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This paper deals with analytical and numerical modelling of the internal stress generated in argillaceous 
rocks during humidification/desiccation processes, which is an essential issue for damage study. This local 
stress field arises from two mechanisms: (i) complex interactions between free swelling/shrinking clay 
matrix and non-strained inclusions of carbonate and quartz and (ii) a self-restraint effect induced by the 
moisture gradient during the transient moisture exchange process. The inclusion–matrix interaction is 
investigated in different cases. Firstly, the analytical solution of the stress around a cylindrical inclusion 
embedded in an infinite swelling matrix is derived: The inclusion would suffer tension (compression) under 
humidification (desiccation), and the resulting cracking patterns are discussed. Then, the problem of two 
inclusions with different distances in an infinite swelling matrix is considered, and it is shown that the local 
stress around an inclusion will be perturbed and amplified by neighbouring inclusions. Finally, an inclusion 
outcropping at the free surface of a swelling matrix is modelled as to investigate the effect of free surface: 
The inclusion–matrix interface undergoes shear stresses of which the maximum is found at the free surface. 
In addition to the inclusion–matrix interaction, the self-restraint effect is investigated: The induced stress is 
maximal at the beginning of humidification/desiccation processes and vanishes gradually with time. The 
quantity of the self-restraint stress is strongly controlled by the hydric loading rate.

KEY WORDS: argillaceous rocks; humidification/desiccation; inclusion–matrix interaction; self-restraint effect

1. INTRODUCTION

Argillaceous rocks are intensively studied as possible host rocks for underground radioactive nuclear

waste disposal in the last decades. During different stages of the service life, such rocks are

subjected to some humidification/desiccation processes that may lead to damage phenomena [1, 2].

These damage phenomena modify the permeability of the host rock and are unfavourable for the

sealing of a long-term repository [3–5].

The experimental observations have evidenced microcracks emerging in both humidification and

desiccation cases [6, 7]. Apparition of these microcracks is linked to different restraints that can

generally be classified into two types: external and internal restraints. The external restraint is related

to the external mechanical loading and the substrate-restraint effect. The internal restraint for

argillaceous rocks consists of two terms: (i) inclusion–matrix interaction and (ii) self-restraint effect.

The argillaceous rock is a heterogeneous material, made of numerous inclusions (mostly carbonate

and quartz) scattered in a continuous clay matrix. Because of its specific physicochemical properties,

*Correspondence to: A. Pouya, Laboratoire Navier (ENPC-IFSTTAR-CNRS), Université Paris-Est
†E-mail: Ahmad.Pouya@enpc.fr
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the clay matrix tends to swell (shrink) under humidification (desiccation). However, this free

deformation is inhibited by the non-strained inclusions, and some local stresses are generated. The

stress induced by inclusion–matrix interaction is controlled by the free swelling quantity, the

morphology, and the mechanical properties of the inclusions and the matrix [8, 9]. A moisture

gradient develops inside the specimen during the transient moisture transport stage. Hence, the inner

part of samples inhibits the swelling/shrinking of the outer part, and this is the second mechanism of

internal stresses. The stress induced by moisture gradient, commonly called self-restraint effect, is

governed by the specimen geometry as well as the hydric loading rate, etc. The self-restraint effect

is responsible for the shrinkage (by drying or cooling)-induced cracking that can be found in a wide

range of materials [10–13].

This paper focuses on the internal restraint (without external restraint) of argillaceous rocks

under humidification/desiccation. The material is considered as a matrix–inclusion composite, in

which the clay matrix swells (shrinks) freely (without mechanical stress) when the relative

humidity (RH) varies. This paper is composed of two parts. The first part addresses the

mathematical formulation: The constitutive equation of argillaceous rocks under humidification/

desiccation is derived, as well as a simplified model of humidification (desiccation) process that

is necessary for studying the self-restraint effect. The second part focuses on the internal stress

field generated by the two terms of internal restraint: inclusion–matrix interaction and self-

restraint effect. Different cases are considered: one cylindrical inclusion and two inclusions

with variable distances embedded in a swelling matrix and a hemispheric inclusion outcropping

at the free surface of a semi-infinite swelling matrix. The convention of the mechanics of a

continuum medium is applied, that is, extension (tension) is considered to be positive for the

strain (stress).

2. BEHAVIOUR OF ARGILLACEOUS ROCKS UNDER HUMIDIFICATION/DESICCATION

2.1. Governing equations under hydric loads

The behaviour of argillaceous rocks under humidification/desiccation is a coupled problem of physical

chemistry and mechanics. Firstly, the clay mineral undergoes a volume variation because of RH

change. This physicochemical response can be considered as a free deformation in the context of

mechanics. Secondly, the non-swelling inclusions inhibit the swelling/shrinking of a clay matrix.

