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Abstract

We propose a general and versatile framework that significantly speeds-up graph-
ical model optimization while maintaining an excellent solution accuracy. The
proposed approach, refereed as Inference by Learning or in short as IbyL, relies
on a multi-scale pruning scheme that progressively reduces the solution space by
use of a coarse-to-fine cascade of learnt classifiers. We thoroughly experiment
with classic computer vision related MRF problems, where our novel framework
constantly yields a significant time speed-up (with respect to the most efficient
inference methods) and obtains a more accurate solution than directly optimizing
the MRF. We make our code available on-line [4].

1 Introduction

Graphical models in computer vision Optimization of undirected graphical models such as
Markov Random Fields, MRF, or Conditional Random Fields, CRF, is of fundamental importance in
computer vision. Currently, a wide spectrum of problems including stereo matching [25, 13], opti-
cal flow estimation [27, 16], image segmentation [23, 14], image completion and denoising [10], or,
object recognition [8, 2] rely on finding the mode of the distribution associated to the random field,
i.e., the Maximum A Posteriori (MAP) solution. The MAP estimation, often referred as the labeling
problem, is posed as an energy minimization task. While this task is NP-Hard, strong optimum solu-
tions or even the optimal solutions can be obtained [3]. Over the past 20 years, tremendous progress
has been made in term of computational cost, and, many different techniques have been developed
such as move making approaches [3, 19, 22, 21, 28], and message passing methods [9, 32, 18, 20].
A review of their effectiveness has been published in [31, 12]. Nevertheless, the ever increasing
dimensionality of the problems and the need for larger solution space greatly challenge these tech-
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niques as even the best ones have a highly super-linear computational cost and memory requirement
relatively to the dimensionality of the problem.

Our goal in this work is to develop a general MRF optimization framework that can provide a
significant speed-up for such methods while maintaining the accuracy of the estimated solutions.
Our strategy for accomplishing this goal will be to gradually reduce (by a significant amount) the
size of the discrete state space via exploiting the fact that an optimal labeling is typically far from
being random. Indeed, most MRF optimization problems favor solutions that are piecewise smooth.
In fact, this spatial structure of the MAP solution has already been exploited in prior work to reduce
the dimensionality of the solution space.

Related work A first set of methods of this type, referred here for short as the super-pixel approach
[30], defines a grouping heuristic to merge many random variables together in super-pixels. The
grouping heuristic can be energy-aware if it is based on the energy to minimize as in [15], or, energy-
agnostic otherwise as in [7, 30]. All random variables belonging to the same super-pixel are forced
to take the same label. This restricts the solution space and results in an optimization speed-up as
a smaller number of variables needs to be optimized. The super-pixel approach has been applied
with segmentation, stereo and object recognition [15]. However, if the grouping heuristic merges
variables that should have a different label in the MAP solution, only an approximate labeling is
computed. In practice, defining general yet efficient grouping heuristics is difficult. This represents
the key limitation of super-pixel approaches.

One way to overcome this limitation is to mimic the multi-scale scheme used in continuous opti-
mization by building a coarse to fine representation of the graphical model. Similarly to the super-
pixel approach, such a multi-scale method, relies again on a grouping of variables for building the
required coarse to fine representation [17, 24, 26]. However, contrary to the super-pixel approach,
if the grouping merges variables that should have a different label in the MAP solution, there al-
ways exists a scale at which these variables are not grouped. This property thus ensures that the
MAP solution can still be recovered. Nevertheless, in order to manage a significant speed-up of
the optimization, the multi-scale approach also needs to progressively reduce the number of labels
per random variable (i.e., the solution space). Typically, this is achieved by use, for instance, of a
heuristic that keeps only a small fixed number of labels around the optimal label of each node found
at the current scale, while pruning all other labels, which are therefore not considered thereafter [5].
This strategy, however, may not be optimal or even valid for all types of problems. Furthermore,
such a pruning heuristic is totally inappropriate (and can thus lead to errors) for nodes located along
discontinuity boundaries of an optimal solution, where such boundaries are always expected to exist
in practice. An alternative strategy followed by some other methods relies on selecting a subset of
the MRF nodes at each scale (based on some criterion) and then fixing their labels according to the
optimal solution estimated at the current scale (essentially, such methods contract the entire label
set of a node to a single label). However, such a fixing strategy may be too aggressive and can also
easily lead to eliminating good labels.

