
HAL Id: hal-01074878
https://enpc.hal.science/hal-01074878

Submitted on 15 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kolmogorov and Zabih’s Graph Cuts Stereo Matching
Algorithm

Vladimir Kolmogorov, Pascal Monasse, Pauline Tan

To cite this version:
Vladimir Kolmogorov, Pascal Monasse, Pauline Tan. Kolmogorov and Zabih’s Graph Cuts Stereo
Matching Algorithm. Image Processing On Line, 2014, 4, pp.220-251. �10.5201/ipol.2014.97�. �hal-
01074878�

https://enpc.hal.science/hal-01074878
https://hal.archives-ouvertes.fr


Published in Image Processing On Line on 2014–10–15.
Submitted on 2013–06–11, accepted on 2014–07–09.
ISSN 2105–1232 c© 2014 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol.2014.97

2
0
1
4
/
0
7
/
0
1

v
0
.5

IP
O
L

a
rt
ic
le

c
la
ss

Kolmogorov and Zabih’s Graph Cuts Stereo Matching

Algorithm

Vladimir Kolmogorov1, Pascal Monasse2, Pauline Tan3

1 IST, Austria (vnk@ist.ac.at)
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Abstract

Binocular stereovision estimates the three-dimensional shape of a scene from two photographs
taken from different points of view. In rectified epipolar geometry, this is equivalent to a
matching problem. This article describes a method proposed by Kolmogorov and Zabih in 2001,
which puts forward an energy-based formulation. The aim is to minimize a four-term-energy.
This energy is not convex and cannot be minimized except among a class of perturbations called
expansion moves, in which case an exact minimization can be done with graph cuts techniques.
One noteworthy feature of this method is that it handles occlusion: The algorithm detects points
that cannot be matched with any point in the other image. In this method displacements are
pixel accurate (no subpixel refinement).

Source Code

The software rewritten from Kolmogorov’s code is available at the IPOL web page of this
article1. A set of stereo pairs is available and Kolmogorov and Zabih’s algorithm can be tried
on line. In the demo, the algorithm is run on six overlapping slices of the images, for efficiency
purpose. Essentially, two parameters are needed: K associated to occlusion cost and λ to data
fidelity. By default they are tuned automatically but they can be adapted to get better results.

Supplementary Material

In the demo, an optional rectification step can be launched before running the algorithm. The
source code for this preprocessing step (not reviewed) can be found at the IPOL web page of
this article2.
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(a) Left (reference) image (b) Right image

Figure 1: Tsukuba stereo pair, from Middlebury benchmark [8].

1 Introduction: Stereovision Concepts

Binocular stereovision estimates the 3D model of a scene given two images taken from different points
of view. Such images are called a stereo pair (Figure 1). The simplest configuration that allows the
estimation of a 3D map is the rectified epipolar geometry. In this case every 3D-point projected on
one image is projected on the same horizontal line in the other image. These lines are epipolar lines.
Basically, it corresponds to the configuration where the x-axes of the cameras are parallel to the line
joining their centers and the principal (z-) axes are parallel (e.g. human eyes). When the images are
not in this geometry, a rectification step can be used to warp the images. A method achieving the
rectification, published in IPOL [7], is used as an optional preprocessing step of the demo associated
to this article. In what follows, any stereo pair is supposed to be in rectified epipolar geometry.

1.1 Stereovision in Epipolar Geometry

In epipolar geometry the motion of each point from one image to the other (called disparity) is
horizontal (Figure 2). Moreover, Thales’s theorem proves that each pixel disparity is inversely pro-
portional to its distance from the observer. Thus, estimating the disparity map is sufficient to know
the relative depth of a scene. Hence, binocular stereo algorithms usually only consist of matching
every pixel of one image (the reference image) to a pixel in the other image.

1.2 Occlusion Problem

Unfortunately, estimating the depth of a scene from a stereo pair is an ill-posed problem. Indeed,
some pixels are only visible in one image. They are called occluded. These pixels are difficult to deal
with.

1http://dx.doi.org/10.5201/ipol.2014.97
2http://dx.doi.org/10.5201/ipol.2014.97
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p
•

(a) Left image

q
•

(b) Right image

Figure 2: Point p corresponds to q. The white dashed lines are the corresponding epipolar lines.

2 Problem Representation

2.1 Definitions

Here are some useful definitions and notations. Let L (resp. R) be the set of pixels of the left
(reference) image I1 (resp. right image I2). Then p (a pair of coordinates) denotes a pixel location
from the left image and q a pixel from the right image. We also assume that the disparity lies in the
1D–range Idisp = [xmin, xmax] since the images are supposed to be in rectified epipolar geometry.

Let A ⊂ L × R be the set of pairs of pixels (denoted (p, q)) which may potentially correspond,
i.e., (p, q) ∈ A iff q− p ∈ Idisp×{0}. Elements of A are called assignments. Then we define for every
assignment a = (p, q) its disparity d(a) = d(p, q) := q − p. Let us say that two assignments a1 =
(p1, q1) and a2 = (p2, q2) are neighbors, written a1 ∼ a2, if p1 and p2 are adjacent and d(a1) = d(a2).

A configuration is any map f : A → {0, 1}. If a = (p, q) is an assignment, then f(a) = 1 means
that p and q correspond under the configuration f . Such assignments are called active assignments.
If f(a) = 0, then a is said to be inactive. A configuration is unique if for all pixels p (resp. q), there is at
most one active assignment involving p (resp. q): for instance, considering p, if f(p, q1) = f(p, q2) = 1,
then q1 = q2.

If an assignment a = (p, q) is active under the unique configuration f , then the disparity of pixel p
is df (p) := d(a) = q − p and the disparity of pixel q is given by df (q) := −d(a). Note that if every
assignment a = (p, q) involving p is inactive then p is not matched with any pixel. In that case, p is
called occluded under the configuration f .

The method of Kolmogorov and Zabih [4] is based on assignments, not multi-labeled pixels.
The advantage is that it handles uniqueness properly in both images. It also provides a natural
way to handle occlusion, whereas adding a special label for occlusion would not use both images
symmetrically.

2.2 Energy Function

The energy of a configuration f is defined as:

E(f) = Edata(f) + Eocclusion(f) + Esmoothness(f) + Euniqueness(f). (1)

This energy has four terms. Each term promotes a desired property of the configuration we are
looking for. The data term measures how well matched pairs fit, the occlusion term minimizes the
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number of occluded pixels, the smoothness term penalizes the nonregularity of the configuration,
and the last term enforces the uniqueness.

Data term The aim is to drive the algorithm to make the best matches. The better the matches
(in terms of color similarity), the smaller the data term. The data term is given by

Edata(f) :=
∑

a,f(a)=1

D(a) =
∑

a

D(a) · 1
(

f(a) = 1
)

, (2)

where the function 1(·) equals 1 when its argument is true, and 0 otherwise. The function D is a
distance function which measures the dissimilarity between pixels p and q if a = (p, q). Hence if
pixels p and q are matched, the assignment a = (p, q) is active and contributes to the data term.
The demo chooses the classical SD (Squared Difference), which is adapted to Gaussian white noise,
though the code offers as another option the AD (Absolute Difference). The difference is trimmed
by a function T and can be written:

Dd(p, q) := T (|I1(p)− I2(q)|)
d, (3)

for gray-scale images and

Dd(p, q) :=
T (|IR1 (p)− IR2 (q)|)

d + T (|IG1 (p)− IG2 (q)|)
d + T (|IB1 (p)− IB2 (q)|)

d

3
, (4)

for color images Ii = (IRi , I
G
i , I

B
i ), with d = 1 for AD and d = 2 for SD. The trim function T uses a

threshold of CUTOFF=30 and is defined as

T (x) := min(CUTOFF, x). (5)

A variant due to Birchfield and Tomasi is used to limit some effects due to sampling (see Sec-
tion 4.3).

Occlusion term This term consists in maximizing the number of matches. In other words, one
wants to minimize the number of occluded pixels. Since the number of occluded pixels is an affine
function of the number of inactive assignments, any inactive assignment is penalized by penalty K:

Eocclusion(f) :=
∑

a,f(a)=0

K =
∑

a

K · 1
(

f(a) = 0
)

= K ×#A−
∑

a

K · 1
(

f(a) = 1
)

. (6)

This is equivalent to counting the number of inactive assignments. Then, the fewer the occluded
pixels, the smaller the occlusion term.