Moreover, a moisture gradient develops inside the sample during the moisture transport process. The

previously mentioned two terms lead to an internal stress field, which is responsible for the

mechanical response. Based on the previously mentioned considerations, the equations governing

the local behaviour of argillaceous rocks can be reasonably written in the following simple hydric-

elastic form:

σ xð Þ ¼ ℂ xð Þ : ε xð Þ � ε
F xð Þ

� �

(1)

where σ(x) and ε(x) are the local stress and strain at position x in the microstructure. The mechanical

interactions are attributed to non-uniformity of the elastic stiffness tensor C(x) and incompatibility of

local free strains ε
F(x). It is noted that the free-strain-multiplied stiffness tensor gives a stress, so the

right term of Eqn 1 is equivalent with a pre-stress that is usually met with in thermomechanical

problems. Eqn 1 can also be considered as an ‘effective stress’ expression usually used in

poromechanics in which liquid pressure corresponds to the ‘free strain’ term here.

Argillaceous rocks exhibit multiscale heterogeneity, and the clay matrix is also inhomogeneous

because of various clay groups (smectite, illite and kaolinite) and distributed clay particle

orientations. Because this study concerns the inclusion–matrix interaction, the intra-phase

heterogeneity of the clay matrix is neglected here. In this case, the local stiffness tensor can be

written as
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ℂ xð Þ ¼
ℂ

M in clay matrix

ℂ
I in inclusion

(

(2)

Similarly, the local free strain can be written as

ε
F xð Þ ¼

ε
h xð Þin clay matrix

0 in inclusion

(

(3)

The free strain in the matrix involves a physicochemical swelling ε
h of clay minerals with RH

increase. Actually, the volume growth consists in separation of pore spaces on multiscales, controlled

by different mechanisms: (i) crystalline swelling associated with the change of interlayer spacing as a

result of hydration of water layers by interlayer cations, (ii) double-layer swelling related to separation

of interparticle space by the effect of a diffuse double layer, and (iii) breakup of large clay particles

into smaller ones, which results in a transition from interlayer spaces into interparticle spaces [14].

Moreover, the swelling of the clay matrix is also attributable to variation of capillary pressure as for

all porous media. The swelling of the clay matrix can be considered as a function of RH:

dεh

dhr
¼ H (4)

where hr is the RH, and H is the swelling coefficient tensor of clay minerals. It is noted that a ε
h
–hr

relationship is non-linear so as H is RH dependent: It is small at low RH, whereas it becomes

significant at high RH, for example, the threshold is around 80% RH for Callovo-Oxfordian

argillaceous rocks. Besides, H is anisotropic: The swelling is much more significant along the

direction perpendicular to the orientation of clay particles [15]. Nevertheless, H is assumed to be

constant and isotropic for simplicity in this study.

2.2. Moisture transport model during humidification/desiccation

The humidification/desiccation of a porous medium consists in a biphase movement: vapour diffusion

that obeys Fick’s law, as well as liquid water transport that is normally described by Darcy’s law.

Moreover, phase transition (condensation or evaporation) occurs simultaneously in a porous medium

because of capillary effect. Broadly, the humidification (desiccation) process in a porous medium is

achieved by two mechanisms: (i) a process of vapour diffusion followed by a water condensation

(evaporation) inside the specimen and (ii) a process of liquid water transportation from (towards) the

specimen boundary where vapour condensates (water evaporates). Coussy [16] has demonstrated

that the moisture transport in weakly permeable materials (intrinsic permeability K< 10�19m2) is

conducted mainly in its liquid form, that to say, the second mechanism. This means that the effect

of the vapour diffusion and the condensation within the sample can be ignored. The intrinsic

permeability of Callovo-Oxfordian argillaceous rocks varies from 10�23 to 10�19m2, which is

within the weakly permeable material range mentioned previously. For such case, a simplified

diffusion equation can be used to describe the moisture transport process [17]:

ϕ
∂Sl

∂t
þ div DlgradSlð Þ ¼ 0 (5)

with

Dl ¼ P′
c Slð ÞK l ¼ P′

c Slð Þ
Kkrl Slð Þ

ηl

where Sl is the degree of saturation, and ϕ and ηl denote the porosity of a porous medium and the

dynamic viscosity of water, respectively. K is the intrinsic permeability of the porous material independent
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of saturation, while krl is the relative permeability that is Sl dependent. For Callovo-Oxfordian argillaceous

rocks, it can be expressed by the formula proposed by Bovet [18]:

krl ¼ Slð Þn (6)

where n=3 for the saturation case, and n=3.5 for the desaturation case.

