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Abstract: The present paper provides a straightforward methodology for the estimation 

in closed form of the overall strength domain of an in-plane loaded masonry wall by 

accounting for the failure of its bricks. The determination of the overall strength 

domain was based on a rigorous definition of the microstructure in three-dimensions, 

on convex analysis and on the kinematical approach in the frame of limit analysis 

theory. No plane stress or plane strain assumption is a priori made. The formulation 

allowed distinguishing the yield surfaces that account for the failure of the joints and 

the yield surfaces that account for the failure of the building blocks. The validity and 

the efficiency of the derived analytical strength domain were investigated by means of 

numerical homogenization and experimental evidence. The proposed strength domain 

can be used in limit analysis approaches, in finite element simulations and for 
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calibrating existing phenomenological models for masonry structures based on the 

micromechanical properties and the geometry of the bricks and the mortar. 

Keywords: masonry; failure; homogenization; microstructure; multisurface plasticity; limit 

analysis 

1 Introduction 

The failure of masonry structures can be studied either by continuum or discrete type models  

(cf. macro-modeling and micro-modeling Lourenço, 1996). The latter consider the masonry 

as an assemblage of blocks (bricks) with explicitly defined geometry and joints (interfaces), 

while the former consider the masonry as a continuum medium. Continuum models are based 

on either simplified analytical approaches or on homogenization techniques. Each approach 

has advantages and disadvantages that are related to the required computational effort and the 

degree of accuracy of the obtained results. Due to the heterogeneous nature of masonry 

structures, discrete type approaches seem to be the physical starting point for the modeling of 

the mechanical behavior of such kind of structures. Nevertheless, because of the difficulty in 

determining the exact mechanical parameters at the microlevel and the considerable 

computational cost of discrete type approaches, continuum approaches continue to attract the 

interest of many researchers. In spite of the several limitations of continuum mechanics for 

modeling such kind of heterogeneous systems (at least for classical Cauchy continua 

(Zucchini & Lourenço, 2007)) the main reason for using continuum models is that they offer 

a certain degree of abstraction and allow to up-scale the micromechanical characteristics to 

the macroscale, i.e. to the scale of the structure. 

A considerable number of continuum models for masonry already exist in the literature. 

Among others we refer to the works of Heyman (1966), Page (1978), Livesley (1978), Alpa 

& Monetto (1994), Pande et al. (1989), Lotfi & Shing (1991), Pietruszczak & Niu (1992), 
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Cecchi & Sab (2002), Zucchini & Lourenço (2002, 2007), Milani et al. (2006a, 2006b) in the 

frame of classical contimmum theory and to Sulem & Mühlhaus (1997), Masiani & 

Trovalusci (1996), Stefanou et al. (2008, 2010), Salerno & de Felice (2009), Addessi, Sacco, 

& Paolone (2010), Pau & Trovalusci (2012), Trovalusci & Pau (2013) for continuum models 

using higher order continuum theories. For a comprehensive review of various continuum 

models we refer to the article of Lourenço et al. (2007). As a general remark one could state 

that most of the available continuum models describe the elastic linear behavior of brickwork 

by proposing even closed form expressions for the elastic moduli. On the contrary, the 

inelastic behavior of masonry is studied in fewer works through non-linear homogenization 

approaches that in most of the cases are based on extensive numerical simulations. 

Homogenization theory (Bakhvalov & Panasenko, 1989; Bensoussan, Lions, & 

Papanicolaou, 1978) has been applied in order to derive the effective linear elastic 

constitutive parameters of an equivalent Cauchy continuum based on the microstructure of 

the masonry. Based on a kinematic limit analysis homogenization approach and under plane 

stress conditions, de Buhan and de Felice (1997) have derived in closed-form the strength 

domain of an in-plane loaded periodic brickwork consisting of infinitely resistant (elastic) 

bricks connected with Coulomb interfaces. The derived yield criteria consist an upper bound 

of the strength domain. Considering a polynomial distribution of the stresses and a two 

dimensional stress field (imposed plane stress conditions), Milani et al. (2006a, 2006b) 

proposed a homogenization scheme in order to determine a lower bound of the strength 

domain of masonry. The aforementioned homogenization approach allowed to consider 

different yield criteria for bricks and mortar. Massart et al. (2005, 2007) and Zucchini & 

Lourenço (2002, 2004, 2007) considered additionally the brittle behavior of bricks and mortar 

in the frame of damage mechanics theory. Nevertheless, the strength domain in the 

abovementioned approaches does not have an analytical, closed form expression. 
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The present paper focuses on providing a straightforward methodology for the analytical, 

closed-form estimation of the overall strength domain of an in-plane loaded masonry wall 

made of bricks of finite strength connected with frictional interfaces. The determination of 

the overall in-plane strength domain was based on a kinematic limit analysis approach in 

three dimensions (3D). It has to be emphasized that the common plane stress or the plane 

strain or the generalized plane strain assumptions were avoided (these terms are used as 

defined in Saada (1974)). According to Anthoine (1997), the aforementioned states of plane 

deformation might have little influence on the macroscopic elastic behavior of masonry 

(Addessi & Sacco, 2014; Mistler, Anthoine, & Butenweg, 2007), but may significantly affect 

its non-linear response (at least for materials described in the damage mechanics framework 

which was used in Anthoine, 1997). Therefore, the three dimensional kinematic approach 

followed here permits the generalization and extension of the results of de Buhan and de 

Felice (1997) by taking into account the out-of-plane deformations of the masonry due to 

in-plane loading and by considering a finite strength for the blocks. Depending on the 

constitutive behavior of the masonry units and of the joints an analytical closed form 

expression for the masonry strength domain is determined.  

The kinematic approach leads, in principle, to an upper bound of the exact strength domain of 

the system (cf. Salençon, 1990). Therefore, the accuracy of the abovementioned analytically 

derived strength domain was investigated through numerical homogenization of the 3D unit 

cell and it was compared to the experimental results of Page (1981, 1983). The effect of the 

thickness of the joints was explored and its influence was found to be quite limited for thin 

joints. 

The paper has the following structure. In section 2 the overall in-plane strength domain of a 

running bond masonry wall is determined based on a kinematic limit analysis approach and 

using a three-dimensional stress and kinematic field. In this section the formulation is 
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general, no plane stress assumption is made and not any particular material is chosen for the 

interfaces and the building blocks. The masonry wall is treated as a thin plate with a periodic 

microstructure of finite thickness. In section 3, the derived strength domain is compared to 

the strength domain found by numerical homogenization. The interfaces and the blocks are 

considered to obey to a Drucker-Prager criterion in order to avoid possible numerical 

problems. Three yield surfaces that account for the failure of the joints, and one yield surface 

that accounts for the failure of the units are expressed in closed form. Their intersection in the 

stress space forms the in-plane strength domain, which is compared with the strength domain 

derived numerically. It is shown that the numerical and the analytical results coincide in the 

majority of biaxial load configurations tested. Nevertheless, under some biaxial load 

conditions and for thick joints the resistance of the masonry is somehow overestimated. 

