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Abstract

This paper deals with the ultimate bearing capacity of soft clayey soils, rein-
forced by stone columns, analyzed in the framework of the yield design theory.
Since such geotechnical structures are almost impossible to analyze directly due
to the strong heterogeneity of the reinforced soil, an alternative homogenization
approach is advocated here. First, numerical lower and upper bound estimates
for the macroscopic strength criterion of the stone column reinforced soil are
approximated in a rigorous way with convex ellipsoidal sets, which makes the
approximated criteria much easier to handle than the initial ones. Then, both
static and kinematic approaches are carried out numerically on the homoge-
nized problem using the above approximated macroscopic strength domains in
an adapted finite element method. The whole numerical procedure is applied
on one classical geotechnical problem: the ultimate bearing capacity of stone
column reinforced foundations. The strength capacity of the structure is rigor-
ously framed and the efficiency of the proposed numerical method is highlighted
in terms of accuracy and calculation time.

Keywords: yield design theory, homogenization approach, stone columns,
yield surface approximation, finite element method

1. Introduction

Evaluating the ultimate bearing capacity of a soil structure remains a key
issue for assessing its performance. One of the most rigorous methods to evaluate
this ultimate load is to analyze the structure in the framework of the yield design
(or limit analysis) theory [1, 2]. This method may be seen as an alternative to the
iterative methods, such as for example the elastoplastic procedure. Applications
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of the yield design theory making use of analytical calculations have been made
on several classical geotechnical problems since decades [3–5].

Unfortunately, such analytical tools prove sometimes unable to handle more
complex geometries of soil structures. Thus, the use of numerical methods ded-
icated to the yield design theory has allowed to treat a new kind of geotechnical
problems. In this framework, the first applications of the finite element method
have been proposed around 40 years ago [6, 7], with a linearization of the clas-
sical strength criteria. The recent development of powerful numerical tools has
brought new opportunities for analyzing numerically three-dimensional geotech-
nical problems with real strength criteria, such as von Mises and Drucker-Prager
[8, 9] or Tresca and Mohr-Coulomb [10, 11]. An interested reader would find a
comprehensive literature review dedicated to homogeneous geotechnical prob-
lems in [12].

It often appears that the ultimate strength capacity of soft clayey soil struc-
tures is insufficient to carry design loads. Several techniques have been devel-
oped to improve the strength properties of the structure by using inclusions.
Among these techniques, the case of ”thin” linear inclusions, such as for ex-
ample metal strips or geotextiles in the earth reinforcement technique or soil
nailing, may be directly carried out with finite elements adapted to limit anal-
ysis. For such reinforcement techniques, the inclusions are modeled as linear
structured elements [13–16].

An other reinforcement technique can be considered, whereby the soft clayey
soil is reinforced by large diameter columns. The material used to reinforce the
native soil may vary and two subcategories should be distinguished. In the so-
called ”lime column” reinforcement technique [17], the purely cohesive soil is
mixed with a given percentage of lime or lime-cement. The reinforcing material
has a much greater cohesion than the native soil, but its friction angle remains
relatively small. In the ”stone column” reinforcement technique [18], a part of
the native soil is replaced by a high frictional material (ballast or gravel). In
that case, the reinforcing effect is mostly provided by the friction angle of the
reinforcing material, since its cohesion is quite limited.

Referring to the technique of soil improvement by thick columnar frictional
inclusions, the volume fraction of the columns (or substitution factor) may range
between 10% and 40%, depending on the kind of reinforcing material. To take
the exact geometry of the problem into account, a direct resolution necessitates
to model each column in a three-dimensional way. It follows that as soon as a
large number of reinforcing columns is involved along with a non uniform load-
ing, and referring for instance to a fem-based calculation procedure, a refined
mesh should be used which could lead to an oversized numerical problem and
thus considerable computational times.

The present paper advocates the yield design homogenization approach as
an alternative to analyze the strength capacities of stone column reinforced
soils. After explaining the theoretical difficulties related to the analysis of soft
clays reinforced by stone columns, this periodic homogenization method applied
to reinforced soils is briefly presented in section 2. The numerical evaluation
of the macroscopic strength domain of stone column reinforced soils is then
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performed (section 3). In particular, the necessity to approximate this domain
rigorously, for the purpose of analyzing the stability of reinforced soil structures,
is highlighted.

Finally, the macroscopic strength domain approximations are employed on
the illustrative example of a stone column reinforced foundation, using both
static and kinematic approaches of yield design theory. The so-obtained results
are favorably compared to other numerical evaluations (section 4).

