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ABSTRACT:

We define a global matching framework based on energy pyramid, the Global Matching via Energy Pyramid (GM-EP) algorithm,
which estimates the disparity map from a single stereo-pair by solving an energy minimization problem. We efficiently address this
minimization by globally optimizing a coarse to fine sequence of sparse Conditional Random Fields (CRF) directly defined on the
energy. This global discrete optimization approach guarantees that at each scale we obtain a near optimal solution, and we demonstrate
its superiority over state of the art image pyramid approaches through application to real stereo-pairs. We conclude that multiscale
approaches should be build on energy pyramids rather than on image pyramids.

1. INTRODUCTION

Precise Digital Surface Models (DSM) are widely employed in
urban monitoring, geological surveys, architecture, or archeol-
ogy. DSM are now mostly generated using remote sensing sur-
veys based on optical stereo-imaging, interferometric Synthetic
Aperture Radar (SAR), or Light Detection And Ranging (LiDAR)
acquisitions (Li et al., 2005). In this paper, we focus on optical
stereo-imaging.

The volume of available optical aerial and satellite images has
sky-rocketed during this last decade. Moreover, the resolution
and the size of these images have also vastly increased, and it is
now common for satellites with push-broom sensors to produce
images of more than 35,000 x 30,000 pixels with resolution up
to 50 cm Ground Sampling Distance (GSD) (Worldview, 2014).
Aerial imaging with frame camera achieve resolution better than
10 cm GSD with 20,000 x 13,000 pixels per images (UtraCam,
2014).

DSM with impressive accuracy and resolution can now been com-
puted using multi-stereo pairs (Acute3D, 2014, 123DCatch, 2014,
UtraMap, 2014, Pix4d, 2014, Micmac, 2014), such techniques
are based on the redundancy of view points as one ground point
is viewed by up to hundred of images. We work in a slightly dif-
ferent context where only one stereo-pair is available, which is
typical of satellite imagery.

DSM computation from stereo pairs involves a number of steps
described for instance in (Hartley and Zisserman, 2004): calibra-
tion, aerotriangulation, eventually rectification, and then the esti-
mation of the disparity map; finally, the DSM is computed from
the geometry of acquisition and the estimated disparity map. In
this paper, we only focus on the estimation of the disparity map
in epipolar geometry (Zhang, 1998).

Numerous methods have been designed to estimate disparity maps
e.g. (Scharstein et al., 2001, Brown et al., 2003, Ansar et al.,
2004, Tombari et al., 2008). State of the art approaches esti-
mate disparity maps by defining an energy to minimize, which
commonly enforces a notion of matching and a notion of regu-
larity on the disparity maps. To speed up the computation, the
photogrametry community has developed semi-global matching
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approaches (Hirschmuller, 2005, Pierrot-deseilligny and Paparo-
ditis, 2006) that compute local optimum solutions along different
directions and aggregate them together. However, no mathemati-
cal guarantee has been given on the aggregation of local solutions
to form a global optimum. Under different constraints, the com-
puter vision community has developed more advanced techniques
to globally optimize the matching problem (Szeliski et al., 2008,
Kappes et al., 2013). These techniques called global matching are
mathematically more sound than semi-global matching as they
guarantee a near global optimum (Boykov et al., 2001). How-
ever, due to their computational complexity, they have only been
applied to small images, i.e., less than 1000 x 1000 pixels, as
proof of concept (Middleburry, 2014, Klaus et al., 2006, Kol-
mogorov and Zabih, 2001) and are not yet scalable to accom-
modate the large sizes of remote sensing images. Very recently,
the discrete optimization community has started to show some
interest for variable grouping as a technique to solve global opti-
mization more efficiently, (Bagon and Galun, 2012, Komodakis,
2010, Kim et al., 2011). However, only results from (Middle-
burry, 2014) have been presented for stereo imagery.

Our contribution is to bring the global matching techniques up to
the dimensionality of remote sensing data and to offer the pho-
togrammetry community a sound mathematical framework both
in terms of modeling and optimization. In this paper, we describe
how to estimate disparity maps based on energy minimization.
Then, we propose an algorithm to efficiently solve such opti-
mization problems with a multiscale approach based on an en-
ergy pyramid rather than the traditional image pyramid. Finally,
we demonstrate the improvements of our approach through an
application to real stereo acquisitions.