Recall that capillary pressure Pc is defined as the difference between gas pressure and water pressure

(Pc=Pg�Pw). The Pc–Sl relationship is described by the isothermal water retention curve. Based on

laboratory experimental data, a representative approximation based on the Vauclin–Vachaud relation

has been chosen for the isothermal water retention curve of Callovo-Oxfordian argillaceous rocks [18]:

Sl ¼
a

aþ 100Pcð Þb
(7)

where a = 2842 and b = 0.906 when Pc is expressed in MPa.

Supposing the gas pressure remains constantly equal to the atmosphere pressure (Patm), the capillary

pressure can be linked to the RH by the famous Kelvin’s law:

ρl
RT

Mv

ln hrð Þ ¼ Pc (8)

whereMv, R, and T stand for the molar mass of water, ideal gas constant, and temperature, respectively. ρl
is the mass density of water. Finally, the parameters describing the humidity state of specimen (hr, Pc, Sl)

are linked by Eqns 7 and 8.

The following investigation of the internal stress field is based on a humidification from 80% to 90% RH

in the context of elasticity. The swelling coefficient of clay matrix is reasonably chosen to be constant as

10�2/100%RH, that is, the free swelling of clay matrix ε
h=1×10�3. The swelling coefficient is order

compatible with the experimental data in the high RH range [19]; for low RH level, it will be much smaller

so the internal stress will be more modest. The swelling of clay matrix is supposed isotropic for simplicity.

One can deduce that the anisotropy of H may lead to a network of microcracking with a preferential

orientation: It might be perpendicular to the direction of the major swelling. The matrix and inclusion are

considered as homogeneous isotropic elastic materials, and their mechanical constants are chosen from data

collected by Agence nationale pour la gestion des déchets radioactifs (ANDRA) [18] and listed in Table I.

3. INTERNAL STRESS FIELD UNDER HUMIDIFICATION/DESICCATION

3.1. A cylindrical inclusion embedded in an infinite swelling matrix

Consider an elastic cylinder (inclusion) embedded in an infinite homogeneous isotropic elastic medium

(clay matrix) that undergoes a uniform isotropic swelling (Figure 1). It is assumed that the thickness of

the sample in the z-direction is much smaller than in-plane dimensions, so the plane stress condition

manifests itself. The cylindrical coordinates are used here. Because of the symmetry, all stress and

Table I. Reference values for the key parameters of Callovo-Oxfordian argillaceous rocks.

Notation Parameter Value

Em Young’s modulus of the matrix 10GPa
νm Poisson’s coefficient of the matrix 0.2
Ei Young’s modulus of the inclusion 80GPa
νi Poisson’s coefficient of the inclusion 0.2
H Swelling coefficient of the clay matrix 10

�2
/100% RH

K Intrinsic permeability 10
�20

m
2

ηl Dynamic viscosity of water 1.00 × 10
�3

Pa · s
ρl Volumetric mass of water 1000 kgm

�3

M Molar mass of vapour 1.8 × 10
�2

kgmol
�1

R Ideal gas constant 8.31 JK
�1

mol
�1

T Temperature 293.8K
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strain components are only r-dependent. The governing equations for this problem are the same as that

for a thermoelastic problem except that the thermal expansion is replaced by the swelling deformation.

These equations and their method of resolution are classical and have been recalled in the Appendix.

The inclusion–matrix interaction results in uniform hydrostatic tension in the inclusion. The stress in

the matrix is maximal at the interface and decreases in the order of r�2 with the distance from the

inclusion centre: It is tensile radially and compressive in the orthoradial direction (Figure 2). No

shear stress will be generated in this analysis because of rotational symmetry. The strain is

Figure 1. Geometry of the specimen with a cylindrical inclusion in an infinite clay matrix.
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Figure 2. Evolution with r of the local stress (a) and strain (b) as a result of inclusion–matrix interaction un-
der plane strain condition (inclusion radius is 1).
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homogeneous in the inclusion 0.08 × 10�3. The radial strain of the matrix at the interface is 2.3 × 10�3,

which is even greater than the free swelling 1 × 10�3.

It is stressed that the original aim of this analysis relied on interpreting some observations of

microcrackings during humidification/desiccation processes on thin samples [6]. Hence, plane stress

condition is chosen in the present analysis; it can, however, be easily extended to other cases, and

the conclusions will be similar except for quantitative differences. For example, considering always

a cylindrical inclusion, the radial stress at the inclusion–matrix interface will be 9.3MPa when the

plane strain condition applies compared with 7.7MPa for the stress plane condition, and it decreases

in the order of r�2 with the distance from the inclusion centre. For a spherical inclusion, it will be

13.3MPa at the interface and decreases in the order of r�3 with the distance.