It should emphasized that the concept of yield design adopted in this paper in
place of the more frequently used term of limit analysis, means that constituent
materials such as the soil and above all the column material are solely described
by means of their strength properties, with no reference to either their elastic
properties or any associated plastic flow rule. Detailed arguments on this specific
point may be found in [2] about the precise interpretation to be given to the
yield design calculations

2. Periodic homogenization approach as an alternative to direct meth-

ods for analyzing reinforced soil structures

2.1. A conceptual difficulty in the direct treatment of stone column reinforced

soils

The kinematic approach of the yield design theory is based on the con-
sideration of virtual velocity fields, called failure mechanisms, which allow to
determine an upper bound to the strength capacity of the structure. Among
such velocity fields, one may consider blocks animated with rigid body motions,
separated by velocity discontinuity surfaces. This kind of failure mechanism
is often used to address the stability analysis of geotechnical structures, as for
example in the ”limit equilibrium method” employed to analyze slope stability.

The analysis of stone column reinforced soils based on this particular class of
failure mechanisms reveals a fundamental drawback from the yield design point
of view [19, 20]. Indeed, a key ingredient to implementing this approach is the
possibility of calculating the maximum resisting work, which in the present case
takes the form:

Wmr(U) =

∫

S

π(n, [U ]) dS (1)

where [U ] is the velocity jump across the discontinuity surface S along the unit
normal n and π the corresponding support function. A necessary condition
for the stability of the structure is that this maximum resisting work remains
greater than or equal to the work developed by the external forces in any velocity
field. Depending on the material intersected by the discontinuity surface S, the
support function π takes different expressions [1, 2]:

• The native soil, chosen here as a soft clay with a negligible friction angle,
obeys a Tresca criterion with an undrained shear strength Cs. Thereby,
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the velocity jump must be tangent to the discontinuity surface and corre-
sponds to the following support function:

πs(n, [U ]) =

{

Cs| [U ] | if [U ] · n = 0

+∞ otherwise
(2)

• On the other hand the reinforcing column, considered as a purely frictional
material, obeys a Mohr-Coulomb criterion. The possibility of calculating
the support function requires that the angle between the discontinuity
surface and the velocity jump must be greater than or equal to the friction
angle of the column, denoted by ϕr. The corresponding support function
is expressed as follows:

πr(n, [U ]) =

{

0 if [U ] · n ≥ | [U ] | sinϕr

+∞ otherwise
(3)

Owing to the three-dimensional geometry of the columns, it turns out that
it is impossible to find a failure surface which simultaneously respects these
so-called relevance conditions (see Figure 1). Such a ”theoretical locking” is
nonetheless released if both consituents are purely cohesive, as for lime column
reinforced soils. In that case, the friction angle of the reinforcing material being
negligible, the velocity jump must be tangential to the discontinuity surface
across both constituents.

Figure 1: Relevance conditions for a velocity jump across a failure surface intersecting a stone
column reinforced soil.

It follows that the traditional analytical methods based on yield design,
efficient for homogeneous media, fail to give satisfactory results for the stability
analyses of structures made of a purely cohesive native soil reinforced by a
highly frictional material (slope stability, ultimate bearing capacity, ...). For
this reason, the homogenization approach represents an interesting alternative
to treat reinforced soils, which can be seen as composite periodic media.

2.2. The yield design homogenization approach

The formulation of the yield design homogenization approach applied to
periodic media has been proposed in a general framework [21] and adapted to
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reinforced soils [19]. As for the homogenization method applied to periodic
elastic media, the idea is to evaluate the macroscopic mechanical behaviour of
the heterogeneous material (its strength domain in the yield design theory) in
order to solve the homogenized equivalent problem (see Figure 2).

The assessment of the strength criterion of the homogenized equivalent ma-
terial is based on the yield design auxiliary problem described on the unit cell,
which is the smallest representative volume of reinforced soil. The resolution
of this first yield design problem leads to the evaluation of the so-called macro-
scopic strength domain of the reinforced soil. One of the important results of the
yield design homogenization method is that as soon as the characteristic length
of the initial problem, denoted here by B, is much larger than the characteristic
length L of the unit cell C, the resolution of the homogenized equivalent problem
provides the same ultimate load than the initial problem.

Figure 2: Principle of the periodic homogenization method applied to column reinforced soils.

Within this framework, the macroscopic strength criterion of soils reinforced
by ”thin” linear inclusions has been evaluated analytically [22, 23] and used to
perform the stability analysis of such reinforced soil structures [24, 25]. A com-
parison has been done between the so-obtained results and a direct analytical
approach, which provides justification of the homogenization method [26].