2. THE STEREO MATCHING PROBLEM
2.1 Probability formulation

Let I, be a reference image and G = (V, ) its associated graph.
The set of nodes V consists of the pixels of I, and the set of edges
£ is defined by the 4 connectivity as illustrated in Fig. 1. Let I,
be the target image.

Given I, and I, we need to find the most probable 2D deforma-
tion d which associates each pixel of I,. to a pixel of I; with d
being a function of p € V — d(p) € (R x R). Thus, d lives in



Figure 1: Graph G = (V, ) of a 4 by 4 image with a 4 connec-
tivity.

D = (R x R)**¥Y) We measure how a given d fits the data I,.
and I; by defining:
P(d|I, It). M

The definition of P is context dependent, but most approaches
enforce: (1) a notion of the similarity between I and I; o (id+d)

(where id refers to the identity operator) by expressing P (d|I, I1)

and; (2) a notion of regularity for d by expressing Pr(d|l). If
we suppose that these two probabilities are independent, we can
write:

P(d|I,I;) = Py(d| Iy, It) Pr(d| ). 2)

Instead of directly working with probabilities, we prefer using the
energy domain as it is easier to define a measure on images. One
can simply relate probability density function to energy via the
Gibbs measure:

1
P(X =x)= A exp(—E(x)), 3)
With Z being a normalization factor so that the integral of the
probability function equal to 1.

2.2 Energy formulation

Through Eq. 3, we relate E, Eys, and Er to P, Py, and Pr
respectively, which gives the following energy:

E(d) =Y Em(d,p)+ Y Er(d,p,q). O]

peV pqeEE

We define a pixel-wise similarity measure based on the similar-
ity function p. Commonly used similarity functions are L1 or
L2 norms (Birchfield and Tomasi, 1998), Normalized Cross Cor-
relation (NCC) or Zero Normalized Cross Correlation (ZNCC)
(Brown, 1992), and the different versions of the Mutual Infor-
mation (Viola and Wells, 1995, Kim et al., 2003, Hirschmuller,
2005). In any case, the matching energy of a pixel p is defined as:

Ewm(d,p) = p(Ir, It o (id + d(p))). )

If the similarity measure is defined on a patch, we apply a rigid
translation to the patch. Here, we use the ZNCC coefficient as
it is robust to changes of illumination and contrast between I,
and I, that appear due to specular objects or different acquisition
times.

To enforce the regularity of d we choose to penalize the L1-norm
of its discretized gradient, modulated by a weight function w. For
each edge pq € &:

Er(d,p,q) = w(p, q)|ld(p) — d(q) ||, (6)

With :

w(p,q) = A1 + Az exp (—M> N G))

o2

A1, A2, and o are scalar parameters. The L1-norm of the gradi-
ent naturally enforces piece-wise constant disparities. The weight
function w(p, q) relaxes the regularization on radiometric discon-
tinuities of the reference image as in (Gamble and Poggio, 1987,
Boykov et al., 2001). This is an effective heuristic as most of
the edges of the disparity maps are also edges of the image I,.
Alternatively, we could use the L1-norm of the laplacian rather
than the gradient but this would lead to optimizing second order
Conditional Random Fields that despite recent progress in solvers
remain intractable in the context of this study (Komodakis and
Paragios, 2009, Ishikawa, 2011, Fix et al., 2011).

2.3 Discrete Conditional Random Fields

We have built the measure £y of how d fits our data and the
measure F'r of how d respects the a priori knowledge on the
disparity map. However, we still need to find the most probable
disparity map d*, i.e., the maximum a posteriori, by minimizing
Eq. 8 overd € D:

d" = min E(d). ®)

Finding d* means optimizing a continuous Conditional Random
Field (CRF), continuous because d belongs to the continuous
space D and conditional because Pr depends on the data, i.e.,
I,.. This task is extremely difficult mainly because d is continu-
ous and non-convex as Fig. 2 illustrates. Instead, we discretize D
for each nodes p € V to the discrete set Dy, so that we now deal
with a discrete CRF that is much easier to solve, with d living in

(Dp)p-

We use the vocabulary of the discrete optimization community
and we introduce the notion of graph, unary term, edge cost, dis-
tance function, and label set for a CRF.