Smoothness term The smoothness term favors piecewise constant maps. The idea is that adjacent
pixels should have similar disparities, especially if their colors are close. In other words, if two
assignments involving adjacent pixels p1 and p2 have the same disparity, then both should be either
active or inactive, otherwise there is a penalty. The smoothness term concerns neighbor assignments
a1 ∼ a2 and is defined by

Esmoothness(f) :=
∑

a1∼a2

Va1,a2 · 1
(

f(a1) 6= f(a2)
)

, (7)

where Va1,a2 is defined by

Va1,a2 :=

{

λ1 = 3λ if max
(

|I1(p1)− I1(p2)|, |I2(q1)− I2(q2)|
)

< 8
λ2 = λ otherwise.

(8)
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In (8), absolute values are replaced with ℓ∞ norm for color images. If p1 and p2 have the same
disparity the smoothness term for (a1, a2) is zero. Otherwise the penalty for not having the same
disparity is small (λ) if there is a significant contrast between the adjacent pixels, otherwise it is
bigger (3λ). Thus the term penalizes more the disparity jumps where there are no jumps in the
intensity. Notice that if df (p1) 6= df (p2) for the unique configuration f , the pair of assignments
(a1, a2) contributes:

Va1,(p2,p2+df (p1)) + V(p1,p1+df (p2)),a2 (9)

to the smoothness term, provided (p2, p2 + df (p1)) ∈ A and (p1, p1 + df (p2)) ∈ A.
By default, the parameters λ1 and λ2 are set relatively to a common parameter λ as described

above, but they can also be set by the user as an argument of the program. See Section 4.2 for more
explanations about the choice of parameters K and λ.

Uniqueness term This term enforces the uniqueness of the configuration. It should be infinity if
the configuration is nonunique, null otherwise. Then, one can write it as

Euniqueness(f) :=
∑

a1=(p,q1)
a2=(p,q2)

q1 6=q2

∞ · 1
(

f(a1) = f(a2) = 1
)

+
∑

a1=(p1,q)
a2=(p2,q)
p1 6=p2

∞ · 1
(

f(a1) = f(a2) = 1
)

. (10)

Note that the energy we constructed is defined on binary label configurations (any assignment
can only get value 0 or 1 under the configuration f).

3 Algorithm

3.1 Representating Energy Functions with Graphs

In this section we show that, in some particular cases, energies defined on binary label configurations
can be minimized by graph cuts.

3.1.1 Graph and Cuts

A directed graph (or simply graph) is composed of a set V of vertices (or nodes) and a set E ⊂ V ×V
of directed edges, each with a nonnegative weight. Let G = (V , E) be a graph with two distinguished
vertices s and t called the source and the sink. An s-t cut (or cut) is a partition (Vs,V t) of the
vertices, such that s ∈ Vs and t ∈ V t. The cost of the cut is the sum of the weights of the edges from
a vertex in Vs to a vertex in V t. A minimum cut of the graph is a cut with minimal cost.

If x and y are two vertices of the set V , then (x, y) denotes the edge directed from x to y. Its
weight (or capacity) in the graph G is denoted by cG(x, y). Hence, the cost of a cut (Vs,V t) of the
graph G = (V , E) is given by the following formula:

cG(V
s,V t) =

∑

(u,v)∈E
u∈Vs,v∈Vt

cG(u, v). (11)

Figure 3 illustrates a graph with capacities and a flow. A flow is a map Φ from E to R
+ such

that:

∀ e = (x, y) ∈ E , 0 ≤ Φ(e) ≤ cG(x, y), (12)

∀ x ∈ V \ {s, t},
∑

e=(y,x)∈E

Φ(e) =
∑

e=(x,y)∈E

Φ(e). (13)
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Figure 3: Vocabulary of network flow theory. (a) A graph with capacities. (b) In magenta a flow
of value 2: the value on any edge must not exceed its capacity, at any node (except s and t) the
incoming flow should be equal to the outgoing flow.

The value of a flow is the common value

∑

e=(s,x)∈E

Φ(e) =
∑

e=(x,t)∈E

Φ(e). (14)

A maximum flow of the graph is a flow with maximal value.
Min-cut and max-flow problems are dual linear problems:

Theorem 1 (Max-Flow/Min-Cut) The cost of a minimum cut of a graph is the value of a max-
imum flow.

Thanks to Ford-Fulkerson style algorithms, based on augmenting paths, a maximum flow is com-
putable. In Kolmogorov and Zabih’s software the max-flow is computed by an algorithm developed
by Boykov and Kolmogorov [2]. Our implementation uses the same algorithm, but its inner work-
ing is out of the scope of this article. Experimentally, this algorithm is faster than most other
known methods on typical vision graphs. As a result it is included in several higher level discrete
optimization toolboxes, such as FastPD [6], which reputedly achieves the best performance.

3.1.2 Graph-Representable Functions

A function E of n binary variables is said to be graph-representable if there exists a graph G = (V , E)
with source s and sink t and vertices V0 = {v1, . . . , vn} ⊂ V , and a constant C, such that for
any x = (x1, . . . , xn) ∈ {0, 1}

n the value E(x1, . . . , xn) is equal to C plus the minimum cost among
all cuts (Vs,V t) of G in which vi ∈ V

s if xi = 0 and vi ∈ V
t if xi = 1 for any i ∈ {1, . . . , n}. Note

that there is no unicity of the representation.
The class F2 is defined to be the set of functions that can be written as a sum of functions of up

to two binary variables:

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑

i<j

Ei,j(xi, xj). (15)

Theorem 2 (F2 theorem, [3, 5]) Let E be a function from the class F2. Then, E is graph-
representable if each term involving two binary variables is submodular, i.e., it satisfies the following
inequality:

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0). (16)

Intuitively, submodularity favors pairs of variables with identical values. Let us check this theorem
by constructing a graph representing a function from the class F2 that satisfies the submodularity
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condition. We only consider unary functions Ei and pairwise functions Ei,j, since we show in Ap-
pendix A that the sum of graph-representable functions is still graph-representable. The reader
should go to Appendix B to check in detail that each graph does represent the right function. Note
that the submodularity condition is not only sufficient, as expressed here, but actually necessary [5].
We do not need this result in the current article, so we do not reproduce its proof. The spirit of the
proof appears in Appendix C.

Remark: The definition of graph-representability allows the representing graph to have more vertices
than the number of variables occurring in the graph-representable function. However, in practice,
we only construct graphs with the minimal number of vertices.

• Unary function: A function Ei of one binary variable is always graph-representable. We assume
that Ei(0) = E0 and Ei(1) = E1. If E0 and E1 are nonnegative, then, for instance, the graph of
Figure 4 represents Ei.

In the general case (e.g., if E0 or E1 is negative), one may subtract the quantity min(E0,E1) to
the capacities of the graph constructed above in order to get nonnegative weights. Then, only
one edge is to be constructed to represent a given unary function. For instance, if min(E0,E1) =
E1, then an edge from the source s to the node xi with capacity E0−E1 > 0 is constructed. For
the sake of simplicity, in what follows, any unary function is represented by two edges that can
formally be negative. This is used for the occlusion term by counting only energy terms −K
for active assignments, instead of K for inactive assignments, according to the last equality
of (6).

• Pairwise function: A function Ei,j of two binary variables is graph-representable if it is sub-
modular. Indeed it may be written as

Ei,j(xi, xj) =

{

E01 if xi = 0

E11 if xi = 1

+

{

E00 − E01 if xj = 0

0 if xj = 1

+

{

E01 + E10 − E00 − E11 if (xi, xj) = (1, 0)

0 otherwise

(17)

where Ei,j(0, 0) = E00, E
i,j(0, 1) = E01, E

i,j(1, 0) = E10, and Ei,j(1, 1) = E11. The first term
only depends on variable xi, and the second one only on xj. So they can be represented
as shown above. For the last term, one creates an edge (xj, xi) with the weight Ei,j(0, 1) +
Ei,j(1, 0) − Ei,j(0, 0) − Ei,j(1, 1) (which is nonnegative if the function is submodular). The
complete construction of the graph of Ei,j is illustrated in Figure 4.

>Code: energy/energy.h provides the interface to minimize E ∈ F2. The method of class Energy
add variable(E0,E1) adds a variable given the energies Ei of its two possible values. The method
add term2(x,y, E00, E01, E10, E11) adds a term Ei,j. These methods are used to construct
the associated Graph object, defined in maxflow/graph.h, while maxflow/maxflow.cpp implements
the max-flow computation. Unary functions are represented in add tweights that allows negative
weights, but that constructs in practice only one edge, from the source or to the sink, depending on
the sign of the quantity E0−E1. This edge is then weighted by |E0−E1| and a constant min(E0,E1) is
added to the total flow value in order to represent exactly the function. Pairwise functions that satisfy
the submodularity condition are represented in add edge, that only allows nonnegative weights. Their
definition is in maxflow/graph.cpp. Files in directory maxflow are not reviewed with this article.
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s txi

E1 E0

(a) Representation of a unary function (go to Fig-
ure 17 in Appendix B to see the cuts).

s t

xi

xj

E11 E01

E01 + E10

−E00 − E11

E00 − E01

(b) Representation of a pairwise function (go to
Figure 18 in Appendix B to see the cuts).