Finally, in section 4 the analytically derived strength domain is compared to the experimental 

results of Page (1981; 1983) by adopting a Coulomb criterion both for the interfaces and the 

blocks. The comparison is quite satisfactory. 

The derived analytical strength domain can be used in limit analyses in order to assess the 

ultimate failure load, in finite element simulations (e.g. de Felice, Amorosi, & Malena, 2009) 

and due to its simple closed-form expression can be used for the calibration of existing 

phenomenological models (e.g. Ottosen, 1977; Syrmakezis & Asteris, 2001).  

2 Three dimensional homogenization of masonry walls 

Homogenization theory is applied in order to determine the overall in-plane strength domain 

of a running bond masonry wall. A kinematic limit analysis approach is followed using a 

three-dimensional stress and kinematic field. It is worth emphasizing that unlike similar 

existing homogenization approaches for masonry (e.g. de Buhan & de Felice, 1997; Milani et 

al., 2006), no plane stress conditions are a priori assumed and the problem is treated in three 
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dimensions. The reason is that the stress state in the mortar cannot be described precisely 

either by plane stress or plane strain conditions. In particular, one can imagine that when the 

joints are very thin the mortar is in plane strain conditions as the masonry units constrain its 

deformation. On the contrary, when the joints are very thick, the influence of the units on the 

deformation of the mortar is small and one can consider that the mortar deforms rather under 

plane stress conditions. Following the definitions of Saada (1974), in the absence of lateral 

loadings, a masonry wall is in a generalized plane stress state, i.e. the stress is zero at its 

lateral sides, but not in every point in its thickness (cf. plane stress conditions).  The influence 

of plane stress or of generalized plane strain conditions is well-known (Anthoine, 1997; 

Mistler et al., 2007) and in the non-elastic regime, different states of plane deformation can 

have important impact. Generalized plane strain and simplified 3D approximations give 

better results as far it concerns the resistance of masonry (Addessi & Sacco, 2014; Anthoine, 

1995). The plane stress assumption is inadequate for thick masonry walls (Anthoine, 1997). 

To overcome these issues a three dimensional kinematic and stress field is taken into account 

and the masonry wall is considered as a plate of finite thickness. 

Let the heterogeneous plate occupy the domain ,
2 2

t t
ω  Ω = × −  

 where 2ω⊂ℝ  is the 

middle surface (middle plane) and t the thickness of the plate. The plate consists of an 

elementary cell that it is periodically repeated in directions 1 and 2 (see Figure 1) and its size 

is small in comparison to the size of the total structure. The elementary unit cell is denoted by 

the domain ,
2 2

t t
Y A

 = × −  
, where 2A⊂ ℝ . The boundary Y∂  of Y  is decomposed into 

three parts, 3 3lY Y Y Y+ −∂ = ∂ ∂ ∂∪ ∪ , with 3 2

t
Y± ±∂ =  

 
 . 
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Figure 1. The running bond masonry geometry and the unit cell considered herein. 

We assume that the strength of the material at every point Y∈y is defined by a convex closed 

domain ( )G y , such that G∈σ , with ( )ijσ=σ  the stress tensor and , 1,2,3i j = . No plane 

stress assumption is made and therefore 13σ , 23σ  and 33σ  are not zero. Such a domain is 

uniquely defined by a positive homogeneous function of degree one, which is called support 

function and it is defined as:  

 ( ) { } ( ){ }, ,sup G Gπ π= ∈ ⇔ = ≤ ∀d σ : d σ σ σ : d d d   (1) 

where ( )ijd=d  denotes a strain rate tensor and ‘:’ denotes the double contraction. 

If the thickness, t, of the 3D-structure (i.e. the thickness of the masonry wall) is comparable 

to the size of the unit cell (i.e. the periodic masonry cell), but it is very small compared to the 

overall size of the structure, ω , then, as it was proposed by Sab (2003) and Dallot & Sab 

(2008a, 2008b), the periodic structure can be modeled as a homogeneous Love-Kirchhoff 

plate. Let ( )( )1 2,N x xαβ=N  be the macroscopic in-plane (membrane) stress field resultants 

for the homogenized plate with ( )1 2,x x ω∈  and 1, ,2α β = , ( )( )1 2,xM xαβ=M  the 



8 

 

macroscopic out-of-plane (flexural) stress field resultants, ( )( )1 2,xD xαβ=D  the in-plane 

strain rate field, ( )( )1 2,x xαβχ=χ  the out-of-plane (curvature) strain rate field and 

( )( )1 2,iV x x=V  the plate velocity field. The macroscopic rate fields are related to the 

macroscopic virtual velocity field components as follows: ( ), ,

1

2
D V Vαα β αβ β= +

   
and 

3,V αβαβχ = −  . Then the convex strength domain of the homogenized plate, hom
pG , can be 

determined by solving an auxiliary limit analysis problem over the unit cell, Y . 

2.1 Definition of the homogenized plate strength domain 

For every ( ),N M  the set ( ),SA N M  of statically admissible Y -periodic 3D stress field σ  of 

the unit cell Y  is defined by: 

 

3

3 3

| ,

0 on ( , )
 skew-periodic on 

0 on 
l

N t M t y

div YSA
Y

Y

αβ αβ αβ αβσ σ

±

 = =
 
 ==  

⋅ ∂ 
 ⋅ = ∂ 

σ

σN M
σ n

σ e

  (2) 

where  ⋅  is the volume average operator on Y . 

The homogenized strength domain, hom
pG , is defined as the set of the generalized stresses 

( ),N M  such that there is a 3D stress field σ  in ( ),SA N M  with ( ) ( )G∈σ y y  for all y  in Y , 

i.e.  ( ) ( ) ( ) ( ){ }, | , , ,hom
pG SA G Yσ σ∃ ∈ ∀= ∈ ∈M N M y y yN . 

For every ( ),D χ  the set of the kinematically admissible velocity fields of the unit cell, 

( )iv=v , is defined as follows: 

 ( ) { }3| , pe, riodics s per pery YKA ∇⊗ = + +∇ −= ⊗χ v D u uD v χɶ ɶ   (3) 
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where s∇⊗ v   is the symmetric part of the gradient operator and D Dαβ αβ=ɶ , 3 0iD =ɶ , 

αβ αβχ χ=ɶ , 3 0iχ =ɶ . 

