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ABSTRACT

Matching precision of scale-invariant feature transform (SIFT)

is evaluated and improved in this paper. The aim of the paper

is not to invent a new feature detector more invariant than

the others. Instead, we focus on SIFT method and evaluate

and improve the matching precision, defined as the root mean

square error (RMSE) under ground truth geometric trans-

form. Matching precision reflects to some extent the average

relative localization precision between two images. For scale

invariant feature detectors like SIFT, the matching precision

decreases with the scale of features due to the sub-sampling

in the scale space. We propose to cancel the sub-sampling to

improve the matching precision. But in case of scale change,

the improvement is marginal due to the coarse scale quanti-

zation in the scale space. One more sophisticated method is

also proposed to improve the matching precision in case of

scale change. These modifications can be easily extended to

other scale invariant feature detectors.

Index Terms— Matching precision, localization preci-

sion, scale space, scale-invariant feature transform (SIFT)

1. INTRODUCTION

Recent years have seen the blossom of invariant feature detec-

tors [??]. Even though they become more and more invariant

to image geometric transform and illumination change, the

matching precision has not been carefully studied. Match-

ing precision seems similar to the repeatability, which is de-

fined as the percentage of the repeatable features among all

the matched features. One feature is considered repeatable if

it and its matched feature are compatible with the ground truth

transform within some loose precision threshold (1 pixels is

chosen in [??]). However, matching precision directly mea-

sures the average residual error for all the correctly matched

feature pairs with respect to the ground truth geometric trans-

form. So even if a feature detector gives high repeatability, it

does not necessarily mean that the matching precision is high.

The localization precision needs to be clarified here be-

cause it is a confusing concept with the matching precision.
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Localization precision is used to describe how close on aver-

age the position of detected feature is to the true position. In

statistics terms, localization precision is called bias. A statis-

tical ensemble is required to define the bias. In the case of

feature detection, the underlying statistical ensemble can be

interpreted as a collection of images, obtained by disturbing

an ideal image by an underlying disturbance model, like noise

model, blur model, illumination model, etc. Assume the true

position of a feature point is known. The localization preci-

sion (bias) can be measured as the distance from the average

position of the detected features by a particular feature detec-

tor on differently disturbed images to the true position. The

localization precision is not uniform in the image domain, dif-

ferent from one feature point to another.

It is difficult to evaluate the localization precision in prac-

tice. The computation of localization precision first requires

the ideal position of feature points, which is in fact ill-defined.

Even if the ideal position of feature points is known, it is not

clear what is an appropriate statistical ensemble, which can

be deduced from an underlying noise model, a camera model

or a model of lighting condition. So in practice, it is impossi-

ble to measure the localization precision. However, absolute

localization precision is less interesting in computer vision

tasks, where the correspondences are usually required. This

motivates us to measure the matching precision instead of lo-

calization precision. In fact, matching precision reflects to

some extent the localization precision. Given enough corre-

spondences between two images, assume that all the feature

points in one image are ideal and the ground truth transform

between two images is known, then the matching precision is

close to the localization precision under the hypothesis that

the feature detector has the same localization precision on all

the feature points in the other image and the local property of

all the features composes an appropriate statistical ensemble.

In reality feature points in both images are not ideal and their

localization precision is different from point to point. So the

matching precision measures the average relative localization

precision of matchings between two images.

We first review SIFT method and improve its match-

ing precision in Section 2. The improvement seems to be

marginal in case of scale change between two images in the

evaluation in Section 3, which motivates a more sophisticated

improvement based on local filtering. The extension of the



proposed improvement is briefly discussed in Section 4.

2. SIFT METHOD REVIEW AND IMPROVEMENT

The SIFT method [1] is a complete image comparison algo-

rithm composed of scale-invariant feature detector, gradient-

based descriptor and descriptor matching. The features are

detected in the scale space of normalized Laplacian, approxi-

mated by the difference of Gaussian due to the computational

efficiency:

D(x, y, σ) =
(

G(x, y, kσ)−G(x, y, σ)
)

⊛ I(x, y) (1)

≈ (k − 1)σ2∆
(

G(x, y, σ)⊛ I(x, y)
)

G(·, ·, σ) is the Gaussian function with standard deviation

σ and ⊛ is the convolution operation. Remark that the nor-

malized Laplacian gives scale invariance to the Laplacian

threshold in SIFT method. Images of same size with increas-

ing Gaussian blur compose one octave in the scale space.