Figure 4: Graph construction for unary and pairwise functions.

3.2 The Expansion Move Algorithm

3.2.1 Expansion Move

The energy (1) is unfortunately not graph-representable. However, the minimization of this energy
can be approximated by an iterated constrained minimization, given by so-called expansion moves.
The latter is the minimization of a graph-representable energy, so it is exact.

Fix f a unique configuration and α ∈ Idisp × {0} a disparity value. A configuration f ′ is said to
be an α-expansion move of f if:

f(a) = 1 and d(a) = α ⇒ f ′(a) = 1, (18)

f(a) = 0 and d(a) 6= α ⇒ f ′(a) = 0. (19)

Pixels with disparity α (in configuration f) keep the disparity α in f ′; other pixels (occluded
or not) adopt the disparity α in f ′, keep their state (occluded or keep their disparity), or become
occluded. In terms of assignments,

• any active assignment with disparity α remains active;

• any inactive assignment with disparity different from α remains inactive;

• any other assignment can change state (active/inactive).

Thus, after an α-expansion move the number of assignments with disparity α cannot decrease.
Note that for any given (unique) configuration f and any disparity value α, f is an α-expansion
move of itself.

Against all odds, the energy E(f ′) is not graph-representable. It is indeed clear that the uniqueness
terms do not comply with the same state preference sustained by submodularity. One solution to
this issue consists in applying a change of variable by introducing a function gα associated to an α-
expansion move configuration f ′. This new function acts as a toggle on the activity of each variable
assignment a. In other words, gα(a) = 1 indicates that the activity of a is swapped during the current
α-expansion move. Mathematically, this interpretation reads:

gα(a) = 1 iff f(a) 6= f ′(a). (20)

We denote by A◦ the set of active assignments with disparity different from α, Aα the set of
assignments (either active or inactive) with disparity α. Because of the α-expansion move strategy
itself (18) and (19), only certain assignments ({a ∈ Aα | f(a) = 0} ∪ A◦) can see their status
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swapped. The rest of the assignments are not actual variables during the α-expansion move. To
leverage this consideration, we actually do not include those assignments in the definition of gα. As a
result, the vector gα is shorter than the original vector f ′. Nonetheless, considering the interpretation
of gα(a) (20), one can easily recover the corresponding values of f ′(a) for all assignments (variable
or non-variable alike) as follows:

f ′(a) =











gα(a) if a ∈ Aα and f(a) = 0

1− gα(a) if a ∈ A◦

f(a) otherwise.

(21)

The key idea is that, given the previous change of variable, the energy assumes a new expression
that shall be proven graph representable

Ef,α(gα) := E(f ′). (22)

3.2.2 Energy Minimization

Let us show that the function Ef,α is graph-representable. To do so, we need to express Ef,α explicitly
as a function of gα and then verify that the pairwise terms are submodular. The function Ef,α can
be written as the sum of four terms:

Ef,α(gα) = Ef,α,data(gα) + Ef,α,occlusion(gα) + Ef,α,smoothness(gα) + Ef,α,uniqueness(gα). (23)

• Data term: If Ef,α,data(gα) = Edata(f
′), then by distinguishing assignments in Aα, in A◦ and

the other ones:

Ef,α,data(gα) =
∑

a∈Aα

f(a)=1

D(a) +
∑

a∈Aα

f(a)=0

D(a) · 1
(

gα(a) = 1
)

+
∑

a∈A◦

D(a) · 1
(

gα(a) = 0
)

. (24)

This term is a sum of unary functions, so it is graph-representable.

• Occlusion term: Similarly, Ef,α,occlusion(gα) = Eocclusion(f
′), i.e.,

Ef,α,occlusion(gα) =
∑

a∈Aα

f(a)=0

K · 1
(

gα(a) = 0
)

+
∑

a∈A◦

K · 1
(

gα(a) = 1
)

+
∑

a/∈Aα∪A◦

K, (25)

so this term is also graph-representable.

• Smoothness term: By definition, Ef,α,smoothness(gα) = Esmoothness(f
′). Notice that a1 ∼ a2

implies by definition that they have the same disparity, so that a1 and a2 are either both in Aα

or none is. So, by distinguishing the case where a1 ∼ a2 are of disparity α and the case where
they are not, we have

Ef,α,smoothness(gα) =
∑

a1∼a2
a1,a2∈Aα

f(a1)=0
f(a2)=0

Va1,a2 · 1
(

gα(a1) 6= gα(a2)
)

+
∑

a1∼a2
a1,a2∈Aα

f(a1)=0
f(a2)=1

Va1,a2 · 1
(

gα(a1) = 0
)

+
∑

a1∼a2
a1,a2∈A◦

Va1,a2 · 1
(

gα(a1) 6= gα(a2)
)

+
∑

a1∼a2
a1∈A◦

a2 /∈A◦

Va1,a2 · 1
(

gα(a1) = 0
)

.

(26)
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The second and the last sums are graph-representable as sums of unary functions. Let us check
that the remaining terms are submodular.

For all pairs of neighbor assignments (a1, a2) in Aα or in A◦, we set Ea1,a2(x1, x2) = Va1,a2 ·
1
(

x1 6= x2

)

. Then, Ea1,a2(0, 0) = Ea1,a2(1, 1) = 0 and Ea1,a2(0, 1) = Ea1,a2(1, 0) = Va1,a2 ≥ 0,
which proves that Ea1,a2 is submodular. Hence, the first and the third sums are both graph-
representable thanks to the F2 theorem.

• Uniqueness term: There is only one assignment involving a given pixel p in Aα and at most one
in A◦. Assuming that uniqueness was actually enforced in f , then at most one of them can be
active in f ′. The same argument applies to a pixel q in the other image. Thus, the uniqueness
term, defined by Ef,α,uniqueness(gα) = Euniqueness(f

′), can be written:

Ef,α,uniqueness(gα) =
∑

a1=(p,p+α)∈Aα

a2=(p,p+df (p))∈A
◦

f(a1)=0

∞ · 1
(

gα(a1) = 1 and gα(a2) = 0
)

+
∑

a1=(q−α,q)∈Aα

a2=(q+df (q),q)∈A
◦

f(a1)=0

∞ · 1
(

gα(a1) = 1 and gα(a2) = 0
)

.
(27)

Indeed, in each term a1 is inactive, while a2 is active in f . Remembering that gα takes value 1
for a change of activity, the terms ensure that a1 cannot become active while a2 remains active.
If we write E for the function E(x1, x2) = ∞ · 1(x1 = 1 and x2 = 0), then E(0, 0) + E(1, 1) =
0 ≤ E(0, 1) + E(1, 0) = ∞, that is, E is submodular. Thus, the uniqueness term is graph-
representable. Recall that submodularity of this term was our main motivation to introduce gα
in the first place. As an additional justification, one can easily check that the uniqueness
term of the energy with respect to f ′ is not graph-representable, because none of the terms is
submodular.

All the previous developments show that Ef,α is graph-representable. As a result, there exists a graph
G = (V , E), with vertices {va}a∈{a∈Aα|f(a)=0}∪A◦ ⊂ V (on top of s and t) such that

Ef,α(gα) = min
(Vs,Vt) cut
satisfying (∗)

cG(V
s,V t) + C with (∗)

{

va ∈ V
s if gα(a) = 0

va ∈ V
t if gα(a) = 1

. (28)

Thus, finding the α-expansion move with the lowest energy is equivalent to minimizing the func-
tion Ef,α among all gα:

min
gα

Ef,α(gα) = min
gα

min
(Vs,Vt) cut
satisfying (∗)

cG(V
s,V t) + C = min

(Vs,Vt) cut
cG(V

s,V t) + C, (29)

which is a minimum cut problem, the last equality being due to the fact that any cut is uniquely
associated with a gα through condition (∗). This can be computed exactly by maximizing the flow
in the graph G. The optimal vector g∗α is then obtained thanks to the optimal cut (V∗,s,V∗,t), by

∀ a ∈ Aα ∪ A◦ \ {a ∈ Aα | f(a) = 1}, g∗α(a) =

{

0 if va ∈ V
∗,s

1 if va ∈ V
∗,t

, (30)

and we can recover the optimal α-expansion move f ∗ thanks to (21).
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Remark: For an initial configuration f and any α ∈ Idisp×{0}, a graph of at most (2×#L) vertices
is constructed to compute the α-expansion move of f that decreases the most the energy.