The previously mentioned problem can be considered with the help of a set of imaginary cutting,

straining and welding operation, shown in Figure 3. At the initial state, the inclusion (circle) and

matrix (circular ring) adhere well with each other. Then, cut around the inclusion and remove it

from the matrix. Allow a non-constraint swelling of the matrix to take place. It should be noted that

the swelling results in an increase of the inner diameter of the circular ring. Finally, put the

inclusion back in the matrix and rejoin it across the cut. The adhesion of a non-swelling inclusion

hinders the growth of the hole in the matrix and consequently results in tension at the interface.

3.1.1. Microcrack patterns under humidification/desiccation. Evaluating the internal stress field has a

great interest for damage study. The tensile strength of Callovo-Oxfordian argillaceous rocks is about

3MPa, while their compressive strength is 21MPa [18]. Note that these reference values, obtained by

Brazilian tension and uniaxial compression tests, are macroscopic parameters. However, the study on

microcracking here requires microscopic parameters of three elements (inclusions of carbonate and

quartz, clay matrix and their interfaces) that are greatly contrasting. The inclusions are relatively stiff

and own high strengths, for example, the tensile strength of quartz is 48MPa, while its compressive

strength can attain 1.1GPa. Damage occurs more easily in the clay matrix or at the inclusion–matrix

interface. Unfortunately, the mechanical resistances for these two parts are extremely lacking.

Therefore, only qualitative analysis on potential dangerous positions and likely microcrack patterns

are discussed in the following.

For the humidification case, the maximum tensile stress is the radial stress at the interface. If its

value exceeds the inclusion–matrix bond strength, a separation of the inclusion from the clay matrix

occurs (Figure 4a). If the tensile strength of the clay matrix is even lower than the inclusion–matrix

cohesion, a tensile failure takes place in the immediate vicinity of the interface. The crack pattern, in

this case, is similar to the previous one, only now the inclusion is covered by a thin layer of clay.

In case of desiccation, the stress distribution is similar to that under humidification but with opposite

sign. The tensile orthoradial stress potentially creates microcracks that radiate from the interface into

the clay matrix (Figure 4b). Consequently, shear stress is generated along the interface, and its

extent attains the maximum near the radial cracks. This might result in shear microcracks at the

inclusion boundaries.

As a summary, the interaction between the free-strained clay matrix and inclusions results in a local stress

field, which is a potential source of damage. The maximum is always located at the inclusion–matrix

interface, regardless whether it undergoes humidification or desiccation. However, the possible

Figure 3. Interaction between the inclusion and the swelling matrix.
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microcrack patterns are dissimilar for the two cases: Humidification possibly results in tensile failure along

the inclusion–matrix interface, whereas radial cracks may occur in the claymatrix under desiccation together

with shear cracks along the interface.

3.2. Two cylindrical inclusions embedded in a swelling matrix

The previous modelling concerns an inclusion in an infinite matrix, and so, only the inclusion–matrix

interaction is considered. The internal stress field in argillaceous rocks is, however, also controlled by

the interactions between the inclusions. To study these interactions, a case of two circular inclusions

(with uniform diameter d= 0.5) embedded in a free-swelling matrix is modelled, always in the plane

stress condition. Because the interaction is strongly controlled by the distance between the

inclusions, various D values (distance between the centres of two inclusions) are studied. The

Porofis (software for the finite element analysis of fissured porous media developed by Pouya, 2010)

is used for the calculation. The size of the matrix (20 times the inclusion diameter) is chosen large

enough to represent the field condition as an infinite boundary (Figure 5). The stress maps for the

D = 1.2d case, shown in Figure 6, reveal that the stress field around an inclusion is strongly

perturbed by the neighbouring one, especially in its front side and the matrix between the inclusions.

The homogeneous stress field for the one inclusion case becomes heterogeneous, and their

magnitude becomes more important: The maximum values for principal stresses (σ1 and σ3) are

Figure 5. Geometry of the specimen with two cylindrical inclusions.

Figure 4. Potential microcrack patterns in case of (a) swelling matrix and (b) shrinking matrix.
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respectively 20.4 and 8.2MPa, compared with 7.7MPa for the one inclusion case. The maximum

tension is located at the front side of the inclusion, and it decreases gradually to the rear side.

The σyy profiles along the y axis for various D values are presented in Figure 7. When the two

inclusions are sufficiently distant from each other (for example, D= 4d), the uniform stress field in

the inclusion, corresponding to the theoretical value for a single inclusion, is well found. The

interaction between inclusions, when they get closer, leads to an amplification of the stress

field. This amplification effect is more pronounced in the front side between two inclusions: It

attains 20.4MPa when D = 1.2d, which is nearly three times that for the single inclusion case

(7.7MPa).