Some authors have evaluated analytically or numerically the macroscopic
strength criterion of lime-column reinforced soils (purely cohesive soil reinforced
by purely cohesive solumns) by using both kinematic and static approaches of
the yield design theory [27–30]. The stability analysis has been performed in
such a case for different configurations of structures (embankment resting upon
a reinforced soil [31] or ultimate bearing capacity of reinforced foundation under
inclined loads [32]).
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On the contrary, due to the aforementioned ”theoretical locking”, the macro-
scopic strength criterion of soils reinforced by highly frictional columns has
rarely been evaluated analytically [33]. The recent improvement of numerical
methods has allowed to get an accurate knowledge of the macroscopic failure
behaviour of stone column reinforced soils [20, 34]. But the implementation of
such a macroscopic strength domain in order to analyze the stability of homog-
enized equivalent structures remains so far quite inexistent for such reinforced
soils [35].

2.3. Static and kinematic approaches applied to the auxiliary problem

The macroscopic strength domain of a periodic heterogeneous medium, de-
noted by Ghom, is expressed as the set of the macroscopic stresses Σ for which
there exists a stress field σ statically admissible (SA) with Σ, verifying the local
strength criterion G(x) at any point of the unit cell C. This domain is then
defined as follows:

Ghom =
{

Σ | ∃σ SA with Σ ; ∀x ∈ C, σ(x) ∈ G(x)
}

(4)

which may be explicited as

Σ ∈ Ghom ⇔ ∃σ with



































divσ(x) = 0 in C
[

σ
]

· n = 0 across Sdisc

σ · n anti-periodic on the boundary of C
〈

σ
〉

=
1

|C|

∫

C
σ dC = Σ

f(σ(x)) ≤ 0 ∀x ∈ C

(5)

where the first four equations refer to the static admissibility in the context of
periodicity (see [20] for more details). The respect of the local strength criterion
is expressed by the last condition.

As mentioned previously, the native soil obeys a Tresca criterion, depending
on its undrained shear strength Cs, whereas the columnar inclusion is repre-
sented by a Mohr-Coulomb material, with no cohesion and a friction angle ϕr.
Hence, the local strength criterion of the stone column reinforced soil is defined
by:

f(σ(x)) =

{

σM − σm − 2Cs in the native soil

σM (1 + sinϕr)− σm(1 − sinϕr) in the column
(6)

σM and σm denoting the major and the minor principal stresses of σ respectively.
The static and kinematic approaches of the yield design theory may be per-

formed on this auxiliary problem in order to produce lower and upper bound
estimates for the macroscopic strength domain.
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2.3.1. Lower bound static approach

The derivation of a lower bound estimate for Ghom comes directly from
definition (5). It consists in considering trial stress fields σ

i
statically admissi-

ble with macroscopic stresses Σ
i
and complying with the strength criterion in

both constituents of the reinforced soil. The lower bound estimate Glb is then
constructed as the convex envelope of the set of Σ

i
(see Figure 3).

2.3.2. Upper bound kinematic approach

An upper bound estimate for Ghom is obtained by considering velocity fields
U , kinematically admissible (KA) with a macroscopic strain rate D and provid-
ing an upper bound for the macroscopic support function:

sup
{

Σ : D |Σ ∈ Ghom
}

= πhom(D) ≤ πub(D) =
〈

π(d)
〉

=
1

|C|

∫

C

π(d) dC (7)

The local support function is expressed, for the purely cohesive native soil, by:

πs(d) =

{

Cs (|dI|+ |dII|+ |dIII|) if trd = 0

+∞ otherwise
(8)

and, for the purely frictional column, by:

πr(d) =

{

0 if trd ≥ sinϕr (|dI|+ |dII|+ |dIII|)

+∞ otherwise
(9)

where dI, dII and dIII are the eigenvalues of the strain rate tensor d.
As for the static approach, this optimization of the velocity field can be

carried out for a series of macroscopic strain rate directions. The set Gub,
the boundary of which is defined by multiple planes depending on πub in the
stress space (see Figure 3), is then an upper bound estimate for the macroscopic
strength domain.

Ghom ⊆ Gub =
⋂

D

{

Σ |Σ : D ≤ πub(D)
}

(10)

3. Macroscopic strength domain of soils reinforced by stone columns

3.1. Evaluation of bounds for the macroscopic strength domain

The implementation of the static (resp. kinematic) approach, which leads to
a maximization (resp. minimization) problem, may be performed numerically.
For materials obeying Tresca or Mohr-Coulomb criteria, these problems involve
the use of semidefinite programming. A detailed explanation of the numerical
implementation of these approaches into the finite element method dedicated to
yield design is given in [34].
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Figure 3: Definition of lower bound and upper bound estimates for a macroscopic strength
domain.