The sets ( ),SA N M  and ( ),KA D χ  are conjugate in virtual power on the unit cell, i.e. 

( ),SA∀ ∈σ N M  and ( ),KA∀ ∈v D χ , ( ): : : st+ = ∇⊗N D M χ σ v . Therefore, hom
pG  (Sab, 

2003; Salençon, 1990b; Suquet, 1983) becomes: 

 ( )
( )

( ){ }hom

,
in, f s

p
KA

tπ π
∈

= ∇⊗
v D χ

D χ v   (4) 

2.2 Definition of the homogenized in-plane strength domain 

The in-plane strength domain is defined as the set, GΣ , of the symmetric second order 

in-plane stress tensors ( )αβ= ΣΣ  defined by GΣ∈Σ  or equivalently Nt G∈Σ . NG  is the 

intersection of hom
pG  with the subspace ( ), 0=N M  or equivalently, as it will be shown below, 

the projection of hom
pG  to the subspace ( ), 0=N M , i.e. ( ){ }hom| , , p

NG G= ∃ ∈M N MN . Its 

corresponding support function is ( ) ( )hom ,N
pπ π=D D 0 . Hence, according to the static 

definition of hom
pG  , GΣ∈Σ  if there exists a Y -periodic stress field ( )ijσ=σ  of the 3D unit 

cell verifying: 

 

( ) ( )

3 3

,

0 on 

 skew-periodic on 

0 on 
l

G Y

div Y

Y

Y

αβ αβσ

±

∈ ∀ ∈

= Σ

=

⋅ ∂

⋅ = ∂

σ y y y

σ

σ n

σ e

  (5) 

Using Eq.(5)c and the boundary conditions, it can be shown that the average of the 

out-of-plane components, 3iσ , of a stress tensor σ  satisfying Eq.(5) are zero. It is worth 



10 

 

mentioning that σ  is not a plane stress field but a generalized plane stress field according to 

the definition of Saada (1974). Eqs. (5) define the numerical homogenization problem solved 

in section 3.2 in order to validate the upper bound of the strength domain derived in sections 

2.4 and 2.5. 

The kinematic definition of GΣ  is as follows: 

 ( ) ( ) ( ){ }| : ,G Dαβ αβπΣ Σ= = Σ ≤ ∀ =Σ Σ D D D   (6) 

where π Σ  is the support function of GΣ  and it is given by: 

 ( ) ( )
( )

( ){ }1 hom

,0
, inf s

p
KA

tπ π πΣ −

∈
= = ∇⊗

v D
D D 0 v   (7) 

In the general case of ( ),KA∈v D 0  the corresponding ( )1 2 3, ,per y y yu  in Eq.(3) has three 

components (3 0u ≠ ) and it is Y -periodic. Therefore, the average out-of-plane components of 

s=∇⊗d v  for ( ),0KA D∈v  are not zero.  

In other words, d Dαβ αβ=  and 3 0id ≠  in the general case. In this sense the 3D unit cell 

problems described in Eqs.(5) and (7) cannot be considered as plane stress or plane strain 

problems. 

A periodic plate is symmetric if one can extract a centro-symmetric unit cell (

Y Y∈ ⇔− ∈y y ) such that ( ) ( )G G Y= − ∀ ∈y y y . In this case NG  coincides with the 

intersection of hom
pG  with the subspace ( ), =N M 0 . This means that the conditions 

3 0y αβσ =  can be added to the static definition of GΣ   (see Eq.(5)) and that the infimum in 

Eq.(7) can be taken over all ( ),KA∈v D χ  and all χ  (Appendix). 
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2.3 In-plane strength domain for running bond masonry 

Running bond masonry is made of identical parallelepiped bricks of size b  in the horizontal 

direction 1 (length), a in the vertical direction 2  (height) and t in the third direction 

(thickness). The building blocks are separated by horizontal continuous bed joints and 

alternate vertical head joints as shown in Figure 1. he  is the thickness of the horizontal joints 

and ve  is the thickness of the vertical joints. Let also Y  be the chosen unit cell (Figure 2), 

JG  the strength domain of the joints, BrG  the strength domain of the bricks and Jπ , Brπ   the 

support functions of JG  and BrG  respectively. The aforementioned strength domains are 

considered known and they are assumed to be convex.  

 

Figure 2. The unit cell. 

The idealization of the masonry mortar joints of finite thickness e ( he , ve ) into two-

dimensional interfaces of zero thickness is common in the modeling of masonry structures. In 

the frame of linear elasticity, Cecchi and Sab (2002) have demonstrated the validity of the 

aforementioned idealization through asymptotic homogenization. Regarding plasticity, 

Sahlaoui, Sab, & Heck (2011) have shown that an upper bound of π Σ  is asymptotically 

obtained as the thickness of the joints tends to zero ( 0e→ , 2D interface): 
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 ( )
( )

( ) � �( )
,0

1
inf

J

Br s J s J

YKA
d

Y ω

π π π ω
∗∗∈

Σ

∗

  
∇ ⊗ + ⊗ 

 
≤

 
∫v D

v nD v   (8) 

where KA∗  is the set of kinematically admissible velocity fields (Eq.(3)) of the unit cell Y∗  

that is obtained from Y  as , 0h ve e → , n  is the normal to the middle surface Jω  of the joints 

and � � per=v u� �
� 	
 �  is the jump of the velocity fields v  and peru  in Eq.(3) across the middle 

surface Jω  in the direction n  (Figure 3). The second term in the right hand side of the above 

equation, Eq.(8), expresses the dissipation of the corresponding 2D interface model for the 

joints. Using standard duality techniques, the interface yield strength domain Jg  is the 

convex domain of the three-dimensional space of the stress vector = ⋅t σ n  defined by: 

 ( ) ,J sJg π ⊗∈ ⇔ ⋅ ≤ ∀t nt u u u   (9) 

In the following paragraphs we will consider the case of infinitely thin joints ( , 0h ve e → ) and 

we will use Eq.(8) to propose upped bounds for π Σ  in closed form. 

 

Figure 3. Representation of a plane joint and velocity jump � �V V V+ −= − . 