Our graph is directly the one of the image I, i.e., G = (V,E).

We introduce D = Upev D,, the union of all tested disparities.
To each disparity of D is associated a label, i.e. an index, in the
label space £. Hence, each node p has a different label space
L, C L that relates to the disparity set Dp,.

To each node p € V and each label [ € £, we associate a unary
term corresponding to Eq. 5:

eo(l) :{ plr Lo (id + D)) ifLeL, o

+00 otherwise
If | ¢ L, the configuration is impossible, and we associate an
infinite unary cost.

To each edge pg € &, we associate an edge cost :

Wpg = w(p, q)- (10)

To each pair of labels (I1,l2) € £ we associate a distance func-
tion:
5(1x,12) = D) — D) .- an

For the sake of completeness, each edge pg € £ and each pair of
labels (Ip,lq) € L defines a pairwise term.

pw(pg, lp, lg) = Wwped(lp, lq). 12)



We finally optimize the energy of the following discrete CRF:

Ecrr = I}ggz ep(lp) + Z Wpqd(lp, lq)- (13)

peEV pgeE

After optimizing Eq. 13 we obtain a labelling [* that relates to
the disparity map d*. For each nodes p € V, the following holds:

d*(p) = D" (p))- (14)

We note CRF*! = [G, ¢, w, 6] the CRF computed from . and I;
and defined by Eq. 13. CRF" belongs to the class of first order
CRF because for each edges pg € &, the distance function § only
depends on the two labels I,, and I,. The size of CRF* depends
on: (1) its spatial component, i.e., the number of nodes V' and the
number of edges &£; and (2) its label component i.e., the number
of label that relates in our case to the number of disparities per
node p to evaluate.

The complexity to solve a first order CRF depends on the rela-
tive contribution to the energy of the unary terms and the pair-
wise terms. The higher the contribution of the pairwise terms,
the more complex is the CRF optimization. The nature of the dis-
tance functions ¢ is also important. If ¢ is issued from a metric
function, as in our case, then we have mathematical guarantee to
retrieve a solution close to the global optimum while optimizing
the CRF (Boykov et al., 2001, Komodakis and Tziritas, 2007).

During the last decade numerous advances have been achieved to
optimize this problem (Geman and Geman, 1984, Felzenszwalb
and Huttenlocher, 2004, Kolmogorov, 2006, Boykov et al., 2001,
Komodakis et al., 2007a, Komodakis, 2010). Our attention was
drawn to Fast-PD, (Komodakis and Tziritas, 2007, Komodakis et
al., 2007b) for two different reasons: (1) it is the fastest algorithm
currently available (Kappes et al., 2013); (2) it has the ability
to use an input as initialization. This last property is extremely
interesting as our multi-scale approach benefits from a hot-start
of the CRF optimization, using the solution found at a previous
scale.

3. MULTI-SCALE SCHEME AND SPARSE CRF
3.1 The multi-scale scheme

In our remote sensing context images and disparity to recover are
large. Directly minimizing Eq. 13 would be inefficient both in
terms of memory consumption and computational speed because
the needed discretized disparity space D will be very large. In-
stead, we propose a multi-scale approach to efficiently explore
the solution space D with a succession of discretized disparity
spaces D.

A multi-scale approach is valid because of the particular structure
of the disparity map to retrieve. Indeed, while the full disparity
range is large at the image scale, one can notice that locally the
range is only a mere fraction of the full range. Natural topography
is the main contributor to widening the range of disparities, which
has a relatively low spatial frequency at the resolution we work
at. Moreover, the local range of disparities is mainly due to man-
made objects such as buildings, which tend to have higher spatial
frequencies than natural features. Hence, the largest low spatial
frequency disparities are resolved at the coarsest scales, while
the smallest high spatial frequency disparities are resolved at the
finest scales.

Our multiscale approach builds coarse to fine sequences of CRF,
CRF™,...,CRF’,...,CRF", with CRF" being defined at the
full resolution of the images I, and I;, and CRF I being defined
at a downsampling factor f. Our multiscale approach reduces the
size of the CRF on both the spatial and label components. To
build CRF? from CRF* we can use two different approaches:
(1) image pyramid or (2) energy pyramid. We compare the two
approaches in 4.1.