As a summary, the local stress induced by the inclusion–matrix interaction is strongly intensified by

the interaction between the inclusions, and this amplification effect becomes greater when they get

closer. One can derive that the magnitude of local stress increases with the volume fraction of

inclusions. In other words, the microcracking occurs more easily in inclusion-rich zones.

3.3. A hemispherical inclusion outcropping at free surface during humidification process

The two previous cases concern the internal stress field generated by a given homogeneous swelling/

shrinking of the clay matrix. This corresponds to the steady stage of humidification/desiccation, but the

role of self-restraint in the transient stage is not considered. These two types of restrain effects

(inclusion–matrix interaction and self-restraint effect) will be considered together in this section.

Besides, the experimental observation is usually conducted at the specimen surface. This involves a

free surface effect, which will also be studied in this modelling.

Figure 6. Stress maps around two inclusions in a free-swelling matrix (D= 1.2d).
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Figure 7. Stress profiles for the two inclusions with different distances.
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Consider a hemispherical inclusion outcropping at the free surface of a clay formation. The

thickness of the specimen is 3 mm, while the sizes in two other dimensions are infinite. Such

specimen, with initial saturation Sl
0 = 0.66 (RH0 = 80%), undergoes a humidification from its free

surface side RH1 = 90% (Sl
1 = 0.80). No external mechanical loading is applied on the specimen.

This problem exhibits axial symmetry, so the cylindrical coordinates are used. The configuration

of the specimen and boundary conditions are presented in Figure 8. The size in r-direction

(six times the radius of the inclusion) is large enough to represent the field condition as an infinite

boundary. It is stressed that the hemispherical inclusion and the axisymmetrical condition in the

present analysis are different from the cylindrical inclusion and plane stress condition for the

former cases.

To consider the two effects, the modelling is divided into two parts. The moisture transport process

is firstly modelled to determine the evolution of local saturation (Eqn 5). Once the local saturation is

known, the local free swelling of the clay matrix can be estimated from Eqn 4, and the internal

stress field within the specimen induced by the two restraint effects is then calculated. The local

stress may alter the microstructure of the specimen, leading to variation of permeability.

Nevertheless, this coupled effect is ignored in this modelling for simplicity.

3.3.1. Humidification process. The humidification process of argillaceous rocks is modelled by

Porofis. It is reasonably assumed that the clay matrix is permeable, whereas the inclusion is

impermeable. An instantaneous RH increase is applied on the free surface. The evolution of the

saturation fields for different moments is presented in Figure 9, which exhibits a quasi-1D

humidification process. The moisture gradually penetrates from the top of the specimen to the

bottom side. The penetration front is somewhat horizontal, unless it is locally disturbed by the

impermeable inclusion.

3.3.2. Internal stress field. Once the saturation distribution for a given moment is assessed, the

stress field is then calculated by Porofis in the context of elasticity. The stress maps around

the inclusion are presented for two representative moments: the beginning of humidification

t = 10 s (Figure 10) and the steady state (Figure 11). It is stressed that, in Figure 10, the

extreme value of the stress inside the inclusion near the free surface as a result of

singularity (discussed in detail later) is not considered, so no colour is shown is such

zones. This scale setting adjustment allows presenting more evidently the internal stress

field around the inclusion. Moreover, the normal and shear stresses along the inclusion–

Figure 8. Geometry of the specimen with a hemispherical inclusion outcropping at the free surface.
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matrix interface are calculated, shown in Figure 12. Be reminded that for the geometry

defined in Figure 8, the normal and shear stresses are related to cylindrical coordinate

stresses by the following formulas:

σn ¼ σrr sin
2θ þ σzz cos

2θ þ σrz cosθsinθ (9)

Figure 9. Evolution of saturation within the specimen during a moisture transport process.

Figure 10. Local stress fields at 10 s.
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τ ¼ σzz � σrrð Þcosθsinθ þ σrz sin2θ � cos2θ
� �

(10)

3.3.2.1. At transient stage. At t = 10 s, humidification only occurs at the vicinity of the free surface

(Figure 9a). Some compressive local stresses are found at the surface zone of the clay matrix near

the inclusion (refer to σrr and σθθ in Figure 10). The maximum attains more than 9.0MPa at the

inclusion boundary. The stress in the inclusion is mostly tensile (about 4.5MPa), unless the free

surface zone is compressive (more than 9.0MPa). The normal stress along the interface is null at

point 1, while it becomes compressive when approaching the free surface, and increases steeply to

its maximum at point 2 (Figure 12). Point 1 is the inclusion bottom (θ= 0°), while point 2 is the

rz

Figure 11. Local stress fields at the steady stage.