2.4 Upper bound of the strength domain for infinitely resistant building blocks 

A first upper bound is obtained by restricting the minimization in Eq.(8) to rigid body motion 

of the building blocks. This means that the analysis is restricted to those velocity fields in 

( ),KA∗ D 0  of Y∗ , which are piecewise rigid on each block with possible jumps 

n

m2e
2e

V−

Jω

V+
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(discontinuities) at the interfaces. It has been shown by Cecchi and Sab (2002) that the jump 

of these velocity fields at the interfaces depends only on D  and on one single undetermined 

rotation Ω . According to the above rigid-body kinematics and velocity jumps, Eq.(8) holds: 

 ( ) ( ) � �( )1
inf

J

J s Jd
Y ω

π π π ω
∗Ω

Σ ∞
  

⊗ 
 

≤


≡ ∫D vD n   (10) 

where π ∞  is the support function of the in-plane domain G∞  of a running bond masonry 

configuration consisting of infinitely resistant bricks interacting at their interfaces. Hence, 

G GΣ ∞⊂ .  

2.5 Upper bound of the strength domain for blocks of finite strength 

Let bG  be the in-plane stress strength domain of the bricks. bG  is the convex set of in-plane 

stress tensors ( )αβσ  such that the 3D second order stress tensor σ  with 3 0⋅ =σ e  is in BrG . 

Its support function ( )( )b dαβπ  is obtained by taking the infimum of Brπ  over all possible 

3D second order strain rate tensors having the same in-plane components ( )dαβ :   

 ( )( ) ( ){ }
13 23 33, ,
infb

ij
d d

B

d

rd dαβπ π=   (11) 

Using in Eq.(8) the continuous velocity field ( ),KA∗∈v D 0  with ( )1 1 3
peru c y=y , 

( )2 2 3
peru c y=y  and ( )3 3 3

peru c y=y  leads to the following homogeneous strain rate in the unit 

cell Y∗ : 

 

1
11 12

2
12 22

1 2
3

2

2

2 2

s

c
D D

c
D D

c c
c

 
 
 
 ∇⊗ =  
 
  
 

v   (12) 
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Here, 1c , 2c  and 3c  are arbitrary real numbers. Taking the minimum of the right-hand side of 

Eq.(8) over all 1c , 2c , 3c  gives: 

 ( ) ( )bπ πΣ ≤D D   (13) 

Hence 
bG GΣ ⊂  and 

 ( )bG GG G∞ +Σ ⊂ ≡∩  (14) 

The above equation gives an upper bound for the overall strength domain of a running bond 

masonry wall independently of the materials chosen for the joints and the bricks. Its 

performance will be investigated in the next paragraphs by means of numerical 

homogenization and experimental evidence. 

3 Finite Element validation of the in-plane strength domain 

This section focuses on the validation of the overall strength domain of masonry, which was 

derived in the above section based on a kinematic approach (Eq.(14)). The validation is 

performed by comparing the derived strength domain with the exact domain determined by 

numerical homogenization (Eqs.(5)). For this purpose, the materials for the bricks and the 

joints have to be specified.  

Bricks and mortar are geomaterials, which are commonly described by Coulomb failure 

criterion. Nevertheless, the numerical treatment of Coulomb yield surfaces can provoke 

numerical problems related to the non-smoothness of this criterion. Therefore, for the 

numerical analyses performed in this section the bricks and the joints are considered to obey 

to a Drucker-Prager criterion. An alternative to Drucker-Prager criterion could be the Lade-

Duncan or the Matsuoka-Nakai yield criteria, but their mathematical expression is more 

complex than the mathematical expression of a Drucker-Prager yield surface. 
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3.1 Analytical expression of the overall strength domain for Druger-Prager materials 

The Drucker-Prager failure criterion has the following form: 

 ( ) ( )0 with G f f q p kβ∈ ⇔ ≤ = + −σ σ σ   (15) 

where ( )1

3
p tr= σ  is the hydrostatic stress, p= −s σ I   is the deviatoric stress, 

3
:

2
q = s s  , 

and β , k  the Drucker-Prager parameters. We distinguish ( ) ( ), ,J Jk kβ β=  for the joints and 

( ) ( ), ,B Bk kβ β=  for the bricks.  

According to Salençon (1983), in the case of interfaces (Figure 3), the Drucker-Prager π -

function coincides with the Coulomb support function if: 

 
2

3sin
  and  

tan3 sin

J J J
J J

JJ

c
k

ϕ β
β

ϕϕ
= =

+
  (16) 

Jϕ   is the Coulomb friction angle and Jc  is the Coulomb cohesion for the joints. In this 

case, the support function becomes: 

 � �( ) � � � � � �if sin
tan

otherwise

J

Js
Jc

ϕ
π ϕ

⋅ ⋅ ≥



=⊗ 

 ∞ +

v n v n v
n v   (17) 

where � �v  is the velocity jump across the joint interface Jω . 

According to de Buhan and de Felice (1997) and Sab (2003) for Coulomb interfaces the 

analytical expression of the strength domain G∞  is: 

 ( )
( )

12 22

12 11 22

12 11 22

tan 0

1 tan tan 0

tan tan 0, if tan 1

J

J J

J J J

G m m

m m m

ϕ

ϕ ϕ

ϕ ϕ ϕ

∗ ∗

∞ ∗ ∗ ∗

∗ ∗ ∗

 Σ + Σ ≤


∈ ⇔ + Σ + Σ + Σ ≤


+ Σ + Σ +Σ ≤ >

Σ   (18) 
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where 
2a

m
b

=  and 
tan

J

J

c
αβ αβ αβδ

ϕ
∗Σ = Σ − . 

The strength domain of the building blocks, bG , is obtained by setting 13 23 33 0σ σ σ= = =  in 

Eq.(15). Hence, an upper bound G+  of the system (Eq.(14)) can be analytically determined 

by adding the following criterion to Eqs.(18): 

 2 2 1 2
1 2 1 2 0

3
B Bkβ
Σ + Σ

Σ + Σ −Σ Σ + − ≤   (19) 

where 1Σ , 2Σ  are the principal stresses which are expressed in terms of the stress tensor 

components as follows: 

 

( )

( )

2 2
11 22 11 22 12

1

2 2
11 22 11 22 12

2

4

2

4

2

Σ +Σ + Σ −Σ + Σ
Σ =

Σ + Σ − Σ −Σ + Σ
Σ =

  (20) 

3.2 Numerical homogenization 

The in-plane stress may be expressed as follows (biaxial conditions): 

 
cos2 sin 2

, 0
sin 2 cos2

θ ξ θ
θ θ ξ
− − 

= Σ Σ > − − − 
Σ   (21) 

or 

 
1 cos2 sin 2

sin 2 1 cos2

χ θ χ θ
χ θ χ θ
− 

= Σ  + 
Σ   (22) 

The first case, Eq.(21), corresponds to the state of stress depicted in Figure 4a, while the 

second, Eq.(22), corresponds to that of Figure 4b. ξ  and χ  are non-dimensional real 

parameters varying between -1 and +1 and θ  is the angle of the principal axis with respect to 

the bed joints direction (direction 1) as shown in Figure 4. Therefore, all biaxial states can be 
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reproduced, i.e. tension/compression (Eq.(21) for 0Σ > ), compression/compression (Eq. (22) 

for 0Σ < ) and tension/tension (Eq.(22) for 0Σ > ).  