And there is a 2-subsampling between two adjacent octaves

to simulate the camera zoom (Fig. 1a). One octave contains

Ninter + 3 Gaussian blurred images of the same size which

are used to compute Ninter + 2 difference-of-Gaussian

(DoG) images (Ninter = 3 by default). The Gaussian blur

is increased with the multiplicative factor 21/Ninter. The

2-subsampling is performed on the image in octave which

contains two times the blur of the initial image in the same

octave. This convolution-subsampling procedure is repeated

until the image is too small for feature detection. It is easy

to see that the sampling with respect to the blur is the same

for all octaves. So one image has the same nature as its coun-

terparts in the other octaves. This process simulates camera

zoom and explains why SIFT method is scale invariant.

Only local extrema with strong Laplacian value in Ninter

DoG images in the middle of each octave are detected as fea-

tures. Once a feature is extracted, its 3D position (position

and scale) is refined by a 3D interpolation, which makes SIFT

points sub-pixel precise. Each feature is assigned a descriptor

which is constructed by using the gradient information in

the neighborhood. Finally, their 3D coordinate (location and

scale) is projected back to the original image.

Remark that the principal error source in SIFT method is

that the detected features in scale space are projected back

to the original image. Assume a feature located at x with

ideal position x0 disturbed by the error ε: x = x0 + ε.

If this feature is detected in the i-th octave in SIFT scale

space, then its final position is 2ix = 2ix0 + 2iε. The er-

ror is increased by the factor 2i. This inspires us to cancel the

sub-sampling between octaves. The new schema is shown in

Fig. 1b. Although this seems to be a one-step modification to

SIFT method, there are some details to discuss.

(a) (b)

Fig. 1: 1a The scale space of SIFT. 1b The improved SIFT

schema with sub-sampling canceled.

2.1. Blur

Blur plays a very important role in SIFT method because

the scale invariance of SIFT is in fact blur invariance and is

achieved by simulating the camera blur under different res-

olutions. SIFT method is based on the assumption that a

Gaussian convolution can well approximate the blur intro-

duced by camera system and gives an aliasing-free image sub-

sampling. In fact, it is shown in [2] that a well-sampled image

should contain a Gaussian blur of standard deviation β = 0.8.

Therefore an aliasing-free t-subsampling should be preceded

by a Gaussian blur of about β ×
√
t2 − 1. However, if we

cancel the sub-sampling between adjacent octaves, it is equiv-

alent to up-sample images in the scale space and the following

conditions should be satisfied:

∆
(

u(
x

2
,
y

2
)
)

=
1

4
(∆u)

(x

2
,
y

2

)

and
∂
(

u
(

x

2
,
y

2

))

∂ •

=
1

2

∂u

∂ •

(x

2
,
y

2

)

(2)

which means that the Laplacian is 4 times smaller and the gra-

dient is 2 times smaller if an image is up-sampled by 2. For

digital images, the above relationships are valid only if the

image u is smooth enough. Fig. 2 shows a test for a natural

image. The image is first convolved by a Gaussian blur, then

followed by an up-sampling by factor 2. The Laplacian and

gradient module are computed on the original image and the

up-sampled image respectively. Note m the ratio of Lapla-

cian before and after 2-upsampling and n the ratio of gradient

norm before and after 2-upsampling. By computing the av-

erage and standard deviation of m and n with respect to the

added blur, it appears that the above conditions are satisfied

only if the added Gaussian blur is bigger than 1.6. This makes

the image blur equal to
√
1.62 + 0.82 ≈ 1.8 if the original im-

age is assumed to already contain a blur 0.8. Similar results

are obtained with another dozen of natural images. This ex-

periment is complementary to the one dealing with aliasing-

free sub-sampling in [2]. Our conclusion is that a good image

for feature analysis must contain at least a 1.8 Gaussian blur.