  

Figure 12. Evolution of stress along the inclusion–matrix interface.
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inclusion boundary at the free surface (θ =90°). The shear stress at the interface is null near point 1, prior

to reaching the maximum at point 2. Compared with the two previous studies, one remarkable difference

of this analysis consists in emerging shear stresses close to the free surface: It tends to pull out of the

inclusion from the free surface (refer to the definition of shear stress in Figure 8). This implies that the

potential microcracking is not only in mode I (opening mode induced by tensile stress): It can also be

in mode II (sliding mode induced by shear stress).

It should be noted that point 2 is a singular point: The free surface requires the shear stress at this

point being null (σrz=σzr = 0) whereas the material heterogeneity results in shear stress at the

inclusion–matrix interface. In fact, when dissimilar materials are in contact along a surface, localized

stress singularities will be found around the points where the contact surface meets a free surface

(like point 2). In such case, the stress and strain values tend to become infinite when approaching

the singular point. Nevertheless, the simulation based on a finite element method always provides a

finite value. This is because the finite element method assesses quantities at the integration point

inside elements, but singular points are always mesh nodes that are located at the element edge.

Hence, the stress is never calculated at the singular point, and the infinite value cannot be found to

determine the singularity. The magnitude of this finite stress at a singular point will be intensified by

refining the mesh around it. The order of the stress singularity at the triple contact point depends on

wedge angles and materials’ properties [20, 21].

As the humidification process goes on, the profile of the normal stress at the interface shifts upwards

entirely (Figure 12): It becomes mostly tensile and gradually increases over time, while the

compression near point 2 decreases. The shear stress at the interface increases from the bottom

(point 1) to the free surface (point 2), and point 2 invovles always the highest shear stress.

3.3.2.2. At the steady stage. From Figure 9, the specimen is not totally humidified yet at 910 s. To

study the stress field at the steady state, a uniform free strain that corresponds to the final RH

variation is applied to the clay matrix. At the steady stage, the radial stress σrr in the inclusion does

not evolve horizontally, whereas it varies with depth: The maximum is close to the inclusion bottom

(the value being 19.7MPa) and then decreases gradually up to the free surface (Figure 11a).

Concerning the matrix, the radial stress is compressive around the bottom of the inclusion, while it

becomes tensile near the free surface with the maximum of 8.6MPa. The axial stress σzz is generally

concentrated along the inclusion boundary: It is tensile in the inclusion, while it is compressive in

the matrix. Its maximum is found near point 2.

The normal stress at the inclusion–matrix interface is 6.6MPa at the inclusion bottom (θ = 0°);

then, it increases gently until its maximum is 9.9MPa at θ = 78°, prior to a sharp decrease to

0.6MPa at point 2. The shear stress is null at point 1, which can be explained by the symmetry. It

increases linearly to the maximum of 6.8MPa, prior to a steep fall to 4.7MPa at point 2. Recall

that point 2 is a singular point: The shear stress σrz should attain its maximal at the right vicinity

of point 2, whereas the free surface condition requires σzr = 0 at point 2 (Figure 12). The value of

4.7MPa is an approximate evaluation by the finite element numerical simulation. Virtually, the

maximal shear stress, deduced by extension of the linear evolution, will be about 7.7MPa at the

right vicinity of point 2, prior to a sharp fall to 0 at point 2. Because of this shear stress, point 2 is

always a dangerous point in both transient and steady stages. It is, however, stressed that the

normal stress is compressive at the transient stage, while it is tensile at the steady state. This

means if the cracking of the interface obeys Mohr–Coulomb’s law, then the steady state is the

most critical stage in case of humidification, whereas the initial transient stage (t = 0) is the most

critical stage in case of desiccation.

3.3.3. Self-restraint effect at the transient stage (without an inclusion). The normal stress near point 2

is subjected to a sign change during the humidification process: It is highly compressive at the beginning,

whereas it becomes slightly tensioned at the steady state. This phenomenon is evidently attributable to the

self-restraint effect: The moisture gradient during the transient stage leads to internal stresses within the

specimen. Certainly, the self-constraint effect is generally combined with inclusion–matrix interaction

(as in the previous section). To better understand the contribution of self-restraint effect, the domain of

the inclusion is considered as a hole (the stiffness is null) to exclude the effect of inclusion–matrix

interaction. The stress field for the 10-s step is recalculated and presented in Figure 13. The 10-s step is
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chosen because the self-restraint effect is greatest (the moisture gradient is at maximum) at the beginning

of the humidification process (refer to the saturation gradient in Figure 9). High compressive stresses

(with the maximum of 12.0MPa) are found at the wetting surface, while the moderate tension with the

maximum of 3.0MPa occurs at its lower part.