Proposed approach Our method simultaneously makes use of the following two strategies for
speeding-up the MRF optimization process:

(i) it solves the problem through a multi-scale approach that gradually refines the MAP esti-
mation based on a coarse-to-fine representation of the graphical model,

(ii) and, at the same time, it progressively reduces the label space of each variable by cleverly
utilizing the information computed during the above coarse-to-fine process.

To achieve that, we propose to significantly revisit the way that the pruning of the solution space
takes place. More specifically:

(i) we make use of and incorporate into the above process a fine-grained pruning scheme that
allows an arbitrary subset of labels to be discarded, where this subset can be different for
each node,

(ii) additionally, and most importantly, instead of trying to manually come up with some criteria
for deciding what labels to prune or keep, we introduce the idea of relying entirely on
a sequence of trained classifiers for taking such decisions, where different classifiers per
scale are used.
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We name such an approach Inference by Learning, and show that it is particularly efficient and effec-
tive in reducing the label space while omitting very few correct labels. Furthermore, we demonstrate
that the training of these classifiers can be done based on features that are not application specific
but depend solely on the energy function, which thus makes our approach generic and applicable
to any MRF problem. The end result of this process is to obtain both an important speed-up and
a significant decrease in memory consumption as the solution space is progressively reduced. Fur-
thermore, as each scale refines the MAP estimation, a further speed-up is obtained as a result of a
warm-start initialization that can be used when transitioning between different scales.

Before proceeding, it is worth also noting that there exists a body of prior work [29] that focuses on
fixing the labels of a subset of nodes of the graphical model by searching for a partial labeling with
the so-called persistency property (which means that this labeling is provably guaranteed to be part
of an optimal solution). However, finding such a set of persistent variables is typically very time
consuming. Furthermore, in many cases only a limited number of these variables can be detected.
As a result, the focus of these works is entirely different from ours, since the main motivation in our
case is how to obtain a significant speed-up for the optimization.

Hereafter, we assume without loss of generality that the graphical model is a discrete pairwise
CRF/MRF. However, one can straightforwardly apply our approach to higher order models.

Outline of the paper We briefly review the optimization problem related to a discrete pairwise
MRF and introduce the necessary notations in section 2. We describe our general multi-scale pruning
framework in section 3. We explain how classifiers are trained in section 4. Experimental results
and their analysis are presented in 5. Finally, we conclude the paper in section 6.

2 Notation and preliminaries

To represent a discrete MRF modelM, we use the following notation

M =
(

V, E ,L, {φi}i∈V , {φij}(i,j)∈E

)

. (1)

Here V and E represent respectively the nodes and edges of a graph, and L represents a discrete
label set. Furthermore, for every i ∈ V and (i, j) ∈ E , the functions φi : L → R and φij : L2 → R

represent respectively unary and pairwise costs (that are also known connectively as MRF potentials
φ =

{

{φi}i∈V , {φij}(i,j)∈E

}

). A solution x = (xi)i∈V of this model consists of one variable per

vertex i, taking values in the label set L, and the total cost (energy) E(x|M) of such a solution is

E(x|M) =
∑

i∈V

φi(xi) +
∑

(i,j)∈E

φij(xi, xj) .

The goal of MAP estimation is to find a solution that has minimum energy, i.e., computes

xMAP = arg min
x∈L|V|

E(x|M) .