For both pyramid approaches, a crucial step is to define the dis-
cretized disparity space (D), by adequate sampling of D. The
key property lays in noticing that due to the interpolation ker-
nel used for computing I; o (id + d(p)), the values of the unary
terms are continuous with respect to d(p) and have a limited fre-
quency support. Figure 2 represents typical values of unary terms
issued from ZNCC coefficients with a very fine sampling along
one component of D. Ideally, we would like to sample D such
that the unknown minimum of Eq. 8, d*, is included in the sam-
ples. However, we have no prior knowledge of d*. Therefore,
we suppose the image well-sampled and we choose to respect the
Shanon sampling theorem. As the ZNCC coefficient is defined
on a patch, this doubles the frequency support of the unary terms
compare to the frequency support of the images /- and I;. Thus,
we sample D to half a pixel as in Fig. 2.

1.2 T

ZNCC coefficient value

-10 -8 -6 -4 -2 (IJ 2 4 6 8 10
disparity value in pixel

Figure 2: Illustration of the non convexity of unary terms with a

0.5 pixel discretization step to respect the Shanon sampling theo-

rem.

We introduce the notion of energy manifold as the hyper-surface
formed by the set of unary terms. The energy manifold lives in
a 4 dimensional space. One dimension is linked to each spatial
component of the unary terms. One dimension is linked to each
disparity component of the unary terms.

3.2 Image pyramid: the GM-IP algorithm

The Global Matching with Image Pyramid (GM-IP) algorithm is
an image pyramid approach based on downsampling the images
to reduce both components of C RF. First, we downsample 1.
and I; to I and Itf . This directly reduces the spatial component
of the CRF and it smooths the energy manifold, i.e., the label
component of CRF. The smoothing allows to reduce the sampling
density for (DIJ; )p, trimming the label component of the CRF. The
image pyramid is defined in Algorithm 1.

As the images have been downsampled by a factor f, it is enough
touse a 0.5 x f discretization factor for (Dj),,.

At first glance, the downsampling seems to be beneficial as it
reduces both components of the CRF. Unfortunately, the smooth-
ing on the label component destroys the energy manifold as illus-
trated by the Fig. 3. Disparities that should have been retrieved



Algorithm 1: Image pyramid, the GM-IP algorithm

Data: I,..I;

Result: d

Setd = 0;

for f = coarsest to finest downsampling factor do
Set dinit = d;

Downsample I, I; and dini: by f — [I, 1], d7 ]

init

Define set of disparity to evaluate from d, ., — (DI),;

Compute CRF from If, Itf and D7 — CRF;
Solve C RF¥ with Fast-PD with starting solution
if f # 1 then
‘ Upsample df — d;
else
| &/ —d;

at coarse scales might be discarded. This generates, especially at
coarse scales, artifacts in the retrieved disparity maps d”. Some
of these artifacts can be corrected at a finest scale only if they are
not too important. This phenomenon is well known of the opti-
cal flow community (Horn and Schunck, 1981). While different
heuristics, such as post-processing filtering between scales have
been proposed (Sun et al., 2010), none can guarantee to correct
these artifacts. This is the main motivation to build a proper rep-
resentation of the energy manifold through an energy pyramid.

ZNCC coefficient value

-40 -30 -20 -1‘0 0 10 20 30 40
disparity value in pixel

Figure 3: The unary terms (solid line) computed with the image

pyramid (k = 8) poorly represent the energy manifold (dashed

line).

3.3 Enegy pyramid: the GM-EP algorithm

Contrary to the GM-IP algorithm, the Global Matching via En-
ergy Pyramid (GM-EP) algorithm is based on an energy pyramid
approach that builds a more faithful representation of the energy
as it directly downsamples C RF':. Our approach is inspired from
the work of (Bagon and Galun, 2012, Kim et al., 2011). We ex-
plain the downsampling procedure in three steps: (1) we define
how to downsample the graph G' of CRF'; (2) we define the
coarse edge costs; and (3) given a search space, we define the
coarse unary terms.