To have a better understanding of the self-restraint effect, consider a simple case of a rectangular

specimen undergoing a one-side humidification from its top to the bottom. At the beginning, the

upper part of the specimen is firstly humidified and tends to swell. However, this swelling will be

restrained by the non-swelling bottom part where the humid moisture has not reached. Such self-

restraint effect results in compression at the top part and tension at the bottom part. When the

moisture transport goes on and the free swelling becomes more homogeneous inside the specimen,

Figure 13. Local stress fields at 10 s (without an inclusion).

Figure 14. Radial stress filed at 10 s for the case without an inclusion.
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the stress induced by the self-restraint effect gradually decreases and finally vanishes at the steady state.

That is why the compression at the neighbouring zone of point 2 decreases with time. The stress

induced by the self-restraint effect at the hydric loading surface is compressive for the swelling

(humidification) case, whereas it is tensile for the shrinking (desiccation) case.

The radial stress filed at 10 s for the case without an inclusion is zoomed and rescaled (Figure 14) to

be compared with the case with an inclusion (Figure 10a). In general, the radial stress is more intense
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Figure 15. Different hydric loading rates.
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Figure 16. Saturation distribution inside the specimen at the time of 10 s after the end of hydric loading:
(i) 70 s for the 10% RH/min case, (ii) 610 s for the 1% RH/min case, (iii) 3610 s for the 0.17% RH/min case,
and (iv) saturation gradients from top (z= 0) to bottom (z= 3mm) of a specimen far away from the inclusion

(r = 3mm) for different cases.
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with the inclusion: The maximum is 32MPa (at point2), whereas the maximal compression is 6MPa

for the case without an inclusion. Actually, the non-swelling inclusion hinders the displacement of

point 2 because of free swelling (shrinking) and intensifies the stress because of self-restraint:

compression (tension) in case of humidification (desiccation). Note that this amplification effect of

the inclusion for self-restraint is opposite to its role for the inclusion–matrix interaction: tension

(compression) for the humidification (desiccation) case. The total stress is indeed a sum of the two

effects (inclusion–matrix interaction and self-restraint). For each effect, the maximal stress is always

found at the interface. However, the two effects lead to opposite sign stresses so that the total stress

field is very complex: Its maximum might not be at the interface.

3.3.4. Effect of hydric loading rate. The experimental results have revealed that the damage of

argillaceous rocks induced by humidification/desiccation is strongly controlled by the hydric loading

rate [6]. The hydric loading rate plays an important role for the stress induced by self-restraint, and

this effect will be studied in this section (refer to four different rates in Figure 15). The saturation

distributions at 10 s after the end of the hydric loading (10% RH) are estimated (Figure 16). This

means t=3610 s for the 0.17% RH/min rate, 610 s for the 1% RH/min rate, 70 s for the 10% RH/min

rate, and 10 s for the instantaneous hydric loading case. The maximal saturation gradient increases

with the hydric loading rate. The comparison of stress is concentrated at point 2 at the free surface,

where a considerable portion of the local stress is attributed to the self-restrain effect. Its evolution

at the beginning of humidification is plotted in Figure 17. The stress at point 2 increases linearly

during the stage of hydric loading and attains its maximum once the RH variation finishes. Then,

the normal stress gradually decreases, whereas its shear stress remains constant. The stress at point 2

Figure 17. Stress evolution at point 2 during hydric loading in case of (i) 1% RH/min and (ii) 10% RH/min.

-34 

-30 

-26 

-22 

-18 

0.1 1 10 100 1000

Figure 18. Normal stress at point 2 at the time of 10 s after the end of hydric loading versus hydric loading rate.
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for the observation instant (10 s after the end of hydric loading) is drawn versus the hydric loading rate:

Its value is 18MPa in case of 1% RH/min, while it attains 32MPa in case of instantaneous hydric

loading (as shown in Figure 18). This difference is essentially related to variation of the saturation

gradient for different hydric loading rates: The gradient becomes steeper when the hydric loading

increases, and the stresses induced by self-restraint consequently become more important.

4. CONCLUSION

When the RH varies, an internal stress field is generated inside argillaceous rocks because of two

terms: inclusion–matrix interaction and self-restraint. The clay matrix undergoes a volume change

because of its specific swelling–shrinking properties, but the inclusions restrain this free

deformation, and local stresses are generated. Meanwhile, the moisture gradient developed within

the specimen during a humidification/desiccation process leads to non-uniform swelling/shrinking

strains, which also contribute to the internal stress field. The internal stress field is responsible for

the damage phenomena in argillaceous rocks.

The internal stresses induced by the two effects are investigated by analytical and numerical

methods. For self-restraint, the moisture gradient results in tensile stresses at the desiccation

(shrinking) surface but in compressive stresses at the humidification (swelling) surface. Such type of

stresses is maximal at the beginning of humidification/desiccation processes, prior to a decreasing

stage when the moisture transport goes on. The tensile stress for the desiccation case may lead to

microcracks perpendicular to the drying surface, which can be observed for a wide range of

shrinking materials. The stress induced by self-restraint strongly depends on the hydric loading rate:

It increases with the hydric loading rate.