The above minimization takes place over the full solution space of modelM, which is L|V|. Here
we will also make use of a pruned solution space S(M, A), which is defined based on a binary
function A : V × L → {0, 1} (referred to as the pruning matrix hereafter) that specifies the status
(active or pruned) of a label for a given vertex, i.e.,

A(i, l) =

{

1 if label l is active at vertex i
0 if label l is pruned at vertex i

(2)

During optimization, active labels are retained while pruned labels are discarded. Based on a given
A, the corresponding pruned solution space of modelM is defined as

S(M, A) =
{

x ∈ L|V| | (∀i), A(i, xi) = 1
}

.

3 Multiscale Inference by Learning

In this section we describe the overall structure of our MAP estimation framework, beginning by
explaining how to construct the coarse-to-fine representation of the input graphical model.
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3.1 Model coarsening

Given a model M (defined as in (1)), we wish to create a “coarser” version of this model M′ =
(

V ′, E ′,L, {φ′
i}i∈V′ , {φ′

ij}(i,j)∈E′

)

. Intuitively, we want to partition the nodes of M into groups,

and treat each group as a single node of the coarser modelM′ (the implicit assumption is that nodes
of M that are grouped together are assigned the same label). To that end, we will make use of a
grouping function g : V → N . The nodes and edges of the coarser model are then defined as follows

Figure 1: Black circles:
V , Black lines: E , Red
squares: V

′, Blue lines:
E
′.

V ′ = {i′ | ∃i ∈ V, i′ = g(i)} , (3)

E ′ = {(i′, j′) | ∃(i, j) ∈ E , i′ = g(i), j′ = g(j), i′ 6= j′} . (4)

Furthermore, the unary and pairwise potentials ofM′ are given by

(∀i′ ∈ V ′), φ′
i′(l) =

∑

i∈V|i′=g(i) φi(l)
+
∑

(i,j)∈E|i′=g(i)=g(j) φij(l, l)
, (5)

(∀(i′, j′) ∈ E ′), φ′
i′j′(l0, l1) =

∑

(i,j)∈E|i′=g(i),j′=g(j)
φij(l0, l1) . (6)

With a slight abuse of notation, we will hereafter use g(M) to denote the coarser model resulting
fromM when using the grouping function g, i.e., we define g(M) =M′. Also, given a solution x′

ofM′, we can “upsample” it into a solution x ofM by setting xi = x′
g(i) for each i ∈ V . We will

use the following notation in this case: g−1(x′) = x. We provide a toy example in supplementary
materials.

3.2 Coarse-to-fine optimization and label pruning

To estimate the MAP of an input modelM, we first construct a series of N+1 progressively coarser

models (M(s))0≤s≤N by use of a sequence of N grouping functions (g(s))0≤s<N , where

M(0) =M and (∀s), M(s+1) = g(s)(M(s)) .

This provides a multiscale (coarse-to-fine) representation of the original model., where the elements
of the resulting models are denoted as follows:

M(s) =
(

V(s), E(s),L, {φ
(s)
i }i∈V(s) , {φ

(s)
ij }(i,j)∈E(s)

)

In our framework, MAP estimation proceeds from the coarsest to the finest scale (i.e., from model

M(N) toM(0)). During this process, a pruning matrix A(s) is computed at each scale s, which is

used for defining a restricted solution space S(M(s), A(s)). The elements of the matrix A(N) at the
coarsest scale are all set equal to 1 (i.e., no label pruning is used in this case), whereas in all other

scales A(s) is computed by use of a trained classifier f (s).

More specifically, at any given scale s, the following steps take place:

i. We approximately minimize (via any existing MRF optimization method) the energy of the

modelM(s) over the restricted solution space S(M(s), A(s)), i.e., we compute

x(s) ≈ argminx∈S(M(s),A(s)) E(x|M(s)) .

ii. Given the estimated solution x(s), a feature map z(s) : V(s) × L → R
K is computed at

the current scale, and a trained classifier f (s) : RK → {0, 1} uses this feature map z(s) to

construct the pruning matrix A(s−1) for the next scale as follows

(∀i ∈ V(s−1), ∀l ∈ L), A(s−1)(i, l) = f (s)(z(s)(g(s−1)(i), l)) .

iii. Solution x(s) is “upsampled” into x(s−1) = [g(s−1)]−1(x(s)) and used as the initializa-
tion for the optimization at the next scale s − 1. Note that, due to (5) and (6), it holds

E(x(s−1)|M(s−1)) = E(x(s)|M(s)). Therefore, this initialization ensures that energy will
continually decrease if the same is true for the optimization applied per scale. Furthermore,
it can allow for a warm-starting strategy when transitioning between scales.