Algorithm 1, implemented in method Match::run, file kz2.cpp, proceeds by looking iteratively
for optimal α-expansion move configurations, for varying values of α. Such an operation is called an
iteration. The values α are selected in a random order. More precisely the array of α values is either
shuffled once for all and kept fixed at each iteration (this is the case in the demo and the default
settings in the code) or reshuffled every time. The code performs 4 iterations at most (parameter of
the program), but it may stop earlier.

Algorithm 1: An iteration of the expansion move algorithm

Input: a unique configuration f , interval of disparities Idisp, achieved α-expansions array done

Output: updated unique configuration f with smaller or equal energy
1 foreach α (in randomly ordered Idisp) do
2 if not done[α] then
3 Find the α-expansion move f ∗ of f that decreases the most the energy:

f ∗ ← argminf ′ α−expansion move of fE(f
′)

if E(f ∗) < E(f) then
4 f ← f ∗

5 done[:]← false

6 done[α]← true
7 if done[:]=true then
8 return f

Thus, the expansion move algorithm does not proceed to an exact minimization of the energy
function, but considers a class of perturbations. However, each step of energy decrease is optimal. The
array done records for each α expansion whether it decreased the energy (before the first iteration,
it must be set to false). This ensures that we do not reattempt an α-expansion for the same
disparity α if nothing has changed since the last one. The test in line 7 of Algorithm 1 is verified
by maintaining a counter nDone of the number of false entries in the array done, which has to be
updated in lines 5 and 6.

All elements of the array done are set to false before the first iteration and the initial configu-
ration f has only inactive assignments (all pixels occluded).

4 Implementation Details

In this section, we give some details on the implementation of the Kolmogorov and Zabih’s method.
One can also read the comments in the source code provided on the IPOL webpage.

4.1 Expansion Move Algorithm

We recall that the expansion move algorithm for a given disparity value α aims at finding the
α-expansion move of a configuration f with lowest energy. This is equivalent to minimizing the
graph-representable energy Ef,α among all reduced configurations gα. In other words, one wants to
find the minimal cut of a graph that represents the energy Ef,α. Once this minimal cut is computed,
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it leads to an optimal configuration f ∗. The energy E(f ∗) of the latter is then compared with the
energy of the initial configuration f . The graph construction will be detailed in Section 4.1.1, the
minimization in 4.1.2 and steps to recover the optimal configuration in 4.1.3.

The initial configuration f is encoded by the pixel disparities in images I1 and I2, which are
stored in two arrays d left and d right. For nonoccluded pixels p in L and q in R,

df (p) = d left(p) and df (q) = d right(q). (31)

A special value OCCLUDED is used in d left and d right for occluded pixels.

>Code: The graph is built and the optimal graph cut interpreted as a new configuration in method
Match::ExpansionMove of file kz2.cpp.

4.1.1 Graph Construction

Let f be a unique configuration and α a disparity value. We construct one node for each variable
of gα and appropriate edges to represent the energy Eα,f .

Adding nodes in the graph For the sake of notation brevity, we introduce A(f) := f−1({1}) =
{a ∈ A | f(a) = 1}, representing the set of all active assignments under configuration f . We recall
that A◦ is by definition a subset of A(f) whose complement A(f) \ A◦ = A(f) ∩ Aα gathers all
active assignments with disparity α. With this notation, the energy Eα,f depends on three types
of assignments, a ∈ Aα ∩ A(f), a ∈ Aα \ A(f) and eventually a ∈ A◦. Nonetheless, only the last
two categories correspond to actual variables, and the graph under construction should exclusively
allocate one node per true variable assignment. The remaining type of assignments a ∈ Aα ∩ A(f)
shall however be involved in the definition of the edge capacities as constant counterparts.

If a is an inactive assignment from Aα, then a = (p, p + α); if a is an assignment from A◦,
then a = (p, p+ df (p)). Thus, for each pixel p in L, we distinguish two cases:

• If p is nonoccluded (under the initial configuration f), then there exists a unique pixel q such
that the assignment a = (p, q) is active. If df (p) = α, no node is constructed for the pixel p.
If df (p) 6= α, then a ∈ A◦ and one has to construct a node for a; moreover, if p+α lies within the
right image domain, then another node is constructed for the inactive assignment a′ = (p, p+α).

• If p is occluded, there is no active assignment involving p. Hence, if p + α exists in the right
image, a node for the inactive assignment a′ = (p, p+ α) is constructed ; else, there is no node
associated to the pixel p.

Therefore, for each pixel p in the left image, one constructs 0, 1 or 2 nodes associated to assign-
ments in Aα \ A(f) and A◦.

Since there may be up to two nodes created per pixel, we introduce two arrays, varsA and vars0,
indexed by pixel p, to track the nodes associated to each pixel. For each pixel p, varsA(p) (resp.
vars0(p)) can take three different values: VAR ALPHA, VAR ABSENT, and a (resp. o); the latter is an
identifier of a node concerning p, created on demand and corresponding to a binary variable of gα. In
the first case, no node is created for pixel p because the associated assignment a = (p, p+α) remains
active among all configurations; in the second case, no node in A◦ or Aα \ A(f) is built for pixel p
because the assignment p is occluded or p + α does not exist in the right image; the last case leads
to the construction of a node in Aα \ A(f) (resp. A◦). More precisely,

• varsA(p)=a means that the node a associated to the assignment (p, p+ α) has to be added;

• vars0(p)=o means that the node o associated to the assignment (p, p+df (p)) has to be added.
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>Code: A function named IS VAR was specifically designed to check if a node a or o points to a
node of the graph (as opposed to the VAR ALPHA and VAR ABSENT cases).

According to our analysis, Table 1 summarizes the filling rules of the arrays varsA and vars0,
depending on the state of pixel p.

p is nonoccluded
p is occluded

df (p) = α df (p) 6= α
p+ α is in the
right image

varsA(p)=VAR ALPHA varsA(p)=a

vars0(p)=VAR ALPHA vars0(p)=o vars0(p)=VAR ABSENT

p+ α is not in
the right image

impossible
varsA(p)=VAR ABSENT

vars0(p)=o vars0(p)=VAR ABSENT

Table 1: Filling variables vars0(p) and varsA(p) for a pixel p in the left image, with o and a

denoting node identifiers for new variables created on demand in A◦ and Aα respectively.

>Code: The nodes are constructed in method Match::build nodes. They are created by the
function add variable when varsA(p) (resp. vars0(p)) identifies a variable, that is, its value is
neither VAR ALPHA nor VAR ABSENT. Notice that there are 2n nodes at most in the graph, excluding s
and t, where n stands for the number of pixels in each image.

Adding edges in the graph To construct a graph representing a function in class F2, we construct
unary functions and pairwise functions. In the software, such terms are constructed in several
functions:

1. add term1(node,E0,E1): adds a unary function depending on variable node, such that the
node contributes E0 to the cost of the cut if gα(node) = 0, and E1 otherwise;

2. add term2(node1,node2,E00,E01,E10,E11): adds a pairwise term depending on variables
node1 and node2, such that if gα(node1) = 0 and gα(node2) = 0, the cost E00 is added to
the cut cost; if gα(node1) = 0 and gα(node2) = 1, the added cost is E01; if gα(node1) = 1
and gα(node2) = 0, the added cost is E10; if gα(node1) = 1 and gα(node2) = 1, the added cost
is E11.

3. forbid01(node1,node2) is the formal equivalent of add term2(node1,node2,0,∞,0,0) but
takes care of not overflowing. It prevents the configuration gα(node1) = 0 and gα(node2) = 1.

Even though the minimizer gα is independent of the constant C in the graph representation of the
energy Ef,α, it is still useful to recover the exact energy from the cost of the minimum cut. Hence,
constant values also have to be taken into account; they are handled by the function:

4. add constant(value): adds the constant value to the cost of all graph cuts.

This function is cumulative, that is, the constants of each term are cumulated in a member Econst
of class Energy. In practice, that only means adding Econst to the cost of the minimal cut, which
is useful to test whether E(f ∗) is lower than E(f) without computing directly E(f ∗).

>Code: These functions are implemented in energy/energy.h. The computation of the energy
of the current configuration is done in method Match::ComputeEnergy, file kz2.cpp, but it is only
called in debug mode for sanity check; otherwise the energy is always recovered from the graph cut.

Let us detail the construction of the edges for each term of the energy Ef,α. For the sake of
simplicity, we deal with the data term and the occlusion term simultaneously. That is, instead of
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considering the penalty D(a) for the data term and the penalty K for the occlusion term, we assign
to the data penalty the value D′(a) := D(a) − K and 0 to the occlusion penalty. It may happen
that D′(a) < 0, but we have shown in Section 3.1.2 that it is not a problem for unary terms.