3.3.1 Downsampling the graph From a downsampling fac-
tor f we define Gnodes a function that groups nodes V of G
in packets of f x f nodes. These packets define a set of nodes
VY. This is illustrated by Fig. 4 as black circled nodes of V' are
grouped in a 2 x 2 fashion, creating the squared nodes of V¥
(f=2).

The grouping of nodes separates the edges of £ in two different
kinds: (1) edges that belongs to the same node of i , i.e., the

Figure 4: Grouping a set of 4 X 4 nodes into a set of 2 X 2 nodes
and implications on the edge set.

black thin solid lines in Fig. 4; and (2) edges that belongs to two
different nodes of V' , i.e., the dashed lines in Fig. 4. We discard
the first kind of edges as they only contribute to a constant energy
term. We define GEages as the function that groups the second
kind of edges together. G'zages defines the new set of edges £7,
i.e., the thick solid lines in Fig. 4.

So far, the grouping procedure defines from G = [V, £] a graph
GY = [V/,&7]. G7 is the spatial support of the donwsampled
CRF, CRF.

3.3.2 Downsampling the edge costs The grouping procedure
also naturally defines the edges costs w’ of CREY as for each
edges pg’ € £F we have:

wl, = Z Wpq. (15)

Pa€E|GRages (Pa)=pa’l

3.3.3 Downsampling the unary terms and defining the dis-
tance function The energy pyramid preserves the energy man-
ifold with respect to the label component. As the unary terms are
computed from I, and I;, we should use a half pixel discretiza-
tion factor for Df. However, this would lead to a large label space
at the coarsest scales. Instead, we propose to trim further the la-
bel component by creating a lower bound approximation of the
energy.

Assume that we want each nodes of p’ of CRFY to investigate
a search space of DY (p/) = [([dMin : k : dMax] x [dMin :
k : dMazx]) + df ,,(p)], with k > 0.5. The unary terms cgf are
computed in four steps illustrated by Fig. 5:

1. We compute an intermediate set of unary terms ¢, from
CRF" over the search space D(p) = [(dMin—0.5xk/2 :
0.5 : dMaz + 0.5 X k/2] x [dMin — 0.5 x k/2 : 0.5 :
dMaz + 0.5 x k/2]) + d(p)]. This is illustrated by the
circles of Fig. 5.

2. We apply a morphologic erosion to ¢, with a square kernel
of size k x k. The erosion creates a lower bound value of
cp, illustrated by the stars in Fig. 5.

3. We decimate the eroded coefficients with a k sampling step,
illustrated by the squares in Fig. 5.

4. Finally, using the spatial grouping function, Gnodes, We
add all the decimated eroded coefficients to their respected
nodes in V¥, defining the unary terms c£ s of CRF’.

The different steps of the GM-EP algorithm are summarized in
Algorithm 2.
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Figure 5: The erosion produces eroded unary terms, the crosses,

that are the lowest of the £ = 8 neighbors intermediate unary

terms (the circles). The decimation defines the final unary terms

(the squares).

Algorithm 2: Energy pyramid, GM-EP algorithm

Data: I,,1;

Result: d

Setd =0

for f = coarsest to finest downsampling factor do
Set dinir = d;

Downsample d;ni; by f — df

Define the set of disparity to evaluate from d?, ,, — D7
Define the grouping from f — Gnodes and GEdges
Apply the grouping on G — G¥ = [V, &]

Apply grouping on edge cost of CRF! — wf
Compute the unary terms of CRF¥ — c£ ;

Solve C RFY with Fast-PD with starting solution
d'{nit - df;
if f # 1 then

| Upsample d — d;
else

| df —d;

3.4 Using sparsity to reduce the size of CRF

Thus far, we have defined two pyramid approaches to reduce
both the spatial and label components of Eq. 13 that build a se-
quence of CRF, [CRF™, ...,CRF?, ..., CRF*]. While we move
through the scales, we always center the search space around the
revised solution d. Consequently, due to Eq. 9, many unary terms
may have an infinite value as illustrated in Fig. 6. Hence, we
know beforehand that some configurations of df are impossible.
To speed up the optimization process we indicate the solver, Fast-
PD, not to evaluate the impossible configurations.