 

            

Figure 4. In plane stresses representing, on the left, tension/compression ( 0Σ > ) and on the 

right compression/compression ( 0Σ < ) or tension/tension ( 0Σ > ). 

 

By means of a Finite Element (FE) software, the maximum value of maxΣ = Σ  in Eqs.(21) and 

(22), such that GΣ∈Σ , can be determined for certain values of θ  and ξ  or χ .  In the frame 

of perfect associate elasto-plasticity, failure will occur when maxΣ = Σ . Herein, the elasto-

plastic three-dimensional problem of the unit cell depicted in Figure 1, was solved using the 

commercial Finite Element code ABAQUS and maxΣ  was determined for Drucker-Prager 

materials according to the fitting parameters given in Eq.(16). In Table 1 we present the 

parameters used for the analyses. The blocks were solid (no holes) and their size was 

38a mm= , 115b mm=  and 55t mm= . The effect of the joints’ thickness was investigated by 

varying ( ),h ve e . Both the blocks and the joints were modeled with three dimensional solid 

elements.  

  

(a) (b) 

( )2 1 ξΣ = − + Σ 2 χΣ = Σ − Σ

( )1 1 ξΣ = − Σ 1 χΣ = Σ + Σ
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Table 1. Mechanical parameters for the bricks and the mortar used for the comparison of the 

numerical and analytical homogenization schemes.  

Bricks 

Coulomb cohesion, bc  4.3 MPa 

Coulomb friction angle, bϕ  30° 

Elastic modulus 6740 MPa 

Poisson ratio 0.17 

Mortar 

Coulomb cohesion, Jc  0.35 MPa 

Coulomb friction angle, Jϕ  40° 

Elastic modulus 1700 MPa 

Poisson ratio 0.05 

 

It is worth mentioning that the selected Young’s moduli were only used for the numerical 

homogenization scheme presented in this section, which is performed in order to validate the 

analytical strength domain derived through Eq.(14). In the frame of perfect associate 

elastoplasticty the analytical and numerical homogenization schemes should provide the same 

ultimate strength independently of the chosen elastic moduli. Different approaches (e.g. 

damage mechanics) may show a dependence on the elastic moduli and may provide more 

accurate results (provided that the necessary mechanical parameters can be adequately 

calibrated based on experimental tests) but the advantage of the present approach is that it 

leads to an analytical expression of the strength domain based on a solid theoretical 

framework. 
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Figure 5. Section of the unit cell along the middle plane of the masonry and notation of its 

interactions with the adjacent cells (see also Figure 1).  

Periodic boundary conditions were imposed at the unit cell. Therefore, the nodal degrees of 

freedom at opposite faces were paired. In Figure 5, A , B ,C , D , E , F  denote the six faces of 

the boundary of the unit cell. Notice that the infinite microstructure, i.e. the geometry of the 

elementary cell, remains invariant to translations by vectors joining node (5) with node (1) or 

(3) and vectors joining node (4) with node (6) or (2). Consequently, face E  should be 

matched by periodicity conditions with face B , face D  should by matched with face A  and 

face F   with face C . Hence, the periodic conditions at the unit cell are: 
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  (23) 

where ( )kv  are the degrees of freedom of node 1,2,...,6k =  as shown in Figure 5. It should be 

mentioned that as far it concerns the numerical implementation and homogenization in static 

conditions, there is no need to distinguish between velocities and displacements, and strains 

from strain rates. Equations (23) may be used to determine the components of D  in terms of 

the nodal degrees of freedom, 1,2,...,6k = . Indeed setting the nodal degrees of freedom 

( )1 0=v  we obtain: 

 
( ) ( )

( ) ( )5 3
3 3 2 2

1 2
11 12 22

1
2, , ,

v v h

v vv v
D D D

b e b e a e

−
= = =

+ + +
  (24) 

Furthermore, Eqs.(23) may be expressed in terms of the nodal degrees of freedom ( )kv  and 

the periodic boundary conditions may be set node by node in the finite element model of the 

unit cell. Using Eqs.(24), the kinematic scalar variable, ε , which is conjugate in energy with 

the stress scalar variable, Σ  (Eq.(21)), for tension/compression is given by: 

 ( ) ( ) ( )3 3 5
1 2 2

1 cos2 1 cos2 sin 2 cos2
: 2

2v h v h

v v v
b e a e b e a e

θ ξ θ ξ θ θ ξ
ε

 − + +
= = + − − Σ + + + + 

Σ D   (25) 
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and for tension/tension or compression/compression by: 

 ( ) ( ) ( )3 3 5
1 2 2

1 cos2 1 cos2 2 sin1 1
:

2

2 1 cos2

v h v h

v v v
b e a e b e a e

χ θ χ θ χ θ χ
ε

θ − + +
− + = = −

Σ + + + +
Σ D   (26) 

The numerical simulations of the three dimensional unit cell were performed by increasing ε  

until the ultimate load that corresponds to maxΣ . In Figure 6 we present an example of the 

deformation of the three dimensional unit cell that was used in the numerical homogenization 

scheme. The contours represent the minimum principal stresses in MPa developed in the unit 

cell for uniaxial compression normal to the bed joints ( 1ξ = , 0θ =  and 5h ve e mm= = ). 

Notice the excess deformation of the joints in relation to the deformation of the block. It is 

worth mentioning that the mortar is in a triaxial stress state and not in plane stress or plane 

strain conditions. This justifies, the general formulation presented in section 2 and the fact 

that a three dimensional stress and kinematic field were employed during the homogenization 

procedure. 

The overall stress components αβ αβσΣ =  are computed by averaging the stress values at 

the Gauss points. Figure 7 shows the obtained stress-strain ( ),εΣ  curve in the case of 

uniaxial compression normal to the bed joints of the unit cell, i.e. for 1ξ =  and 0θ = 
 , and 

for 5h ve e mm= = . The ultimate stress maxΣ  is obtained as the asymptotic value of Σ  for 

increasing ε  (Figure 7). According to Eq.(21), the ultimate uniaxial compressive strength is 

equal to max
22 2Σ = − Σ . In the next paragraphs we present the results from the various 

numerical analyses performed in order to validate G+ . 
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Figure 6. Example of the deformation of the three dimensional unit cell that was used in the 

numerical homogenization scheme. The contours represent the minimum principal stresses 

(in MPa) developed at the unit cell for uniaxial compression normal to the bed joints ( 1ξ = , 

0θ =  and 5h ve e mm= = ). Notice the excess deformation of the mortar at the joints in relation 

to the deformation of the block. The mortar is in a triaxial stress state. 