Ef,α,data+occ(gα) :=
∑

a∈Aα

f(a)=1

D′(a) +
∑

a∈Aα

f(a)=0

D′(a) · 1
(

gα(a) = 1
)

+
∑

a∈A◦

D′(a) · 1
(

gα(a) = 0
)

(32)

=Ef,α,data(gα) + Ef,α,occlusion(gα)− (#A×K). (33)

This is equivalent to subtract the constant #A×K, which depends on neither f nor α, hence we
may ignore it in the computation of the energy. In what follows, we may refer to the data+occlusion
term as the data term.
>Code: The data penalty D(a) is computed in data.cpp. The data+occlusion penalty D′(a) for
the assignment a = (p, q) is given by Match::data occlusion penalty(p,q).

Since Ef,α,data and Ef,α,occlusion are graph-representable, this term is also graph-representable. It
depends of three kinds of assignments:

• active assignments in Aα (set to VAR ALPHA in varsA and vars0): such assignments contribute
the constant D′(a) to the energy;

• inactive assignments in Aα (encoded in varsA by variables a): such assignments contribute the
cost D′(a) to the energy if gα(a) = 1 and 0 otherwise;

• assignments in A◦ (encoded in vars0 by variables o): such assignments contribute D′(a) to the
energy if gα(o) = 0 and 0 otherwise.

Table 2 gives the construction of the data+occlusion term for each case.

assignment node behavior encoding term construction
a ∈ Aα ∩ A(f)
a = (p, p+ α)

a remains active
varsA(p)=VAR ALPHA

vars0(p)=VAR ALPHA
add constant(D′(a))

a ∈ Aα \ A(f)
a = (p, p+ α)

a is variable varsA(p)=a add term1(a,0,D′(a))

a ∈ A◦

a = (p, p+ df (p))
a is variable vars0(p)=o add term1(o,D′(a),0)

Table 2: Construction of the data+occlusion term.

>Code: The edges associated to the data term are added in Match::build nodes as we go along
constructing the nodes themselves. This is made simple because each node is associated to a unique
data term.

To handle the smoothness term, given by (26), one must first interpret the notion of assignment
neighborhood in terms of pixels, since the assignments are indexed by their first pixel. We recall that
two assignments a1 = (p1, q1) and a2 = (p2, q2) are said to be neighbors, written a1 ∼ a2, if p1 and p2
are adjacent and d(a1) = d(a2). Let p1 and p2 be two adjacent pixels. We present all the assignment
pairs involving these pixels in (26). To simplify the following discussion we introduce with a slight
abuse of notation the generic assignment ai(d) := (pi, pi + d) where i ∈ {1, 2}. The assignment pairs
under consideration are listed hereafter:

1. First row of (26): At least one of a1(α) or a2(α) is inactive. Then we have two subcases:
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• a1(α) and a2(α) are both inactive: a pairwise term is built, since a cost is added to the
energy iff gα(a1(α)) 6= gα(a2(α));

• one, say a1(α), is inactive while the other one a2(α) is active (varsA(p2)=VAR ALPHA):
this brings up the construction of a unary term, which depends on the inactive assign-
ment a1(α).

2. Second row of (26): Both a1(α) and a2(α) are inactive but at least one of p1 or p2 is non
occluded. There are two subcases:

• Both are non occluded and df (p1) = df (p2) := d, then a1(d) ∼ a2(d) and a pairwise term
is added to the energy;

• Only one is non occluded or df (p1) 6= df (p2), then there may be two pairs of assignments
involving p1 and p2, namely:

– a1(df (p1)) associated with a2(df (p1)). This pair yields a unary term (last sum in (26))
under the condition that a1(df (p1)) ∈ A

◦ and a2(df (p1)) exists (it is then inactive).

– a2(df (p2)) associated with a1(df (p2)). Similarly this pair is involved in (26) when
a2(df (p2)) ∈ A

◦ and a1(df (p2)) exists (it is then inactive).

Table 3 summarizes the construction of the smoothness term with the notations a1, a2 for as-
signments in Aα, and o1, o2 for assignments in A◦.

assignments node behavior encoding term construction
a1 ∈ A

α \ A(f)
a1 = (p1, p1 + α)
a2 ∈ A

α \ A(f)
a2 = (p2, p2 + α)

a1 is variable
a2 is variable

varsA(p1)=a1

varsA(p2)=a2

add term2(a1,a2,

0,Va1,a2,Va1,a2,0)

a1 ∈ A
α \ A(f)

a1 = (p1, p1 + α)
a2 ∈ A

α ∩ A(f)
a2 = (p2, p2 + α)

a1 is variable
a2 remains active

varsA(p1)=a1

varsA(p2)=VAR ALPHA
add term1(a1,Va1,a2,0)

a1 ∈ A
◦

a1 = (p1, p1 + d)
a2 ∈ A

◦

a2 = (p2, p2 + d)

a1 is variable
a2 is variable

vars0(p1)=o1

vars0(p2)=o2

add term2(o1,o2,

0,Va1,a2,Va1,a2,0)

a1 ∈ A
◦

a1 = (p1, p1 + d)
a2 ∈ A \ A

◦

a2 = (p2, p2 + d)

a1 is variable
a2 remains inactive

vars0(p1)=o1

d left(p1) 6=d left(p2)

p2+d left(p1)∈ R
add term1(o1,Va1,a2,0)

Table 3: Construction of the smoothness term for two adjacent pixels p1 and p2.

>Code: The smoothness penalty for assignments a1 = (p1, p1 + d) and a2 = (p2, p2 + d) is given
by Match::smoothness penalty. The corresponding edges are built in Match::build smoothness.
To enumerate the neighbors of a pixel, we use the array of two unit translations NEIGHBORS. This
is actually half of the neighborhood system so as to avoid counting twice the energy of equivalent
assignement pairs (i.e., (a1, a2) and (a2, a1)).

Let us eventually build the uniqueness term. In (27), the first term enforces the uniqueness
condition in the left image, the second one enforces the uniqueness in the right image, that is, the
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first (resp. second) term prevents a pixel p ∈ L (resp. q ∈ R) to be matched with more than one
pixel in the right image (resp. left image). For any pixel p in the left image (resp. q in the right
image) with disparity different from α (resp. −α), it forbids the assignments a1 = (p, p + df (p))
and a2 = (p, p+α) (resp. a1 = (q+ df (q), q) and a2 = (q−α, q)), when they exist, to be both active.
See Table 4 for the construction of the uniqueness term.

assignments node behavior encoding term construction
a1 ∈ A

◦

a1 = (p, p+ df (p))
a2 ∈ A

α \ A(f)
a2 = (p, p+ α)

a1 is variable
a2 is variable

vars0(p)=o

varsA(p)=a
forbid01(o,a)

a1 ∈ A
◦

a1 = (q − d(a1), q)
a2 ∈ A

α \ A(f)
a2 = (q − α, q)

a1 is variable
a2 is variable

vars0(q+d)=o

with d=d right(q)

varsA(q-α)=a
forbid01(o,a)

Table 4: Construction of the uniqueness term.

>Code: The edges enforcing uniqueness are built in Match::build uniqueness LR (first row of
Table 4) and Match::build uniqueness RL (second row). To implement the infinite term, it is
possible to use the function add term2 with a large E01. Alas, looking at (17) or at Figure 4(b),
the risk of overflow is plain to see. It is especially serious in our implementation since capacities
are encoded with short integers. For that reason, we haved designed a dedicated function called
Energy::forbid01. This function does not follow the pattern of Figure 4(b), but instead it merely
puts the maximum representable short integer for the weight of the edge (see Figure 19 in Ap-
pendix B). Nonetheless, this alternative still represents the pairwise energy under consideration with
the advantage of completely eliminating the risk of overflow in terminal edges (that is to say, edges
involving s or t). As for non-terminal edges, overflow is not an issue because those occurring in the
uniqueness term do not appear in other energy terms, so that their weight is set up once for all. This
is not the case for weights of terminal edges, which are incremented several times during the graph
construction. Notice there are at most 12n non-terminal edges in the graph, with n the number of
pixels in each image. Indeed, for each pixel we can get:

• 2 pixels in half neighborhood, leading each to 2 smoothness terms. Total: 4.

• 1 left-right and 1 right-left uniqueness terms. Total: 2.

For a technical reason related to the implementation of the max-flow algorithm, every edge is dupli-
cated into two copies reversed of one another. Therefore, we get 2 × (4 + 2) = 12 edges, excluding
terminal edges. To avoid costly memory reallocations of the arrays of vertices and edges in the code,
the maximum memory is allocated in method Match::ExpansionMove, that is, 2×#L vertices and
12×#L edges.