The pseudocode of the resulting algorithm appears in Algo. 1.
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Algorithm 1: Inference by learning framework

Data: ModelM, grouping functions (g(s))0≤s<N , classifiers (f (s))0<s≤N

Result: x(0)

Compute the coarse to fine sequence of MRFs:

M(0) ←M
for s = [0 . . . N − 1] do

M(s+1) ← g(s)(M(s))

Optimize the coarse to fine sequence of MRFs over pruned solution spaces:

(∀i ∈ V(N), ∀l ∈ L), A(N)(i, l)← 1
Initialize x(N)

for s = [N...0] do

Update x(s) by iterative minimization: x(s) ≈ argminx∈S(M(s),A(s)) E(x|M(s))

if s 6= 0 then

Compute feature map z(s)

Update pruning matrix for next finer scale: A(s−1)(i, l) = f (s)(z(s)(g(s−1)(i), l))
Upsample x(s) for initializing solution x(s−1) at next scale: x(s−1) ← [g(s−1)]−1(x(s))

4 Features and classifier for label pruning

For each scale s, we explain how the set of features comprising the feature map z(s) is computed

and how we train (off-line) the classifier f (s). This is a crucial step for our approach. Indeed, if the
classifier wrongly prunes labels that belong to the MAP solution, then, only an approximate labeling
might be found at the finest scale. Moreover, keeping too many active labels will result in a poor
speed-up for MAP estimation.

4.1 Features

The feature map z(s) : V(s) × L → R
K is formed by stacking K individual real-valued features

defined on V(s) × L. We propose to compute features that are not application specific but depend

solely on the energy function and the current solution x(s). This makes our approach generic and
applicable to any MRF problem. However, as we establish a general framework, specific application
features can be straightforwardly added in future work.

Presence of strong discontinuity This binary feature, PSD(s), accounts for the existence of dis-

continuity in solution x(s) when a strong link (i.e., φij(x
(s)
i , x

(s)
j ) > ρ) exists between neighbors.

Its definition follows for any vertex i ∈ V(s) and any label l ∈ L :

PSD(s)(i, l) =

{

1 ∃(i, j) ∈ E(s)| φij(x
(s)
i , x

(s)
j ) > ρ

0 otherwise
(7)

Local energy variation This feature represents the local variation of the energy around the current

solution x(s). It accounts for both the unary and pairwise terms associated to a vertex and a label.
As in [11], we remove the local energy of the current solution as it leads to a higher discriminative

power. The local energy variation feature, LEV(s), is defined for any i ∈ V(s) and l ∈ L as follows:

LEV(s)(i, l) =
φ
(s)
i (l)− φ

(s)
i (x

(s)
i )

N
(s)
V (i)

+
∑

j:(i,j)∈E(s)

φ
(s)
ij (l, x

(s)
j )− φ

(s)
ij (x

(s)
i , x

(s)
j )

N
(s)
E (i)

(8)

with N
(s)
V (i) = card{i′ ∈ V(s−1) : g(s−1)(i′) = i} and N

(s)
E (i) = card{(i′, j′) ∈ E(s−1) :

g(s−1)(i′) = i, g(s−1)(j′) = j}.