Both approaches of the yield design theory are carried out on the auxiliary
problem associated to the stone column reinforced soil. The geometrical and
mechanical characteristics are chosen as follows:

η = 0.28 and ϕr = 35◦ (11)

where η denotes the volume fraction of the reinforcing material.
The homogenized equivalent problem to be analyzed may be treated as a

plane strain problem in the (x1, x2)-plane, where x1 and x2 denote the rein-
forcement direction and a horizontal direction respectively (see Figure 2). Un-
der such conditions, the macroscopic ”plane strain” strength criterion Ghom, as
well as the lower and upper bound estimates Glb and Gub, may be drawn in
the (Σ11,Σ22,Σ12)-space. The efficiency of the assessment of Glb and Gub for
such reinforced soils has been thoroughly discussed in [34]. Here, with reason-
able calculation times, the relative gap between the numerical lower and upper
bound estimates varies between 0.2% and 8.5%, with an average value equal to
3.2%.

The so-obtained numerical lower bound estimateGlb is represented in Figure
4 in the space of non-dimensional stresses (Σ11/Cs,Σ22/Cs,Σ12/Cs). It is an
unbounded strength domain, which means that for many macroscopic strain rate
directions D, its support function takes infinite values. This specific feature
derives directly from the strength criterion of the constitutive materials [33].
For both domains Glb and Gub, the set of macroscopic strain rate directions
generating a limit load is a cone. These two cones, denoted by {D}lb and {D}ub

respectively, may be seen as the cones of outer normals to the strength domains,
also called ”relevance cones”.

A second remark concerns the numerical yield surfaces obtained here. For the
assessment of Glb and Gub, the space of macroscopic stresses has been explored
with a discretization of one degree. As a result, the two strength domains are
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Figure 4: Lower bound to the macroscopic strength domain of a stone column reinforced soil.

polyhedra, defined by more than 16000 planes in the (Σ11/Cs,Σ22/Cs,Σ12/Cs)-
space. Consequently, the direct use of such strength domains in a structural
stability analysis (in the framework of the finite element method) appears to
be quite unrealistic. Indeed, it would mean that these 16000 linear constraints,
associated to Glb or Gub, should be verified at each evaluation point of the dis-
cretized homogenized structure, leading to an oversized optimization problem.

3.2. Principle of strength domain’s approximations using convex ellipsoidal sets

The latter remark suggests the necessity to find an alternative method for
using the numerical lower and upper bound estimates for Ghom in stability
analyses of reinforced soil structures. The idea is to approximate in a rigorous
way both macroscopic strength domains with the minimum number of variables.

Denoting by Glb
app the lower bound approximation to Glb and by Gub

app the

upper bound approximation to Gub, the following set of inclusions holds true:

Glb
app ⊆ Glb ⊆ Ghom ⊆ Gub ⊆ Gub

app (12)

Referring to bounded strength domains, some authors have quite recently
proposed to use the sum of convex ellipsoidal sets to approximate these do-
mains [36]. More details concerning the mathematical aspects of the numerical
approximation procedure are given in Appendix A. The inclusion relation (12)
is sketched in Figure 5, taking into account the difference between the relevance
cone of each domain.

3.3. Results of the numerical approximations

The numerical procedure has been carried out to approximate Glb and Gub

by a sum of 7 ellipsoidal sets (i.e. 45 parameters). Cross-sections of the yield
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Figure 5: Representation of different estimates for an unbounded macroscopic strength domain
in the macroscopic stress space.

surfaces corresponding to both approximated domains by planes of constant
shear stress (Σ12/Cs = cst.) are displayed in Figure 6.

For Σ12/Cs = 0, the criteria of the native soil and the stone column material
are represented. It is worth noting that the strength properties of the reinforced
soil are improved as compared to those of the native soil in the region of com-
pressive stresses, but weaker for tensile stresses.

The relative gap between Glb
app and Gub

app, calculated by means of their sup-
port functions, is represented in Figure 7, depending on the angles β and δ defin-
ing the orientation of D in the macroscopic strain rates space (D11, D22, 2D12)
(see Figure 7). This relative gap may be defined only on the relevance cone of
Gub

app, since πub
app is infinite for all D not included in {D}ubapp.