4.1.2 Minimization of the Graph Cut

Once the graph is constructed, we launch the max-flow algorithm to get the cut of minimal cost of
the graph by maximizing the flow. By definition, if the energy Ef,α is represented by the graph G
constructed in the previous section, then, for any cut (Vs,V t) of G,

Ef,α(gα) = cG(V
s,V t) with gα(a) =

{

0 if va ∈ V
s

1 if va ∈ V
t

for a ∈ Aα ∪ A◦, (34)
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where va denotes the node associated with the assignment a. Such a notation is valid since there
are equal numbers of nodes in the graph and of variables in Ef,α. Going back to the associated
configuration f ′ (thanks to (21)), it may be reformulated in terms of active/nonactive assignments:

E(f ′) = cG(V
s,V t) with f ′(a) =



















0 if gα(a) = 0 and a ∈ Aα \ A(f)

1 if gα(a) = 1 and a ∈ Aα \ A(f)

1 if gα(a) = 0 and a ∈ A◦

0 if gα(a) = 1 and a ∈ A◦

. (35)

Since the graph exactly represents the energy, the minimal cost of a cut is the value of the lowest
energy of the α-expansion moves of f . Hence, if the value is strictly lower than the energy oldE of
the initial configuration f , the expansion move has decreased the energy and one keeps the resulting
configuration f ∗.

4.1.3 Recovering the Optimal Configuration and Updating the Disparity

After finding the optimal cut of the graph, nodes in varsA and vars0 are set to values VAR ALPHA,
VAR ABSENT, 0 and 1, indicating the activity of the node, see (35).

Updating the configuration By construction, nonvariable nodes keep their initial state, that
is, f ∗(a) = f(a) for the associated assignment. Hence, for each pixel p in the left image, if
varsA(p)=vars0(p)=VAR ALPHA, then the assignment a = (p, p + α) remains active. Assignments
not in Aα ∪ A◦ remain inactive. Let us now consider the variable assignments.

In the code, the function get var returns the value gα(a) of a binary variable. If the nodes
varsA(p) and/or vars0(p) associated to the pixel p are variable, then, according to (35)

• if get var(vars0(p))=1, then the assignment a = (p, p+ df (p)) becomes inactive;

• if get var(varsA(p))=1, then the assignment a = (p, p+ α) becomes active;

• the other assignments keep their original state.

Updating the disparity map This allows the software to update the disparity map d left, as
below:

• if get var(vars0(p))=1, then d left(p)=OCCLUDED (the pixel p becomes occluded because it
lost its former disparity, unless the following rule gives it a new disparity α);

• if get var(varsA(p))=1, then d left(p)=α (the pixel p has adopted the disparity α).

The remaining pixels keep their former disparity (or remain occluded).

>Code: Update of the disparity map d left by examination of the value of variables is done in
Match::update disparity. The redundant inverse disparity map d right, from right to left image,
is also updated, which is used in the next α-expansion move to speed up the right to left uniqueness
constraint construction (last row of Table 4).
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4.2 Parameters

Let us recall that the data penalty for an assignment a is D′(a), where D′(a) = D(a) − K if a is
active, 0 otherwise. Thus, only active assignments contribute to the energy and this contribution
can be either negative or nonnegative.

IfK is too large (larger than every possible valueD(a)), the data penalty for any active assignment
is negative. Then each active assignment makes the energy decrease, so it favors configurations
with maximal active assignments. On the contrary, if K is too small (smaller than every possible
value D(a)) the data penalty for active assignments is nonnegative. So occlusions are favored.

Kolmogorov and Zabih proposed a heuristic to choose automatically a suitable value ofK avoiding
the above mentioned situations. K is chosen such that for each pixel, only 25% of the possible
assignments give negative (so advantageous) penalties on average.

Algorithm 2 gives the details of the automatic computation of K. In line 2, we just consider
pixels p such that p+ Idisp ⊂ R, which amounts to ignore some pixels close to one image border.

Algorithm 2: Automatic choice of the parameters

1 Set k to one fourth of the number of its possible assignments if larger than 3, and 3 otherwise;
2 foreach pixel p // but not pixels p close to border (see text)

3 do
4 Compute C(p) as the k-th smallest value of all the D(a) values for assignments a involving

the pixel p;

5 Set K to the average of all C(p) values.

>Code: K is computed in statistics.cpp.
Since λ and K should be balanced, λ is chosen to be proportional to K. The user can also tune

the parameters in order to enhance the results. Note that the automatic estimation takes as input
the disparity range given by the user. See Section 6.2 concerning the influence of these settings.

By default λ = K/5. The Graph class is a template and can accept weights of different types, but
the Energy class uses integer weights (specifically type short int). Just passing the nearest integer
to K/5 may be too imprecise. Therefore the parameters are approximated as fractions: the smallest
denominator between 1 and 16 minimizing

N = arg min
i=1,··· ,16

∣

∣

∣

∣

[i ·K]

i ·K
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

[i · λ1]

i · λ1

− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

[i · λ2]

i · λ2

− 1

∣

∣

∣

∣

(36)

with [x] the nearest integer to x. The minimized term is the sum of relative errors in approximating
K, λ1 and λ2 as fractions with same denominator i. If any of the three parameters is 0, its contribution
is ignored in the sum. Finally, all parameters K, λ1 and λ2 are recomputed as fractions with this
denominator N . Since only the relative scales of the parameters are important, we can just use the
numerators and replace the data+occlusion term by:

D′(a) = N ×D(a)−K ′, (37)

with K ′/N the fraction approximating K.
The constraint N ≤ 16 prevents a possible overflow. Concerning the data+occlusion term, ND(a)

being positive, it is enough to check the term does not exceed the maximum short integer, normally
215 − 1. Indeed, the worst case is when D(a) is based on the L2 norm. In that case, since according
to (5)

D(a) ≤ CUTOFF2 = 302 < (25)2 = 210, (38)
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N ≤ 24 ensures that ND(a) < 214. The positivity of K ′ prevents D′(a) from overflowing by excess.
Besides the data+occlusion terms, there might be up to 4 × E01 ≤ 4 × Nλ1 (one per neighbor) in
edge weight to the terminal node t contributed by the smoothness term, see Figure 4(b). This must
not exceed 214, which amounts to λ1 < 28. Since λ1 = 3λ, this makes an upper bound of about 85
for λ. The online demo restricts λ to at most 50.

>Code: The parameters λ1, λ2 and the constant 8 occurring in (8) can be independently chosen
when running the program with the arguments --lambda1, --lambda2 and --threshold (or equiv-
alently -t). However the demo does not offer such flexibility: it sets λ1 and λ2 with respect to λ and
sets the edge threshold to 8.

4.3 Birchfield and Tomasi’s Dissimilarity Measure

Let us recall the formulation of this measure. The BT dissimilarity measure [1] of a pair of pixels (p, q)
is the distance from I1(p) to interval

[

Imin
2 (q), Imax

2 (q)
]

:

DBT(p, q) = max{0, I1(p)− Imax
2 (q), Imin

2 (q)− I1(p)}, (39)

where Imax
2 (q) and Imin

2 (q) are resp. the larger and the smaller values on the one-pixel-large-neighbor-
hood (in both directions x and y) centered on q of Ĩ2, with Ĩ2 the bilinear interpolation of intensity I2:

Imax
2 (q) := max

r

{

Ĩ2

(

q +
1

2
r

)

:=
1

2

(

I2(q) + I2(q + r)
)

}

(40)

Imin
2 (q) := min

r

{

Ĩ2

(

q +
1

2
r

)

:=
1

2

(

I2(q) + I2(q + r)
)

}

, (41)

with r ∈
{

(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)
}

. The last two vectors have been added by Kolmogorov
and Zabih and did not occur in the original BT measure: this addition could compensate a slight
error in the epipolar rectification. That is, if I1(p) ∈

[

Imin
2 (q), Imax

2 (q)
]

, then there exists a q′ in the

subpixel neighborhood of q ([qx−1/2, qx+1/2]× [qy−1/2, qy+1/2]) such that I1(p) = Ĩ2(q
′). Hence,

the apparent dissimilarity between p and q can be a sampling effect and should not be taken into
account.

A trimmed and symmetric version of DBT is used in the code, as the smaller of the distance
of I1(p) to interval [Imin

2 (q), Imax
2 (q)

]

and of the distance of I2(q) to interval [Imin
1 (p), Imax

1 (p)
]

:

D(p, q) = T (min(max{0, I1(p)− Imax
2 (q), Imin

2 (q)− I1(p)},

max{0, I2(q)− Imax
1 (p), Imin

1 (p)− I2(q)})),
(42)

using the trim function T of (5).

>Code: This dissimilarity is computed in data.cpp (in functions SubPixel, SubPixelColor,
Match::data penalty gray and Match::data penalty color).

5 About the Online Demo

In order to reduce the computational time, we decided to slice the images in six strips, running
the program in parallel. Experimental results have shown only few differences between running the
program on the entire canvas or running it on the cropped images and then merging them (see
Figure 6). The strips overlap by 12px. The last strip must not be too narrow, so its height is
remainder + quotient (Figure 5). We compute the parameters K and λ on the whole image and then
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Figure 5: The six strips of the sliced image.

use them on each strip, instead of letting the program choose different values of parameters for each
strip.