 

Figure 7. Example of a stress-strain ( ),εΣ  curve derived through numerical homogenization 

of the unit cell for vertical compression ( 1ξ = , 0θ =  and 5h ve e mm= = ). The ultimate stress 

Block 

Joints 
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maxΣ  is obtained as the asymptotic value of Σ  for increasing ε   (dotted line). The uniaxial 

compression strength of the masonry is then max
22 2Σ = − Σ  (see Eq.(21)) 

3.3 Comparison of the analytical and numerical in-plane strength domains 

The in-plane strength domain that was derived analytically in the previous paragraphs (G+ ) 

consists an upper bound of the strength domain of the masonry structure (GΣ ). Therefore, a 

comparison of the analytical result with the strength domain that was calculated by means of 

numerical homogenization (NumG ) is presented in this paragraph. 

Several numerical simulations were performed on the elementary cell for different angles θ  

and loading combinations ( )1 2,Σ Σ . In particular, the following biaxial configurations were 

investigated: 1.0ξ =  (uniaxial compression normal to the bed joints 1 0Σ = , 2 2Σ = − Σ ), 

0.8ξ = , 0.5ξ = , 0.0ξ = , 0.5ξ =−  and 1.0ξ =−  (uniaxial tension normal to the head joints  

1 2Σ = Σ , 2 0Σ = ). Moreover, three different joint thicknesses were considered, i.e. 

0.1h ve e mm= = , 2.0h ve e mm= =  and 5.0h ve e mm= =  corresponding respectively to the 

0.3%, 5.3% and 13.2% of the height of the block. 

In Figure 8 to Figure 13 the numerical (NumG ) and the analytical (G+ ) strength domains are 

juxtaposed for the three different joint thicknesses. It is worth mentioning that all the 

analytical calculations in the present paper have been performed with the symbolic language 

mathematical package Wolfram Mathematica. The numerical strength domain is traced for 

different values of the angle θ . As it was previously described the overall analytical strength 

domain G+  is the intersection of three domains. These are the strength domain of the blocks 

bG  (Eq.(15)) and the strength domains of the bed (Eq.(18)a&b) and head (Eq.(18)c&d) joints 

(G∞ ).  In Figure 10 the aforementioned strength domains are clearly distinguished. If the 
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failure of the blocks was not taken into account the strength domain of the masonry would be 

unbounded, which is unrealistic. The numerically calculated ultimate stresses coincide with 

the analytical yield surfaces that correspond to the failure of the joints in all the biaxial 

configurations tested (Figure 4). For instance, in Figure 11 we observe that for 10 90θ≤ ≤
 
  

the ultimate strength falls exactly at the boundary of the analytical strength domain. 

However, this is not the case when the failure of the unit cell is attributed to a combination of 

the failure of blocks and of the failure of the joints (e.g. Figure 8 for 0 40θ≤ ≤
 
  and 90θ = 


, Figure 11 for 0θ = 


 etc.). In this case the thickness of the joints plays a crucial role and the 

ultimate stresses derived by numerical homogenization fall inside the analytical yield surface.  

This is not an astonishing result as the analytical strength domain is an upper bound of the 

exact strength domain of the system. This discrepancy is stressed also by Milani et al. 

(2006b). In Figure 14 we present the ratio of the ultimate strength that was calculated by 

numerical homogenization (NumΣ ) over the upper bound of its value that was derived 

analytically by the limit analysis theory (+Σ ) in function of the joints’ thickness, h ve e e= =  

for various values of ξ  and for 0θ = ° . Similar results are also obtained for the biaxial states 

described in Figure 4b as it is shown in Figure 15.  

Generally, the thinner the joints are, the better is the convergence of the numerical results to 

the analytical yield surface. This behavior can be qualitatively explained by comparing the 

plastic deformations of the different analyses performed with different joint thicknesses. In 

particular, at Figure 16 and Figure 17 we present the magnitude of the plastic deformations 

for 1ξ =  , 30θ = 
  and, respectively, for 0.1e mm=  and 5.0e mm= . According to the 

numerical results (see Figure 8 and Figure 14) the analytical strength domain approximates 

quite well the numerical one for 0.1e mm= , while there is an error of approximate 20% for 

the case of 5.0e mm=  (13.2% of the height of the block). Focusing on Figure 16 we observe 
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that the resulting plastic deformations at the block are almost homogeneous and therefore the 

assumed homogeneous deformation in the unit cell for the analytical determination of the 

yield surface (Eq.(12)) is consistent. However, this is not the case for the thicker joints, where 

the plastic deformations are clearly not homogeneous (Figure 17) and consequently the 

considered kinematic admissible field that was introduced through Eq.(12) is not 

representative. 

 

 

Figure 8. Comparison of the strength domains for uniaxial compression ( 1ξ = ) and for 

various angles θ . The shaded region represents the analytical strength domain (G+ ) and the 

markers the ultimate strength of the unit cell that was derived by numerical homogenization. 

For thin joints the numerical results approach the analytically derived upper bound G+ . For 

0θ = °  the uniaxial compression strength of the masonry is found by multiplying maxΣ  by a 

factor of two (see Eq.(21)).  
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Figure 9. Comparison of the strength domains for 0.8ξ =  and for various angles θ . The 

shaded region represents the analytical strength domain (G+ ) and the markers the ultimate 

strength of the unit cell that was derived by numerical homogenization. For thin joints the 

numerical results approach the analytically derived upper bound G+ . 
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Figure 10. Comparison of the strength domains for 0.5ξ =  and for various angles θ . The 

shaded region represents the analytical strength domain (G+ ) and the markers the ultimate 

strength of the unit cell that was derived by numerical homogenization. For thin joints the 

numerical results approach the analytically derived upper bound G+ . 