This relative gap varies between 1.2% and 15.8%, with an average value
calculated over all the strain rate orientations equal to 8.2%. It confirms the
accuracy of the approximation method and the quality of the so-obtained ap-
proximated domains, which can now be implemented for treating homogenized
equivalent problems.

4. Computing the ultimate bearing capacity of a stone column rein-

forced foundation

4.1. Problem statement

The aim of this section is now to analyze the stability of a reinforced soil
foundation using the yield design homogenization approach. The problem under
consideration is that of a rigid strip footing of width B lying on a stone column
reinforced soil (see Figure 8). A load of linear density Q, inclined at an angle
α to the vertical direction e1, is applied along the strip footing’s axis Ox3.
Moreover, the structure is subjected to the gravity via the specific weight γ
of the constitutive materials, which is taken equal for the soil and the stone
column.
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(a)

(b) (c)

Figure 6: Cross-sectional views of the approximated bound estimates for the macroscopic
strength domain of a stone column reinforced soil.

According to the yield design homogenization method, the zone of the foun-
dation occupied by the reinforced soil is replaced by a homogeneous material
which obeys the anisotropic macroscopic strength criterion. The length of the
footing is supposed to be infinite along the horizontal direction e3 and the
purely cohesive native soil is considered to be infinitely reinforced along that
same direction. As a consequence of these assumptions, the homogenized equiv-
alent problem can be treated as a two dimensional plane strain problem in the
(x1, x2)-plane.

The height and the width of the reinforcing zone are denoted by H and W ,
while B0 represents the width of the ground under consideration. Fixed bound-
ary conditions are imposed along the lateral and lower sides of the homogenized

11



Figure 7: Relative gap between the approximated domains depending on the strain rate
orientation.

Homogenized material: 

macroscopic strength domain
Homogenization

of reinforced soil

Figure 8: Yield design homogenization method applied to the stability analysis of a stone
column reinforced foundation.

problem, giving the following conditions for the velocity field U :

U(x1 = −H,−B0/2 ≤ x2 ≤ B0/2) = 0

U(−H ≤ x1 ≤ 0, x2 = ±B0/2) = 0
(13)

Meanwhile, the upper surface located outside the strip footing is stress free
(T (x1 = 0, |x2| > B/2) = 0) and perfect bonding is assumed at the footing-
foundation interface.

Expressing the global equilibrium of the strip footing in terms of resultant
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and moment gives:

Q cosα = −

∫ B/2

−B/2

σ11 dx2

Q sinα =

∫ B/2

−B/2

σ12 dx2

∫ B/2

−B/2

−x2σ11 dx2 = 0

(14)

Numerical static and kinematic approaches will be carried out on the ho-
mogenized problem. For the kinematic approach, the considered velocity fields
must respect the following boundary condition:

U(x1 = 0,−B/2 ≤ x2 ≤ B/2) = (
.

δ1 −
.
ωx2)e1 +

.

δ2e2 (15)

where
.

δ1 and
.

δ2 denote the horizontal and vertical velocity at point O of the
footing and

.
ω its angular velocity about the Ox3-axis.

4.2. Implementation of the numerical static and kinematic approaches

4.2.1. Lower bound static approach

By definition, the static approach leads to a lower bound estimate Qlb for
the ultimate bearing capacity Q+ defined as

Q+ = sup

{

Q

∣

∣

∣

∣

∣

∃σ SA with Q(− cosαe1 + sinαe2)

∀x ∈ Ω, σ(x) ∈ Ghom

}

(16)

The numerical lower bound static approach is implemented by discretizing
the structure into three-noded triangular stress elements in the (x1, x2)-plane.
Each element is associated with its own set of internal stress evaluation points
and the nodal stress components are interpolated with linear shape functions
(see [37] for more details).

If we had access to the exact macroscopic strength domain Ghom, perform-
ing such a numerical static approach would lead to a lower bound estimate
Qlb(Ghom) for the ultimate bearing capacity of the reinforced soil. The dis-
cretization of the structure into finite elements would imply a gap between Q+

and Qlb(Ghom).
Thanks to its status, the use of the numerical lower bound Glb would obvi-

ously lead to an other lower bound estimate for Q+, smaller than the previous
one. Unfortunately, for the reasons underlined previously,Glb cannot be directly
implemented in the homogenized structural problem, but must be approximated
by Glb

app. One finally gets the following sequence of inequalities

Q+ ≥ Qlb(Ghom) ≥ Qlb(Glb) ≥ Qlb(Glb
app) (17)

so that the gap between the exact ultimate bearing capacity Q+ and its sole
computable lower bound estimate Qlb(Glb

app) is the result of the sum of the gaps
induced by each succesive approximation.
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4.2.2. Upper bound kinematic approach

Similarly an upper bound estimate for the ultimate bearing capacity Q+

will be derived from the kinematic approach of the yield design theory. For
the purpose, the reinforced soil structure is discretized into six-noded triangular
elements in the (x1, x2)-plane. This means that the velocity fields involved will
vary quadratically on each such element, the velocity being continuous between
adjacent elements (see [38] for more details).