For comparison, Figure 6 shows the results of computing the disparity map on the entire image
vs. computing it on sliced images. The two are quite similar. However, one can observe some impact

(a) Without cutting in six
strips

(b) With cutting in six strips

Figure 6: Experimental results on the entire image and the sliced images.

on the regularity at the junctions of two stripes, e.g., on the top of the right table leg. In such cases,
it may not be worth assigning the correct disparity to the background and paying the smoothness
term. It is then more advantageous to pay the data term.

6 Examples

6.1 Experimental Results

Tsukuba (Figure 7) The algorithm works fairly well on this image: we see almost no difference
with the ground truth. Moreover occluded pixels (in cyan) are correctly found. Note though that
some pixels (very few) are labeled occluded by mistake. This image typically shows the superiority of
complex global algorithms over simple local methods such as block matching, especially in occlusion
detection. Because the matches do not involve patches, there is no fattening effect, as it is often
observed in (even advanced) local methods.
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(a) Tsukuba (left image) (b) Result of algorithm run with-
out cutting the image into several
strips

(c) Groundtruth (black pixels
mean “no data”)

Figure 7: Results of the algorithm on the Tsukuba pair.

Chair (Figure 8) The result of the algorithm is also good. The pair is actually an easy one,
since it avoids most of the difficulties encountered in stereovision (lots of textures, a few reflections;
compare with the next example). However, one can see on this example that the quantification of
the disparity (the algorithm can only produce pixel disparity map) is a limitation of the method.
Indeed the disparities on the chair (e.g.) are expected to be smoother than the estimated ones.
Notice the thin bands of occluded pixels at the left of disparity level sets on the seat. In a way this is

(a) Chair (left image) (b) Result of algorithm

Figure 8: Results of the algorithm on the Chair pair.

disturbing because these erroneous occlusions display a similarity with the real ones. To understand
this somehow troubling phenomenon, consider for example a mainly uniform patch in the image
whose real disparity map is slanted, as in Figure 9. If a = b+ 1, the combined effect of quantization
and the uniqueness constraint compell an occlusion to occur at their interface, otherwise the two
pixels would arrive on the same pixel in the right image. Assuming the part with label b is in front,
the last a in each line has to be occluded.

Bottle (Figure 10) The result is not very satisfactory. The shapes of the bottle and the speaker
are correct, but many matches are not. The reason is mainly that the scene is very difficult for a
stereo algorithm: first, the photos were taken from two distant points of view. Hence many pixels are
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a a b b b b b b b b
a a b b b b b b b b
a a a a a b b b b b
a a a a a a b b b b
a a a a a a b b b b
a a a a a a a a b b

(a) True (but quantized) disparity map

a o b b b b b b b b
a o b b b b b b b b
a a a a o b b b b b
a a a a a o b b b b
a a a a a o b b b b
a a a a a a a o b b

(b) Computed disparity map

Figure 9: Combined effect of quantification and uniqueness constraint on computed disparity of a
slanted roughly uniform surface. We assume a = b+ 1 and o is the occlusion label.

occluded. Then the window at the back is semi transparent and the table provides large reflections
(water on the table, bottle). Indeed, since a reflection reveals the image of points that are somewhere
else (e.g., behind the camera), the actual depth of the pixel is not the one of the reflecting surface.
That is why one can observe some kind of holes (e.g., besides the ball on the foreground). Moreover
there is grass behind the window. Because it changes a lot with different points of view, vegetation
also generally poses a problem for stereo algorithms. Yet parts of the image such as the middle left
(around the loudspeaker) seem easy to match (small disparity range, no reflection) but the result is
not really good anyway. This is due to the fact that the matches are global, so when a large number
of matches are wrong, they can perturb the others (even the easiest ones).

(a) Bottle (b) Result with algorithm

Figure 10: Results of the algorithm on the Bottle pair.

6.2 Influence of Parameters

We have run the algorithm with several different values of parameters λ and K (Figure 11). We
are thus able to see if Kolmogorov’s heuristic is relevant. Let us recall that λ corresponds to the
smoothness penalty (the bigger λ, the smoother the disparity map). K is the occlusion penalty (the
bigger K, the bigger the number of matches and the less the number of occluded pixels).

We can first observe that there is a range where the results are quite stable ((K,λ) ∈ [15, 30] ×
[3, 10]). Thus, there is no need to accurately select the parameters to get correct results. However,
with K = 15 for instance, we are able to see the influence of the smoothness parameter: the bigger
the parameter, the smoother the disparity map. This is remarkable at the top right corner of the
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(a) K = 1, λ = 1 (b) K = 1, λ = 3 (c) K = 1, λ = 10

(d) K = 15, λ = 1 (e) K = 15, λ = 3 (f) K = 15, λ = 10

(g) K = 30, λ = 1 (h) K = 30, λ = 3 (i) K = 30, λ = 10

Figure 11: For Tsukuba image, automatic paramaters are: K = 15 and λ = 3.

image (d). The corner is actually a uniform (textureless) region, which means that several disparities
are acceptable. Then when the smoothness is favored, it is advantageous to give to this area the
same disparity as the whole background of the scene. One can also see that at the bottom right
corner in image (e), the disparity is less smooth than in image (f).

Then, when K is too small (e.g., K = 1), only reliable matches are selected, since it is almost
costless not to do uncertain matches. When λ increases, there is less constant-disparity-component,
to minimize the topological frontiers between these components (every disparity jump is expensive).
When K is too big, we observe more incorrect matches (e.g., in the lamp area). This is due to the
fact that by setting a large occlusion parameter, we encourage the program to maximize the matches,
even if they are not good. Hence, the disparity map often seems to be noisy.

7 Future work

The algorithm described in this article can be modified so that one can specify one’s own disparity
range for each pixel of the images. There are many possible applications of this new algorithm.
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(a) Image pair (b) Local stereo
matching

(c) After the fill-
ing process

(d) Union of
both

Figure 12: The initial disparity map was obtained by a block-matching method where the red pixels
have been rejected by several filters (left-right/right-left consistency check, self similarity and flat
patch detection). After the filling process by graph cuts, “occluded” pixels were marked in cyan.
After replacing the “occluded” pixels that had an initial disparity, we get a denser map, with final
rejected pixels in blue.

(a) Local stereo matching detail. (b) After graph cuts “filling”.

Figure 13: A large occlusion area after graph cut filling of the disparity map issued from block
matching. (a) Detail of Figure 12(b). (b) Detail of Figure 12(c). (Contrast enhanced for better
visualization)

Filling process (Figure 12) Many local stereo matching methods add a rejection step which
aims at removing false matches. The resulting disparity map needs to be filled. A global method
can be used for this task. This may be done by setting to each non-rejected pixel p the singleton-
interval {d◦(p)} where d◦ denotes the initial disparity map. Every rejected pixel is then set the initial
disparity range Idisp. In this case every non-rejected pixel may keep its initial disparity or become
occluded. In the experiment of Figure 12 we let pixels with initial disparities become occluded,
therefore we do not really “fill” the map. However, we could also prevent this so that the resulting
map is at least as dense as the initial map. A simpler solution is to reset to d◦(p) the pixels not
rejected by the local method, as in Figure 12(c).

It is surprising that so many pixels are occluded at boundaries of disparity level sets in Fig-
ure 12(c). This is due to the classical adhesion effect (aka fattening effect) of block matching,
combined with the trend toward regularity of the graph cuts. This can be observed in the detail
displayed in Figure 13. The irregular pattern issued from block matching has a lower energy when
occluded by graph cuts.
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(a) Scale 0 (b) Scale 4

Figure 14: Synthetic disparity ramp applied to left Tsukuba image: d(p) = a px + b, with a = 0.01
and b = 1.5. Left: pixel accurate recovered disparity map. Right: 1/16th-pixel accurate recovered
disparity map through multiscale refinement. For such a disparity map subpixel precision is needed
to avoid quantification effects.

Scale 0 1 2 3 4

Tsukuba - Multiscale 30 s 98 s 310 s 1252 s 5384 s
Tsukuba - Direct 30 s 126 s 557 s 2405 s 10629 s
Venus - Multiscale 61 s 154 s 712 s 2541 s
Venus - Direct 61 s 276 s 1386 s 6806 s
Prison - Multiscale 22 s 68 s 420 s 1759 s 6537 s
Prison - Direct 22 s 116 s 557 s 2969 s 15183 s

Table 5: Computation times for subpixel accurate estimation. The multiscale approach indicates
cumulated times.