 

Upper bound due to 
the failure of the  
bed interfaces 

Upper bound due to the 
failure of blocks 

Upper bound due to 
the failure of the 
head interfaces  
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Figure 11. Comparison of the strength domains for 0.0ξ =  and for various angles θ . The 

shaded region represents the analytical strength domain (G+ ) and the markers the ultimate 

strength of the unit cell that was derived by numerical homogenization. 
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Figure 12. Comparison of the strength domains for 0.5ξ =−  and for various angles θ . The 

shaded region represents the analytical strength domain (G+ ) and the markers the ultimate 

strength of the unit cell that was derived by numerical homogenization. 
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Figure 13. Comparison of the strength domains for uniaxial tension ( 1ξ =− ) and for various 

angles θ . The shaded region represents the analytical strength domain (G+ ) and the markers 

the ultimate strength of the unit cell that was derived by numerical homogenization. 
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Figure 14. Ratio of the ultimate strength of the unit cell that was calculated by numerical 

homogenization ( NumΣ ) over the upper bound of its value that was derived analytically by the 

theory of limit analysis ( +Σ ) in function of the joints’ thickness, h ve e e= =  for various values 

of ξ  and for 0θ = °. For thin joints the numerical results approach the analytically derived 

upper bound G+ . 
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Figure 15. Ratio of the ultimate strength of the unit cell that was calculated by numerical 

homogenization ( NumΣ ) over the upper bound of its value that was derived analytically by the 

theory of limit analysis ( +Σ ) in function of the joints’ thickness, h ve e e= =  for various values 

of χ  and for 0θ = °. The influence of χ  is quite limited. For thin joints the numerical results 

converge to the analytically derived upper bound G+ . 
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Figure 16. Contours of the magnitude of the plastic deformations developed inside the 

masonry unit (joints are not shown) for 1ξ =  and 30θ = 
 . The plastic deformations are 

homogeneous except in the middle of the block where the deformation is localized. 

 

 

Figure 17. Contours of the magnitude of the plastic deformations developed inside the 

masonry unit (joints are not shown) for 1ξ =  and 30θ = 
 . The plastic deformations are not 

homogeneous and they are more important in the middle of the unit due to the head joints. 
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4 Comparison with experimental results 

The effect of the thickness of the joints and the difference of the analytically derived strength 

domain with the numerical one was quantified and justified in the previous section. The 

analytical model overestimates the strength of the masonry in some biaxial load cases. This 

difference is of the order of 20% for the thicker joints (Figure 14, Figure 15). Moreover, the 

non-homogeneous stress field inside the masonry units that was discussed in the previous 

section leads to the development of tensile stresses (cf. Figure 16 and Figure 17). 

Consequently, the analytical model might also overestimate the resistance of the masonry due 

to the fact that it does not take into account the brittle behavior of the bricks in tension and 

the related crack formation. In particular, experiments performed by Sahlaoui et al. (2011) on 

non-uniformly loaded masonry units (Figure 18) showed that the ultimate compressive load is 

on the average 60% lower than the ultimate compressive load of the same units under 

uniform loading. This is a well-known issue in masonry structures and a similar drop of the 

compressive strength was also noticed by Page (1981, 1983).  According to Page, the mean 

compressive strength of four-high stack bonded piers was 65% the compressive strength of 

half-scaled bricks. In particular the mean compressive strength of the half-scale bricks was 

15.41 MPa (coefficient of variation of 18%) while the mean compressive strength of the four-

high stack bonded piers was only 9.85 MPa (coefficient of variation of 9%). 

Finally, due to scale effects that are inherent to geomaterials and due to experimental 

difficulties related to the influence of the friction between the specimen and the plates of the 

loading frame (Brencich, Corradi, & Gambarotta, 2008; Kourkoulis & Ganniari-

Papageorgiou, 2010) the determination of the compressive strength and generally the 

assessment of the mechanical characteristics of the masonry based on the strength of its units 
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is not a trivial issue. Therefore, the determination of the overall strength of masonry based on 

the individual strength of its constituents is, experimentally, not an easy task. 

 

 

Figure 18. Schematic representation of tests performed on non-uniformly loaded bricks (left) 

and on uniformly loaded masonry units (right). Because of the vertical (head) joints of 

thickness e, the stress field developed inside the bricks is not uniform leading to tensile 

stresses and crack formation. 

 

In the early 1980s, Page published the results of a series of experimental tests of masonry 

panels subjected to in-plane biaxial monotonic loading. Here we use these results in order to 

assess the validity of the proposed analytically derived strength domain. A classical Coulomb 

yield surface is considered for the masonry units. For the reasons presented above (brittle 

behavior, effect of joint thickness, scale effects, experimental difficulties) the in-situ 

compressive strength of the bricks will be taken equal to the resistance of the four-high stack 

bonded piers tested by Page (1981, 1983), i.e. equal to 10 MPa. Moreover, in order to account 

for the failure of the mortar and the mortar-brick debonding and similar to Page (1978), a 

bilinear Coulomb criterion  is considered herein for the interfaces (Figure 19). 
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Figure 19. Schematic representation of a bilinear Coulomb criterion for the interfaces (solid 

lines). τ  is the shear stress and nσ  is the normal stress at the interface.  

It follows from Eq.(10) that the same relations as in Eq.(18) hold in the case of interfaces 

obeying to a bilinear Coulomb criterion. According to Eq.(14) the strength domain of the 

masonry is expressed in closed form as follows: 
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  (27) 

where 1 or 2γ = . The mechanical parameters of the masonry constituents are given in Table 

2. It is worth emphasizing that the values for the dimensions and for the mechanical 

properties of the bricks and the joints could not be extracted from the articles of Page. Similar 

values as in Milani et al. (2006b) were taken into account for the dimensions and for the 

compressive to tensional strength ratio of the bricks. In particular the dimensions of the 

bricks were 110x50x35 3mm  (
2

0.9
a

m
b

= = ) and the compressive to tensional strength ratio 

was considered equal to 6. 
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Table 2. Estimation of the mechanical parameters of the bricks and of the mortar that were 

used for the comparison of the analytically derived strength domain and the experimental 

results of Page (1981).  

Bricks 

Coulomb cohesion, bc  2 MPa 

Coulomb friction angle, bϕ  45° 

Mortar 

Coulomb cohesion, 1
Jc  0.35 MPa 

Coulomb friction angle, 1
Jϕ  39° 

Coulomb cohesion, 2
Jc  2 MPa 

Coulomb friction angle, 2
Jϕ  17° 

 

In Figure 20 to Figure 22 we present the comparison of the analytical strength domain with 

the experimental results of Page (1981) for various angles θ . A quite good agreement is 

observed.  

The finite strength of the building blocks may be quite important for structural applications. 

For instance, if we consider the simple example of a masonry panel subjected to vertical 

compression (Σ11=Σ12=0 and Σ22<0 (compression), Σ1=0 and Σ2=Σ22<0) Eqs.(27) become: 
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  (28) 

The first three inequalities are automatically satisfied for vertical compression (Σ22<0). In 

other words the joints do not fail. This is in accordance with building standards which they do 
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not account the compressive strength of the mortar in the case of thin joints (triaxial 

state/confinement). On the contrary the resistance of masonry is limited by the resistance of 

the blocks. The strength domain is not unbounded in compression. In particular the 

homogenized compression strength is approximately -9.66 MPa. The consideration of the 

finite resistance of the blocks might play a crucial role in reducing the load bearing capacity 

of masonry and change the failure mechanism. 