There are two ways to achieve this quantity of blur: either we



convolve the input image with enough Gaussian blur, or we

pre-zoom the input image by 2 to increase the blur to be 1.6,

close to 1.8 as required (if the initial image contains Gaussian

blur 0.8). This step of pre-zoom is optional in original SIFT

in order to increase the number of features.

Fig. 2: Image on the left is convolved by a Gaussian function with

standard deviation σ before it is up-sampled by factor 2. The Lapla-

cian value and gradient modulus before and after the up-sampling

are compared. Middle: the average and standard deviation of ratio

of the Laplacian value before and after 2-upsampling. Right: the av-

erage and standard deviation of ratio of gradient modulus before and

after 2-upsampling.

2.2. 3D refinement

Once the local extrema are extracted in 3D scale space, their

position can be refined under the assumption that the DoG

image can be locally approximated by a second order Taylor

expansion. Given a local extrema located at x = (x, y, σ),
the DoG function D(x) is expanded at x by: D(x +∆x) =

D(x)+∆x
T ∂D

∂x +∆x
T ∂2D

∂x2 ∆x. The peak of this function is

attained when its derivative is set to be zero, which gives the

offset ∆x = (∆x,∆y,∆σ)
T

=
(

∂2D
∂x2

)

−1
∂D
∂x . Sub-pixel

precision is thus obtained and the final position is x+∆x.

If the sub-sampling is canceled, the blur between two

adjacent scales in octaves increases also by factor 2, 4, 16,

· · · . Thus the scale space is sampled more and more sparsely

through octaves. This makes it more difficult for the 3D inter-

polation refinement to produce a precise result. In addition,

the SIFT descriptor is constructed approximately on these

sparse intervals without really interpolating a new interval.

This makes descriptors less accurate. To compensate this

effect, the number of intervals is increased with the same

factor through octaves (see Fig. 1b). This means that the

up-sampling is performed also in the scale direction, just as

that in the x and y directions in image.

3. MATCHING PRECISION EVALUATION

Matching precision is evaluated on pairs of images un-

der different geometric transforms: translation, rotation,

zoom, affine transform. The translations are respectively

(45, 32), (45.1, 32.1), (45.3, 32.3), (45.5, 32.5), (45.7, 32.7)
and (45.9, 32.9). The rotations varies from 15◦ to 85◦ with

the step of 10◦. The zooming factors are respectively 21/6,

22/6, 23/6, 24/6, 25/6 and 26/6. The affine transform A is of

the parametric form A = R1TtR2 with R1 and R2 rotation of

24◦ and 37◦ respectively, and Tt is the tilt in the x direction

with compression factor t = 21/12, 22/12, 23/12, 24/12, 25/12

and 26/12 respectively.

Fig. 3: Some images used in the experiments. The leftmost one is

the reference image and the others are synthetized from it.

The reference image is fixed and the second image is syn-

thesized from the reference one according to the transform

by 7th-order spline interpolation to avoid the “ringing” ar-

tifact introduced by Fourier interpolation. The pre-zoom of

SIFT method is activated and the number of octaves is fixed

to be four (the octave index begins with −1). Only local ex-

trema with strong Laplacian value are detected as features and

are matched. A RANSAC-like algorithm is performed on the

matchings of each octave respectively in order to remove the

“outliers” and to estimate the geometric transform for each

octave. The matching precision is then computed as the root

mean square error (RMSE) on each octave with respect to the

estimated transform respectively.

It is shown in Fig. 4 that the matching precision of orig-

inal SIFT decreases through octaves. This is not surprising

because all detected features are finally projected back to the

original image. For improved SIFT, the matching precision is

kept or even improved through octaves when there is no scale

change between two images, namely translation and rotation.

However, when a scale change is present, namely zoom and

affine transform, the gain in precision is marginal. This is

mainly due to the fact that the matched features are detected

at different scales (blur) when the transform between two im-

ages contains a scale change. The 3D refinement being sen-

sitive to blur, the precision of the refined position and scale

for the matched features will be different. So the matching

precision, which can be interpreted to some extent as the av-

erage relative localization precision, is lower than that in case

of translation and rotation.