A potential approach is to remove all infinite unary terms, reor-
ganize the CRF with respect to the label space and modify the
distance function § to take into account d;,;¢. This leads to a new
distance function § .

8 (Lysr s 1gr) = I(PM") + dinit (p7)) = (D(a”) + dinie (4)) 11
(16)
The main drawback is that the new distance function & is not de-
rived from a metric as it does not respect the triangular inequality.
Therefore, we are only mathematically guaranteed to find a local
optimum during the optimization (Komodakis et al., 2007a).

Instead, we remove all infinite unary terms but we do not reorga-
nize the CRF and we keep J as a distance function. This leads

()
/ — Search
w /¢ni[(p) , o7 N . space D,
g % ® /( @ | T Nodds
S ! i
/ % iA Ai’ /// / unary
% % ><’ ‘ % % terms
2 | // . z
Gy T v T
) % / i i
: _ % !

Figure 6: The multiscale approach generates sparsity in the CRF
sequence, and only the coarsest CRF is assured to be full. The
sparsity is due to defining search space around the previous up
sampled scale solution d;y¢

to a sparse CRF that keeps the metric properties of the distance
function §. Hence, we are mathematically guaranteed to find a
near global optimum to the solution. We design our own imple-
mentation of Fast-PD to accept sparse CRF. Modifying Fast-PD
for sparse CRF input is beyond this paper’s scope, but this will be
the subject of a future publication.

4. EXPERIMENTAL RESULTS

Factory
Figure 7: Image I, from subsets of a stereo pairs. Each subset is
2500 x 2500 pixels with a GSD of 10 cm.

We use a stereo pair from an aerial survey above an urban envi-
ronment acquired with (UtraCam, 2014) of 11000 x 20000 pix-
els. We use our own calibration and aerotriangulation to trans-
form the images into an epipolar geometry limiting the optimiza-
tion of d to the horizontal direction. We process overlapping tiles
of 5000 x 5000 pixels and extract the two subsets presented in
Fig. 7 to compare the disparity maps.



4.1 Comparing GM-EP and GM-IP algorithms

We compare the GM-EP and GM-IP algorithms by reporting the
disparity maps among each scale with the associated final en-
ergy and global computation time. For both algorithms we use 4
scales, f € [8,4,2,1], with a search range of [—-5 : 0.5 : 5] X f
around d;n:¢, and we only perform one iteration per scale. We
also define a baseline by solving CRF® over a large range of
disparities, [—40 : 0.5 : 40]. Note that the baseline can here be
computed because we only focus on a small subset of the entire
image. The results are presented in Fig. 8.

The black dots that appear in the upper left part of the disparity
maps of the image pyramid and the baseline are due to moving
vehicles as the stereo pair is issued from quasi-simultaneous ac-
quisitions. Moreover, the direction of motion is very different
from the epipolar lines. Our model does not cope with such mo-
tion and we do not account for these artifacts in our comparison.

The coarsest scales, f = 8 and f = 4, illustrate how the energy
pyramid of the GM-EP algorithm performs a better approxima-
tion of the energy manifold than the image pyramid of the GM-
IP algorithm. Indeed, the GM-IP disparity maps show smoothed
factory edges. However, the same edges appear sharp in the GM-
EP results, and even the chimney in top right part of the factory
is well defined at the scale f = 4. At the finest scales f = 2
and f = 1 the GM-IP is only able to sharpen some of the blurred
edges. For instance, the two tubular elements in the center of the
images remain blurred while they appear sharp in GM-EP dis-
parity maps. The visual inspection is confirmed by the energy
measurements in Table 1 as the final energy of the GM-EP ap-
proach is lower than that of GM-IP. The computation time given
in Table 1, is however slightly in favor of GM-IP.

In Fig. 9, we verify how well the GM-EP compares to the base-
line. Both results are very close. Nevertheless, little details such
as lampposts in the lower left part of image are better represented
in the baseline. This is also confirmed in Table 1 as the GM-EP
final energy is slightly superior to the baseline energy. However,
the computation of the baseline is more than 3 times superior
to GM-EP, and this non-pyramidal approach is non-feasible for
large images due to exponential memory consumption.