The analytically derived strength domain (Eqs.(18), (27) and more generally the domain 

given in Eqs.(14)) covers any macroscopic in-plane stress state. Therefore, it can be 

implemented in appropriate Finite Element codes based on multisurface plasticity in order to 

solve more complicated structural examples. Nevertheless, such examples exceed the scope 

of the present work, which focuses on the constitutive description of masonry. 
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Figure 20. Comparison of the analytical strength domain (shaded region) with the 

experimental results of Page (1981) for 0θ = 
 . 

   

 

Figure 21. Comparison of the analytical strength domain (shaded region) with the 

experimental results of Page (1981) for 22.5θ = 
 . 
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Figure 22. Comparison of the analytical strength domain (shaded region) with the 

experimental results of Page (1981) for 45θ = 
 . 

5 Conclusions 

It is well known that the macroscopic mechanical properties of masonry differ from the 

mechanical properties of its constituents, i.e. of the building blocks (bricks) and of the mortar 

(if present). Generally, in structural analysis of masonry structures, the determination of the 

ultimate/limit strength of masonry is a quite important topic. Due to the complexity and the 

heterogeneity of the material, most of the failure criteria that are generally proposed in the 

literature are based on macroscopical and phenomenological considerations. In the present 

paper, a micromechanical model is formulated that takes into account the three-dimensional 

non-elastic behavior of the microstructure of a periodic masonry wall structure. Based on a 

rigorous definition of the microstructure and by using basic tools of convex analysis and limit 

analysis theory, it was made possible to pursue further the results of de Buhan & de Felice 



41 

 

(1997) and derive analytically the overall strength domain of a masonry wall made of 

building blocks of finite strength and mortar. A kinematic limit analysis approach was 

followed using a three-dimensional stress and kinematic field. Unlike similar homogenization 

approaches for masonry (e.g. de Buhan & de Felice, 1997; Milani et al., 2006), no plane 

stress conditions are a priori assumed in the present work and the problem is treated in three 

dimensions. The reason is that the stress state in the mortar cannot be precisely described 

either by plane stress or plane strain conditions. 

In order to assess the validity and the efficiency of the derived domain, which is an upper 

bound of the exact one, a numerical homogenization scheme was used for certain geometrical 

and mechanical parameters of the unit cell. It was found that the difference between the 

analytical strength domain and the numerical one is insignificant for masonry structures with 

thin joints. However, for structures with thicker joints the error increases and the analytical 

domain overestimates to some extent the ultimate strength. Finally, the derived strength 

domain was compared to the experimental results of Page and a quite good agreement was 

observed. 

The proposed strength domain is general enough and according to the mechanical resistance 

of the masonry constituents it can be expressed through simple closed-form inequalities. The 

dimensions of the units, the frictional behavior of the mortar-brick interfaces and the in-situ 

mechanical strength of the masonry units have to be characterized in order to define the 

analytical strength domain of the brickwork. These parameters can be determined from 

simple experiments of the mortar-brick interface and of the masonry units. Nevertheless, due 

to the brittle behavior of the bricks, the effect of the joint thickness, the inherent scale effects 

of geomaterials and the experimental difficulties for obtaining the compressive strength of the  

bricks, the determination of the in-situ strength of the masonry constituents is not trivial. 

Experimental tests of single masonry piers in compression seem to be more representative for 
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characterizing the in-situ compressive strength of the masonry units and can be used for 

selecting the appropriate parameters.  

The proposed strength domain can be used for limit analyses or for finite element simulations 

of a brickwork (e.g. de Felice et al., 2009). Nevertheless, the application of the present model 

to masonry structures with comprehensive examples and structural applications exceeds the 

scope of the present work and it will be presented in a future publication. Finally, existing 

phenomenological models (e.g. Ottosen, 1977; Syrmakezis & Asteris, 2001) may be 

calibrated using the derived analytical anisotropic strength domain. In this way numerous and 

laborious experiments on masonry panels can be avoided.  

 

 

Appendix 

In this appendix we extend the results of Dallot & Sab (2008a, 2008b). Symmetric periodic 

plates have interesting features which are detailed hereafter. Recall that NG  is the projection 

of hom
pG  on the subspace ( ), 0=N M . Similarly, 

 ( ){ }hom| , , p
MG G= ∃ ∈M N MN   (A.1) 

is the projection of hom
pG  on the subspace ( )0,=N M  and its corresponding support function 

is: 

 ( ) ( )hom 0,p
Mπ π=χ χ   (A.2) 

The intersection of hom
pG  with the subspace ( ), 0=N M  is noted: 

 ( ) ( ){ }om,0 h| ,0N
pGG ∃ ∈= NN   (A.3) 
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Its corresponding support function is: 

 ( ) ( ) ( )om,0 hin ,fN
pπ π=

χ
DD χ   (A.4) 

Finally, 

 ( ) ( ){ }h0, om| 0, p
M GG ∃ ∈= M M   (A.5) 

is the intersection of hom
pG  with the subspace ( )0,=N M  and its corresponding support 

function is: 

 ( ) ( ) ( )m0, hoin ,fM
pπ π=

D
Dχ χ   (A.6) 

For symmetric periodic plates we have the following property: 

 ( ) ( ),0 0, and  N MN MG G G G= =   (A.7) 

Indeed, recall that two closed convex sets are equal if, and only if, their corresponding 

support functions are identical. It can be seen that v  is in ( ),KA D χ  if, and only if, its 

symmetric image ∗v  is in ( ),KA −D χ  where ∗v  is given by: ( ) ( )∗ = − −v y v y  for all y  in Y . 

Moreover, due to the symmetry condition (( ) ( )G G Y= − ∀ ∈y y y ), we have 

( ) ( ), ,s sπ π ∗∇⊗ ∇⊗= −yvy v . Using, the kinematic definition of Eq.(3) and the fact that 

( ),π ⋅y  is positively homogeneous of degree one, we easily establish that the convex 

functions ( )hom ,pπ χχ D֏  and ( )hom ,pπD D χ֏  are even. Therefore, they reach their 

minimum at zero. This means that we have: 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

hom hom

ho

0

0, h

,

m om

,inf

inf

,0

, 0,

p p

p

N N

p
M M

π π π π

π π π π

= ==

= = =

χ

D

D χ D D

D χ χ

D

χ χ
  (A.8) 
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