The inclusion–matrix interaction in argillaceous rocks results in tensile stress in the inclusion for the

humidification case (swelling clay matrix) and compressive stress for the desiccation case (shrinking

clay matrix). The microcracking exhibits dissimilar patterns in different cases: Separation of

inclusion–matrix interface may be found in the humidification case, whereas desiccation potentially

results in radial microcracks as well as shear microcracks in the matrix. Moreover, neighbouring

inclusions will perturb and intensify the internal stress field, and this amplification effect increases

when the neighbouring inclusion gets closer. It should be noted that the inclusions play opposite

roles for the two effects: It amplifies the stress because of self-restraint effect (i.e. compression for

the humidification case and tension for the desiccation case), while the inclusion–matrix interaction

leads to tension in case of humidification and compression in case of desiccation.

A case of a single inclusion outcropping at a free surface is considered to study the effect of the free

surface. Regardless whether humidification or desiccation occurs, the inclusion–matrix interface near

the free surface is a dangerous location for damage because of high shear stresses. For example, this

point undergoes tensile stresses combined with high shear pulling the inclusion out of the matrix in

the humidification case. Moreover, the normal stress at the interface approaching the free surface

undergoes a sign change during the moisture transport process: It is compressive at the beginning of

the humidification process mainly because of self-restraint, while it is tensile at the end of this

process because the inclusion–matrix interaction effect becomes predominant. This demonstrates that

the self-restraint and inclusion–matrix interaction should be taken into account together, and the

total stress is indeed the result of these two effects.

APPENDIX

The governing equations for a cylindrical inclusion embedded in an infinite-swelling matrix are

Equilibrium equation

dσrr

dr
þ
σrr � σθθ

r
¼ 0 (A-1)
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where σrr and σθθ denote the radial and orthoradial stresses, respectively, while r denotes the radial

coordinate.

Strain-displacement relation

εrr ¼
du

dr
; εθθ ¼

u

r
(A-2)

where ϵrr, and ϵθθ denote the radial and orthoradial strains, while u is the radial displacement only

depending on r.

Constitutive equation

For the inclusion,

εrr ¼
1

Ei

σrr � viσθθð Þ (A-3a)

εθθ ¼
1

Ei

σθθ � viσrrð Þ (A-3b)

εzz ¼
�vi

Ei

σθθ þ σrrð Þ (A-3c)

For the matrix with free deformation ε
h,

εrr ¼
1

Em

σrr � vmσθθð Þ þ εh (A-4a)

εθθ ¼
1

Em

σθθ � vmσrrð Þ þ εh (A4-b)

εzz ¼
�vm

Em

σθθ þ σrrð Þ þ εh (A4-c)

where E and v denote Young’s modulus and Poisson’s ratio. The subscripts i and m represent the

inclusion and the matrix, respectively. Note that the constitutive equations are based on the

hypothesis of plane stress condition: Vertical stress is null (σzz = 0).

The combination of the previously mentioned equations gives the following equation that holds not

only for the inclusion but also for the matrix:

d2u

dr2
þ
1

r

du

dr
�

u

r2
¼ 0 (A-5)

The general solution of the previous equation is

u ¼ Ar þ
B

r
(A-6)

where A and B are two constants that can be determined by the boundary conditions. For the inclusion,

B= 0 as u(0)= 0 because of the symmetry. Therefore, the strain and stress are uniform in the inclusion

and can be expressed as

εrr ¼ εθθ ¼ Ai (A-7a)

σrr ¼
Ei

1� vi
Ai (A-7b)
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The strain and stress in the matrix are

εrr ¼ Am �
Bm

r2
; εθθ ¼ Am þ

Bm

r2
(A-8a)

1� vm
2

Em

σrr ¼ 1þ vmð Þ Am � εh
� �

� 1� vmð Þ
Bm

r2
(A-8b)

Because the stress at infinity should be null σrr(∞) = 0, then

Am ¼ εh (A-9)

The assumption of perfect adhesion at the inclusion–matrix interface and so the continuity of the

displacement at this interface r׀) 1=׀ ) yields

Ai ¼ εh þ
Bm

R2
(A-10)

Bm can be determined from the continuity of the normal stress at the inclusion–matrix interface:

Bm ¼
�R2εh

1þ 1� við ÞEm= 1þ vmð ÞEi

(A-11)

Finally, the uniform stress in the inclusion is found:

σrr ¼
εh

1� við Þ=Ei þ 1þ vmð Þ=Em

(A-12)
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