQOm with the subspaceﬁN:O,M) and its corresponding support
function is:

7" (3) =inf 7;" (D, ) (A.6)

For symmetric periodic plates we have the followmmgperty:

GN =" andG" = g°" (A.7)

Indeed, recall that two closed convex sets are leiffuand only if, their corresponding

support functions are identical. It can be seen thas in KA(D,y) if, and only if, its
symmetric imagev” is in KA(D,—y) whereV’ is given by:v*(y)=-v(-y) forall y in Y.
Moreover, due to the symmetry conditionG(y)=G(-y) VyeY), we have
ﬂ(y,V®S v):zr(—y,V®Sv*). Using, the kinematic definition of Eq.(3) and tfaet that
7z(y,-) is positively homogeneous of degree one, we eassliyablish that the convex

functions y+> 7,°"(D,x) and D> z;°"(D,y) are even. Therefore, they reach their

minimum at zero. This means that we have:

N0 (D) =inf 7z2°m(D,x) ﬂgom(D, 0)= " (D)
x

7" (0) = 7" (x)

(A.8)

7OM) (x) = ir,}f ﬂgom (D,x)
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