4.2 MicMac comparison

We also compare the GM-EP to (Micmac, 2014), and we only
report the final disparity map as the computation time is imple-
mentation dependent and the energy is linked to the model, which
differs for both algorithms. There are three main differences be-
tween the GM-EP and MicMac: (1) the GM-EP model is more
complex than the one used in MicMac, i.e., both models seem
equivalent if A2 = 0 in Eq. 7; (2), MicMac uses an image
pyramid approach while the GM-EP works on an energy pyra-
mid approach; and, (3) MicMac relies on semi-global optimiza-
tion while GM-EP uses global optimization that produces near
optimum solutions.

On both images, MicMac produces disparity maps with noisy ar-
eas that correspond to shadows the in stereo-pair, while the GM-
EP is unaffected by shadows. This is due to the difference of
models where the weight term of Eq. 7 increases the regulariza-
tion on constant radiometric areas of the reference image.

Like the GM-IP, MicMac uses an image pyramid that tends to
produce blurred edges when dealing with large disparity range.
This is illustrated in the top left image of Fig. 10 by the large
chimney, the two tubular objects and the numerous bridges. This
also appears on the bell tower in the lower right part of the bottom

GM-EP
Figure 8: Top four rows f = [8,4, 2, 1], black values represents
disparities of -15 pixels or below, and white values represents
disparities of 35 pixels or above. Last row absolute difference
with respect to the baseline, brighter greys are higher difference.

GM-IP

left image of Fig. 10. The edges produces by the GM-EP are
sharper and better defined.

MicMac suffers from the inherent issues limitations of image
pyramid approaches, which are overcome by the GM-EP algo-
rithm. Moreover, as the model of MicMac is less complete than
ours, it introduces noisy areas.



GM-EP Baseline no pyramid
Figure 9: Final disparity maps. Black values represents dispari-
ties of -15 pixels or below. White values represents disparities of
35 pixels or above.

Baseline GM-EP GM-IP
Final energy | 114.510° | 114.910° | 117.7 10°
Computation 350% 108% 100%
time ratio

Table 1: The GM-EP algorithm obtains a lower energy than GM-
IP for a slightly longer processing time. The Baseline obtains the
lowest energy with a significant gap compared to GM-IP, but is
more than 3 times slower on an Intel Xeon 8 core CPU computer
(the code is not optimized). Therefore, the GM-EP algorithm de-
fines good compromise between effective optimization and com-
putation time.

MicMac
Figure 10: Disparity maps on the Factory and Urban subsets.

GM-EP

5. CONCLUSIONS AND EXTENSIONS

We proposed a rigorous yet computationally efficient framework
for disparity maps estimation using a single stereo pair. This
approach naturally lead to a global optimization problem of a
CRF. Instead of relying on a semi-global optimization with no
mathematical guarantee on the optimality of the solution, we use
global discrete optimization which is mathematically guaranteed
to yield a near optimum solution. The global optimization is
speed-up by building a truthful representation of the energy man-
ifold with an energy pyramid multiscale approach. We also ex-
ploited the sparsity of the resulting sequence of CRF to derive the
GM-EP algorithm. From a practical standpoint, we demonstrate

through experiments on real stereo-pairs the superiority of the
GM-EP algorithm over image pyramid approaches whether they
rely on global optimization, such as the GM-IP, or semi-global
optimization, such as MicMac.

Future work will extend the experimental evaluation to standard
photogrammetric tools to further assess the performance of our
approach. Nevertheless, the comparison with MicMac outlines
the importance of the energy modeling for disparity map estima-
tions. Therefore, future work will extend our model to a sym-
metric definition of the energy with respect to the input images.
Indeed, the choice of the reference and the target images from a
stereo-pair is completely arbitrary and swapping them produces
slightly different disparity maps. We think that a symmetric en-
ergy might enhance the quality of estimated disparity maps as the
problem is by nature symmetric. We also plan to integrate the
notion of occlusions and moving objects in our future model.

Finally, instead of using a multiscale approach, future work will
focus on a multigrid scheme to further speed-up the optimization.
Indeed, an inherent drawback of multiscale approaches is to force
all nodes to work at the same scale, which might not be required
as some parts of the disparity map might be well-resolved even at
coarse scale.
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