Unary “coarsening” This feature, UC(s), aims to estimate an approximation of the coarsening

induced in the MRF unary terms when going from modelM(s−1) to modelM(s), i.e., as a result of
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applying the grouping function g(s−1). It is defined for any i ∈ V(s) and l ∈ L as follows

UC(s)(i, l) =
∑

i′∈V(s−1)|g(s−1)(i′)=i

|φ
(s−1)
i′ (l)−

φ
(s)
i

(l)

N
(s)
V (i)

|

N
(s)
V (i)

(9)

Feature normalization The features are by design insensitive to any additive term applied on all

the unary and pairwise terms. However, we still need to apply a normalization to the LEV(s) and

UC(s) features to make them insensitive to any positive global scaling factor applied on both the
unary and pairwise terms (such scaling variations are commonly used in computer vision). Hence,

we simply divide group of features, LEV(s) and UC(s) by their respective mean value.

4.2 Classifier

To train the classifiers, we are given as input a set of MRF instances (all of the same class, e.g.,
stereo-matching) along with the ground truth MAP solutions. We extract a subset of MRFs for off-
line learning and a subset for on-line testing. For each MRF instance in the training set, we apply

the algorithm 1 without any pruning (i.e., A(s) ≡ 1) and, at each scale, we keep track of the features

z(s) and also compute the binary function X
(s)
MAP : V(s) × L → {0, 1} defined as follows:

(∀i ∈ V, ∀l ∈ L), X
(0)
MAP(i, l) =

{

1, if l is the ground truth label for node i

0, otherwise

(∀s > 0)(∀i ∈ V(s), ∀l ∈ L), X
(s)
MAP(i, l) =

∨

i′∈V(s−1):g(s)(i′)=i

X
(s−1)
MAP (i′, l) ,

where
∨

denotes the binary OR operator. The values 0 and 1 in X
(s)
MAP define respectively the two

classes c0 and c1 when training the classifier f (s), where c0 means that the label can be pruned and
c1 that the label should not be pruned.

To treat separately the nodes that are on the border of a strong discontinuity, we split the feature map

z(s) into two groups z
(s)
0 and z

(s)
1 , where z

(s)
0 contains only features where PSD(s) = 0 and z

(s)
1

contains only features where PSD(s) = 1 (strong discontinuity). For each group, we train a standard
linear C-SVM classifier with l2-norm regularization (regularization parameter was set to C = 10).
The linear classifiers give good enough accuracy during training while also being fast to evaluate at
test time

During training (and for each group), we also introduce weights to balance the different number of
elements in each class (c0 is much larger than c1), and to also strongly penalize misclassification in
c1 (as such misclassification can have a more drastic impact on the accuracy of MAP estimation). To

accomplish that, we set the weight for class c0 to 1, and the weight for class c1 to λ
card(c0)
card(c1)

, where

card(·) counts the number of training samples in each class. Parameter λ is a positive scalar (com-
mon to both groups) used for tuning the penalization of misclassification in c1 (it will be referred
to as the pruning aggressiveness factor hereafter as it affects the amount of labels that get pruned).

During on-line testing, depending on the value of the PSD feature, f (s) applies the linear classifier

learned on group z
(s)
0 if PSD(s) = 0, or the linear classifier learned on group z

(s)
1 if PSD(s) = 1.

5 Experimental results

We evaluate our framework on pairwise MRFs from stereo-matching, image restoration, and, optical
flow estimation problems. The corresponding MRF graphs consist of regular 4-connected grids in
this case. At each scale, the grouping function merges together vertices of 2× 2 subgrids. We leave
more advanced grouping functions [15] for future work. As MRF optimization subroutine, we use
the Fast-PD algorithm [21]. We make our code available on-line [4].