If we know in advance the transformation between two

images is some parametric transform, the above problem of

blur inconsistency can be solved to some extent by estimat-

ing then compensating the transform using the most precise

matchings in the first octave. But in practice, the parametric

form of the transformation between two images is unknown

due to the 3D effect of scene. Here we concentrate on the

cases where the transformation between two images is smooth

and can be locally approximated by homography. Although

this does not apply when the scene is really 3D, there are al-

ready many applications based on this assumption, like image

stitching and camera calibration.

The main idea is to use the local filter by homography



(a) translation (b) rotation (c) zoom (d) affine transform

Fig. 4: The matching precision for the original SIFT and improved

SIFT under different transforms. The x-axis is the octave index,

from -1 to 2. The y-axis the average residual error (in pixels). Top

row: original SIFT. Bottom row: improved SIFT.

to increase the matching precision. We detect a dense set of

SIFT matching between two images. To have enough match-

ings for natural images, we consider every pixel as a feature

point in the first two octaves of improved SIFT scheme. Only

a low Laplacian threshold is used to eliminate very unstable

feature points. The matching process is accelerated by di-

viding the image domain into several blocks and the result-

ing matchings are pruned by vector filter to obtain reliable

matchings. For each SIFT matching, 100 neighboring match-

ings around it are used to estimate the best local homogra-

phy in the least-square sense. Then one point in each SIFT

matching is adjusted according to its corresponding homog-

raphy. We evaluate the whole procedure on the different ge-

ometric transformations as before. The matchings in octave

−1 and 0 are mixed together to have dense matchings over

image domain. The evaluation then gives the average match-

ing error without distinguishing their octave index. In Fig. 5,

without the local filtering, the matching precision of improved

SIFT is coarse due to the relaxed criteria in feature detection.

But the precision is largely improved with the local filtering.

The default of this method is that not many features can be

matched by SIFT under the transformations too “affine”, even

though almost each pixel is considered as a feature point. This

will degrade the filtering performance of local homographies.

This explains why the precision decreases in the case of affine

transformation with the increase of the parameter from 21/12

to 26/12. This is in fact not a problem because we can al-

ways make two images to be more similar by transforming

one image using a coarse homography between them, even if

the relation between both images is not a homography.

For real images, the matching precision is also affected by

the noise in the image. To test the performance of the algo-

rithm for real images, a Canon EOS 30D SLR camera with

EFS 18 − 55mm lens was used to take photos. Three pairs

of images were tested (Fig. 6): the first pair for a planar ab-

stract painting, the second pair for an infinite homography,

the third pair for a distant wall with small camera motion.

Ideally the underlying geometric transformation is a homog-

(a) translation (b) rotation (c) zoom (d) affine trans-

form

Fig. 5: The matching precision of improved SIFT without/with lo-

cal filter under different geometric transformations.

raphy. But for real images, the homography cannot be used

to measure the matching precision due to the lens distortion.

Even though the maximal focal length (55mm) was chosen to

avoid the lens distortion as much as possible, there still exists

small distortion. The bivariate polynomial model, an univer-

sal and practical distortion model, which is also consistent

with a homography, was used here to evaluate the matching

precision. The result is recapitulated in Fig. 7. It seems that

the local filtering technique is very efficient to increase the

matching precision even with noisy images.

(a) drawing (b) house (c) wall

Fig. 6: Three pairs of images taken by Canon EOS 30D SLR camera

with focal length 55mm.

Fig. 7: The matching precision of improved SIFT without/with lo-

cal filter on real image pairs evaluated by a 10th-degree bivariate

polynomial.

4. CONCLUSION

The matching precision of SIFT method is reviewed and im-

proved. We show that a simple canceling of sub-sampling in

the scale space can improve the matching precision if there

is no scale change between images. In the presence of scale

change, we propose to improve the matching precision by lo-

cal homography filtering if the image transform is smooth.

In the future work, we would like to improve the matching

precision for more general transforms, including transforms

induced by 3D scene. We also plan to extend the work to

other feature detectors.
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