In the same way as for the static approach, different macroscopic strength
domains may be used in order to produce upper bounds for Q+. For the same
reasons than those exposed previously, Ghom and Gub cannot be implemented
in a numerical kinematic approach. The only treatable upper bound estimate
for the ultimate bearing capacity is performed by using the approximated do-
main Gub

app, which is an evaluation by outside of Ghom. Hence the following
inequalities

Q+ ≤ Qub(Ghom) ≤ Qub(Gub) ≤ Qub(Gub
app) (18)

The gap between the so-obtained upper bound estimate Qub(Gub
app) and Q+

is due to the numerical discretization of the structural problem, the use of
numerical method for evaluating Gub as well as the precision of its numerical
approximation Gub

app by a sum of ellipsoids.

4.2.3. Remarks on the numerical implementation

Figure 9 depicts the steps of the numerical homogenization method proposed
in this article. As shown in this flow chart, the evaluation of Qlb(Glb

app) and

Qub(Gub
app) are the final goal of the present method.

Figure 9: Description of the steps of the numerical homogenization method.

The maximization and minimization problems, associated to the static and
kinematic approaches respectively, may be implemented numerically by con-
sidering the discretized stress and velocity fields. With the definition of the
approximated domains Glb

app and Gub
app as sum of ellipsoids, it is worth not-

ing that the numerical static and kinematic approaches may be formulated as
optimization problems subject to a set of linear and second-order conic con-
straints. An interested reader would find all the details of these formulations in
the appendix of [39].

The numerical static and kinematic approaches have been performed on a
DELL PC (Intel-P4 2.4GHz) running Linux 32-bits using MOSEK [40] in the
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MATLAB (2010a) environment. The optimizer allows, among others, to treat
this kind of problems using second-order cone programming (SOCP). These
approaches will be now used on the illustrative example and the relative gap
between the final bounds Qlb(Gub

app) and Qub(Gub
app), which characterizes the

accuracy of the whole numerical homogenization method proposed in that paper,
will be evaluated.

4.3. Presentation of results

For the upcoming computations, the following geometrical characteristics of
the problem have been selected

H = 25m , W = 20m , B0 = 45m and B = 10m (19)

and the specific weight γ of the homogenized material taken equal to 18kN/m3.
The inclination angle α takes discrete values with an increment of 1◦.

The mesh adopted to discretize the structure will be the same for the static
and kinematic approaches, as represented in Figure 10 (2016 elements and 4135
nodes for the kinematic approach).

Figure 10: Finite element mesh adopted for obtaining the numerical lower and upper bounds.

The case of non reinforced soil is first investigated. For this homogeneous
problem, the Tresca criterion can be used directly, with no need for any ap-
proximation method. The numerical lower and upper bound values to the exact
ultimate bearing capacity Q+

nr are given at the top of Table 1 for different values
of the loading inclination angle α.

It appears that the relative gap between Qlb
nr and Qub

nr vary from 6.3% to
19.6%, depending on the inclination angle of the load. This gap is only due
to the discretization of the structure into finite elements and the numerical
optimization. It is worth noting that the exact value of Q+

nr, which depend on
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the width of the strip footing B and the undrained shear strength of the native
soil Cs, are known for α = 0◦ and α = 90◦ [41]:

Q+
nr(0

◦) = (π + 2)BCs and Q+
nr(90

◦) = BCs (20)

These values are framed by the so-obtained numerical estimates and, for both
values of α, it seems that with the adopted discretization of the structure the
static approach gives more accurate estimates than the kinematic approach.

Table 1: Lower and upper bounds estimate for the ultimate bearing capacity.

α 0◦ 30◦ 60◦ 90◦

Qnr

BCs

5.056
5.397

2.000
2.432

1.155
1.435

1.000
1.243

Qcol

BCs

11.631
14.341

2.000
2.434

1.111
1.285

0.856
0.982

Q

BCs

13.477
15.548

2.182
3.008

0.938
1.335

0.720
0.998

The ultimate bearing capacity of a stone column reinforced soil is then eval-
uated numerically by carrying out the previously described homogenization ap-
proach. The final lower and upper bound estimates, denoted by Qlb

col and Qub
col

respectively, are given in the middle of Table 1. The relative gap between these
two bounds ranges between 12.9% and 20.0%. That proves that the whole nu-
merical procedure proposed here, gives a reasonably good interval of confidence
for the ultimate bearing capacity of a reinforced foundation. Concerning the
calculation times, for a given α, it takes 120 seconds for evaluating Qlb

col or Q
ub
col,

whereas the strength capacity of the non reinforced soil is estimated in less than
10 seconds.