Experimental setup For the stereo matching problem, we estimate the disparity map from images
IR and IL where each label encodes a potential disparity d (discretized at quarter of a pixel preci-
sion), with MRF potentials φp(d) = ||IL(yp, xp)−IR(yp, xp−d)||1 and φpq(d0, d1) = wpq|d0−d1|,
with the weight wpq varying based on the image gradient (parameters are adjusted for each se-
quence). We train the classifier on the well-known Tsukuba stereo-pair (61 labels), and use all other
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(a) Speed-up (b) Active label ratio (c) Energy ratio (d) Label agreement

Figure 2: Performance of our Inference by Learning framework: (Top row) stereo matching, (Middle row)
optical flow, (Bottom row) image restoration. For stereo matching, the Average Middlebury curve represents
the average value of the statistic for the entire Middlebury dataset [6] (2001, 2003, 2005 and 2006) (37 stereo-
pairs).

stereo-pairs of [6] (2001, 2003, 2005 and 2006) for testing. For image restoration, we estimate the
pixel intensity of a noisy and incomplete image I with MRF potentials φp(l) = ||I(yp, xp) − l||22
and φ(l0, l1) = 25min(||l0 − l1||

2
2, 200). We train the classifier on the Penguin image stereo-pair

(256 labels), and use House (256 labels) for testing (dataset [31]). For the optical flow estimation,
we estimate a subpixel-accurate 2D displacement field between two frames by extending the stereo
matching formulation to 2D. Using the dataset of [1], we train the classifier on Army (1116 labels),
and test on RubberWhale (625 labels) and Dimetrodon (483 labels). For all experiments, we use 5
scales and set in (7) ρ = 5w̄pq with w̄pq being the mean value of edge weights.

Evaluations We evaluate three optimization strategies: the direct optimization (i.e., optimizing
the full MRF at the finest scale), the multi-scale optimization (λ = 0, i.e., our framework without
any pruning), and our Inference by Learning optimization, where we experiment with different error
ratios λ that range between 0.001 and 1.

We assess the performance by computing the energy ratio, i.e., the ratio between the current energy
and the energy computed by the direct optimization, the best label agreement, i.e., the proportion
of labels that coincides with the labels of the lowest computed energy, the speed-up factor, i.e., the
ratio of computation time between the direct optimization and the current optimization strategy, and,
the active label ratio, i.e., the percentage of active labels at the finest scale.

Results and discussion For all problems, we present in Fig. 2 the performance of our Inference
by Learning approach for all tested aggressiveness factors and show in Fig. 3 estimated results for
λ = 0.01. We present additional results in the supplementary material.

For every problem and aggressiveness factors until λ = 0.1, our pruning-based optimization obtains
a lower energy (column (c) of Fig. 2) in less computation time, achieving a speed-up factor (column
(a) of Fig. 2) close to 5 for Stereo-matching, above 10 for Optical-flow and up to 3 for image
restoration. (note that these speed-up factors are with respect to an algorithm, FastPD, that was the
most efficient one in recent comparisons [12]). The percentage of active labels (Fig. 2 column (b))
strongly correlates with the speed-up factor. The best labeling agreement (Fig. 2 column (d)) is
never worse than 97% (except for the image restoration problems because of the in-painted area)
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Figure 3: Results of our Inference by Learning framework for λ = 0.1. Each row is a different MRF problem.
(a) original image, (b) ground truth, (c) solution of the pruning framework, (d,e,f) percentage of active labels
per vertex for scale 0, 1 and 2 (black 0%, white 100%).

and is always above 99% for λ 6 0.1. As expected, less pruning happens near label discontinuities
as illustrated in column (d,e,f) of Fig. 3 justifying the use of a dedicated linear classifier. Moreover,
large homogeneously labeled regions are pruned earlier in the coarse to fine scale.

6 Conclusion and future work

Our Inference by Learning approach consistently speeds-up the graphical model optimization by
a significant amount while maintaining an excellent accuracy of the labeling estimation. On most
experiments, it even obtains a lower energy than direct optimization.

In future work, we plan to experiment with problems that require general pairwise potentials where
message-passing techniques can be more effective than graph-cut based methods but are at the same
time much slower. Our framework is guaranteed to provide an even more dramatic speedup in this
case since the computational complexity of message-passing methods is quadratic with respect to
the number of labels while being linear for graph-cut based methods used in our experiments. We
also intend to explore the use of application specific features, learn the grouping functions used in
the coarse-to-fine scheme, jointly train the cascade of classifiers, and apply our framework to high
order graphical models.
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