The performance of the stone column reinforced soil can be compared to the
non reinforced case, depending on the load inclination. Thus for a vertical load
(α = 0◦), the bearing capacity is multiplied by a factor equal to 2.30 for the
lower bounds and 2.66 for the upper bounds. Furthermore the bearing capacity
of the reinforced soil strongly decreases as the load is becoming horizontal. It
should even be observed that for the extreme value of α = 90◦ (purely horizontal
loading) the bearing capacity of the reinforced foundation becomes lower than
that of non reinforced one by as much as 14% to 15%.

The corresponding failure mechanism (that is the optimal velocity field of the
kinematic approach) is also infuenced by the presence of reinforcing columns,
as shown in Figure 11. For a purely vertical load, the velocity field obtained
by the numerical kinematic approach is much similar to the classical Prandtl’s
mechanism in the case of non reinforced soil, whereas for the stone column
reinforced soil, a more ”shallow” mechanism is observed (see Figure 11(b)).

Geotechnical engineers often consider that stone column reinforced soils obey
a simplied criterion corresponding to a Mohr-Coulomb criterion, the strength
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(a) Non reinforced soil (b) Stone column reinforced soil

Figure 11: Failure mechanism obtained from the numerical optimization of the kinematic
approach.

characteristics of which depend on the weighted average values of the strength
properties of the soil and the stone column [18]. This average value may be
calculated according to a rule of mixture formula in its simplest form, which
gives, with the characteristics given in (11):

C/Cs = 1− η = 0.72 and tanϕ = η tanϕr = 0.196 (21)

Again, the numerical static and kinematic approaches have been performed
with such homogenized characteristics. These implementations do not involve
any approximated domain. The so-obtained lower and upper bound estimates

for the corresponding ultimate bearing capacity Q
+

are given in Table 1. For
α = 0◦, the simplified criterion overestimates the bearing capacity of a stone col-
umn reinforced soil by a factor 1.1, while the result obtained with this simplified
homogenized material is in quite good agreement with the homogenization-based
result when the load is purely horizontal.

However, according to this ”averaging” approximation, the reinforced soil
is regarded as an isotropic material. But it has been shown in section 3 that
this assumption is in strong contradiction with the numerical assessments of
the macroscopic strength domain. Indeed, as shown in Figure 12, the relatively
good agreement observed for the two extremal inclination angles, is no more
verified when α varies for instance between 5◦ and 30◦, the averaging-isotropic
approximation leading to significantly overestimate the ultimate bearing capac-
ity.

5. Conclusions

In the present contribution a comprehensive yield design homogenization
method has been proposed and fully implemented in order to evaluate numeri-
cally the strength properties of stone column reinforced soils. Lower and upper
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Figure 12: Ultimate bearing capacity estimates as functions of load inclination.

bound estimates for the macroscopic strength criterion of such a composite
material have been produced from numerical optimization procedures. Since
the direct use of these strength domains proves impossible for solving a struc-
tural problem, an existing approximation method of convex domains has been
adapted to the case of unbounded domains.

The main advantage of this new approximation method is that it preserves a
rigorous status for the so-obtained domains (lower bound or upper bound) and
involves few parameters. Its performance in terms of accuracy has been proved,
since for a given configuration of reinforced soil the relative gap between the
two bounds remains smaller than 16%. The implementation of the domains
derived from this approximation method into a structural calculation involves
optimization problems. The latter may be solved by using second-order cone
programming, keeping a rigorous status of bounds to the final results.

The performance of the whole homogenization procedure is evaluated on a
classical geotechnical problem. Following this procedure, lower and upper bound
estimates for the bearing capacity of a stone column reinforced foundation are
computed in less than two minutes each, whereas the calculation time may
reach several hours at best when trying to solve the initial three-dimensional
heterogeneous problem by using for instance a numerical elastoplastic procedure.
Moreover, the proposed numerical method is accurate, since the relative gap
between the two final bound estimates remains smaller than 20%.

The ultimate bearing capacity of the stone column reinforced foundation
has been compared to the non reinforced case. It appears that the reinforcing
effect strongly depends on the load inclination, and can be even non existent in
extreme cases (see Figure 12). Besides, it has been shown that the simplifying
assumption according to which the strength properties of the reinforced soil
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could be modeled through averaged characteristics, may lead to significantly
overestimate the actual anisotropic strength charactersitics of the reinforced
soil and then the ultimate bearing capacity of a reinforced foundation. This
suggests that a design of reinforced soil structures on the basis of such a crude
simplifying assumption is not reliable, and that the actual anisotropic strength
properties of the reinforced soil should absolutely be taken into account as it
has been done here by means of a numerical implementation of the yield design
homogenization method.

The feasability of the latter method and related numerical procedure has
been demonstrated and illustrated on the typical example of a stone column
reinforced foundation where new and original results have been obtained in the
form of relatively close bounds on the ultimate bearing capacity. The accuracy
of those bounds, and notably of the upper bound, could be further improved for
example by making use, in the kinematic approach, of finite elements allowing
for possible velocity jumps between them.

Finally, far from being restricted to particular reinforced soil structures, the
proposed approach can be implemented on other kinds of problems, such as
performing the stability analysis of embankments lying over reinforced soils,
where bounds on the macroscopic strength criterion obtained in the present
article can be readily applied [39].

Appendix A. Details on the numerical approximation procedure

It can be proved that the support function of the sum of N ellipsoidal sets
may be expressed by:

πNell(D,Ak, c) =

N
∑

k=1

√

D : Ak : D + c : D (A.1)

where Ak is a fourth order tensor which specifies the orientation and the dimen-
sions of the kth ellipsoid in the stress space and c defines the center of one of the
N ellipsoids. Since the sum of convex ellipsoidal sets involves few parameters
(if for instance N ≤ 15), 6N + 3 in the case of three-dimensional stress space,
the obtained approximation is much easier to handle than the initial polyhedra,
which involves several thousands of parameters.

An extension of this numerical procedure to unbounded strength domains
is proposed here. First, the resolution of an optimization problem permits to
obtain the characteristics of the ellipsoidal sets involved in the definition ofGlb

app

andGub
app. To approximateGlb, the standard deviation of the difference between

πlb and the support function πlb
Nell, associated to Glb

app, is minimized along all

the macroscopic strain rates in the cone {D}lb, while the support function of
the approximation must remain smaller than or equal to the support function
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of the numerical lower bound estimate for all strain rate directions of {D}lb:

πlb
Nell(D,Ak, c) = argmin

Ak,c

∑

D∈{D}lb

(

πlb(D)− πNell(D,Ak, c)
)2

subject to πlb(D) ≥ πNell(D,Ak, c) , ∀D ∈ {D}lb
(A.2)

The characteristics of the ellipsoidal sets defining Gub
app are obtained by solv-

ing the same kind of minimization problem, except that the associated support
function πub

Nell has to be greater than or equal to πub for all strain rate directions
of {D}ub:

πub
Nell(D,Ak, c) = argmin

Ak,c

∑

D∈{D}ub

(

πub(D)− πNell(D,Ak, c)
)2

subject to πub(D) ≤ πNell(D,Ak, c) , ∀D ∈ {D}ub
(A.3)

Moreover, for all strain ratesD not belonging to the relevance cone of the nu-
merical bound estimate, the support function defining the approximated domain
must be infinite. As πlb or πub, the numerical sets {D}lb and {D}ub are com-
plex to handle in the upcoming implementation of the discretized homogenized
equivalent problem. Thus, it has been decided to express an approximation to
each set as a conic condition of the form:

D ∈ {D}app ⇔ α1D11 + α2D22 ≥ α3

√

α2
4(D11 −D22)2 + α5(2D12)2 (A.4)

where the αi are parameters obtained from an optimization procedure. It is
to be noticed that this condition corresponds to the relevance condition of the
Mohr-Coulomb criterion if α1 = α2 = α4 = α5 = 1 and α3 = sinϕ. In order
to keep a rigorous bound status for both approximated domains the following
conditions must be respected during the optimization procedure:

{D}lb ⊆ {D}lbapp (A.5)

{D}ubapp ⊆ {D}ub (A.6)

Finally, each approximated criterion Gapp is defined by its support function
πapp, depending on its cone of outer normals {D}app, as follows

Gapp =
⋂

D

{

Σ |Σ : D ≤ πapp(D)
}

(A.7)

where

πapp(D) =

{

πNell(D,Ak, c) if D ∈ {D}app(αi)

+∞ otherwise
(A.8)

The parameters αi and components of Ak and c are related to the numerical
macroscopic strength domain which is approximated.
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