Ground Control Points (GCP) In a similar way one can take advantage of reliable information
on some matches. The disparity range of such pixels is set to the singleton-interval {d◦(p)} where d◦

denotes the reliable disparity and every other pixel is set to the whole disparity range Idisp.

Subpixel refinement thanks to a multiscale approach (Figures 14, 15) The original al-
gorithm described here only produces pixel accurate disparity map. For instance to get a subpixel
refinement with a precision of 0.5 pixel one needs upsampling the images by a factor 2. Since the
disparity range doubles, such an operation will double the time of each iteration and the number
of nodes in the graphs. To avoid a complexity explosion one may proceed by adopting a multiscale
approach. That is, using the disparity map estimation at a previous scale to refine the result at the
current scale. At each step the images are upsampled by a factor 2. The disparity range is then
assigned to the previous disparity estimation for every non occluded pixel (relaxed of half a pixel
at each boundary, then multiplied by 2) and every occluded pixel is reassigned the whole initial
disparity range Idisp multiplied by the current scale factor. Hence, at scale n, for each pixel in the
original image, there is a range of 2n−1 interpolated pixels, so 2n−1 disparity values. We obtained
the disparity of the pixel in the original image by computing the median value of the 2n−1 disparity
values (and the pixel is declared occluded if at least half of the interpolated pixels are occluded).

Table 5 shows that the multiscale approach is at least twice as fast as the direct approach. So far
experimental results have shown few differences in terms of quality between the multiscale approach
and the direct approach (Figure 16).
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(a) Scale 0 (b) Scale 4 (c) Left image

Figure 15: Prison pair. The initial disparity range is [0, 6]. Here the disparity range is so narrow
that a pixel accurate result is not satisfactory. The refinement allows to get better results both on
the ground (see lower left image area) and on the building roof.

A Additivity of the Graph-Representability

We show in this section that a sum of two graph-representable functions is graph-representable.
At the same time, it gives a constructive procedure to represent the sum of functions of binary
variables by a graph. Let E be a graph-representable function of n binary variables and E′ be a
graph-representable function of m variables. We assume that E and E′ have 0 ≤ k ≤ m,n variables
in common, such that we can write

E(x1, . . . , xk, xk+1, . . . , xn) and E′(x1, . . . , xk, xn+1, . . . , xn+m−k), (43)

where {x1, . . . , xk} denote the k variables in common. Let G = (V , E) (resp. G ′ = (V ′, E ′)) be a graph
that represents the function E (resp. E′) and let vi the vertex associated with the variable xi for
each i = 1, . . . , n+m− k. The source and sink are chosen to be the same in both graphs but, apart
from {v1, . . . , vk}, vertices in graphs G and G ′ are distinct. Now consider the graph G ′′ = (V ′′, E ′′)
defined as follows:

V ′′ = V ∪ V ′ and E ′′ = E ∪ E ′, (44)

and such that, if e ∈ E ∩ E ′, then its capacity is cG(e) + cG′(e), and otherwise, it keeps its initial
capacity. Let us prove that this graph represents the function E′′ = E + E′ of (n + m − k) binary
variables. Fix x′′ = (x1, . . . , xn+m−k) a configuration and let (V ′′s,V ′′t) be a cut of the graph G ′′, such
that vi ∈ V

′′s if xi = 0 and vi ∈ V
′′t if xi = 1. Such a cut will be referred to as an x′′-cut. Similarly,

we pose x = (x1, · · · , xn) and x′ = (x1, · · · , xk, xn+1, · · · , xn+m−k) and define x-cuts of G and x′-cuts
of G ′. The cost of (V ′′s,V ′′t) is given by

cG′′(V ′′s,V ′′t) =
∑

(u,v)∈E ′′

u∈V ′′s,v∈V ′′t

cG′′(u, v). (45)

Since we have the disjoint union E ′′ = (E \ E ′) ⊔ (E ′ \ E) ⊔ (E ∩ E ′), we decompose

cG′′(V ′′s,V ′′t) =
∑

(u,v)∈E\E ′

u∈V ′′s,v∈V ′′t

cG′′(u, v) +
∑

(u,v)∈E ′\E
u∈V ′′s,v∈V ′′t

cG′′(u, v) +
∑

(u,v)∈E∩E ′

u∈V ′′s,v∈V ′′t

cG′′(u, v). (46)
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(a) Tsukuba (b) Scale 4 (multiscale) (c) Scale 4 (direct)

(d) Venus (e) Scale 3 (multiscale) (f) Scale 3 (direct)

(g) Prison (h) Scale 4 (multiscale) (i) Scale 4 (direct)

Figure 16: Multiscale approach vs. direct approach in subpixel accurate estimation.
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By definition of the weights in G ′′,

cG′′(V ′′s,V ′′t) =
∑

(u,v)∈E\E ′

u∈V ′′s,v∈V ′′t

cG(u, v) +
∑

(u,v)∈E ′\E
u∈V ′′s,v∈V ′′t

cG′(u, v) +
∑

(u,v)∈E∩E ′

u∈V ′′s,v∈V ′′t

[

cG(u, v) + cG′(u, v)
]

. (47)

If we set Vs = V ′′s ∩ V and V t = V ′′t ∩ V , since (u, v) ∈ E only if u, v ∈ V , then

∑

(u,v)∈E\E ′

u∈V ′′s,v∈V ′′t

cG(u, v) +
∑

(u,v)∈E∩E ′

u∈V ′′s,v∈V ′′t

cG(u, v) = cG(V
s,V t), (48)

where (Vs,V t) is an x-cut of the graph G. Remember that only nodes {v1, . . . , vk} are both in V and
in V ′, so edges in E ∩ E ′ only connect such nodes. Thus, the quantity

∑

(u,v)∈E∩E ′

u∈Vs,v∈Vt

cG(u, v) =
∑

(vi,vj)∈E∩E
′

xi=0,xj=1

cG(vi, vj) (49)

does not depend on the selected x-cut (Vs,V t). Hence, its cost may be written

cG(V
s,V t) =

∑

(u,v)∈E\E ′

u∈Vs,v∈Vt

cG(u, v) +
∑

(vi,vj)∈E∩E
′

xi=0,xj=1

cG(vi, vj). (50)

Similarly, we prove that

cG′(V ′s,V ′t) =
∑

(u,v)∈E\E ′

u∈V ′s,v∈V ′t

cG′(u, v) +
∑

(vi,vj)∈E
′∩E

xi=0,xj=1

cG′(vi, vj), (51)

with V ′s = V ′′s∩V ′ and V ′t = V ′′t∩V ′, which defines an x′-cut of G ′. Since any pair of an x-cut (Vs,V t)
and an x′-cut (V ′s,V ′t) yields an x′′-cut (V ′′s,V ′′t) of the graph G ′′ by

V ′′s = Vs ∪ V ′s and V ′′t = V t ∪ V ′t (52)

we eventually obtain

min
(V ′′s,V ′′t) x′′-cut

cG′′(V ′′s,V ′′t) = min
(V ′′s,V ′′t) x′′-cut

∑

(u,v)∈E\E ′

u∈Vs,v∈Vt

cG(u, v) +
∑

(vi,vj)∈E∩E
′

xi=0,xj=1

cG(vi, vj)

+
∑

(u,v)∈E ′\E
u∈V ′s,v∈V ′t

cG′(u, v) +
∑

(vi,vj)∈E∩E
′

xi=0,xj=1

cG′(vi, vj),
(53)

where the first and the third sums involve two disjoint sets of edges. We can thus minimize separately
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both terms, which yields

min
(V ′′s,V ′′t) x′′-cut

cG′′(V ′′s,V ′′t) = min
(V ′′s,V ′′t) x′′-cut

∑

(u,v)∈E\E ′

u∈Vs,v∈Vt

cG(u, v) +
∑

(vi,vj)∈E∩E
′

xi=0,xj=1

cG(vi, vj)

+ min
(V ′′s,V ′′t) x′′-cut

∑

(u,v)∈E ′\E
u∈V ′s,v∈V ′t

cG′(u, v) +
∑

(vi,vj)∈E∩E
′

xi=0,xj=1

cG′(vi, vj)

= min
(Vs,Vt) x-cut

∑

(u,v)∈E\E ′

u∈Vs,v∈Vt

cG(u, v) +
∑

(vi,vj)∈E∩E
′

xi=0,xj=1

cG(vi, vj)

+ min
(V ′s,V ′t) x′-cut

∑

(u,v)∈E ′\E
u∈V ′s,v∈V ′t

cG′(u, v) +
∑

(vi,vj)∈E∩E
′

xi=0,xj=1

cG′(vi, vj)

min
(V ′′s,V ′′t) x′′-cut

cG′′(V ′′s,V ′′t) = min
(Vs,Vt) x-cut

cG(V
s,V t) + min

(V ′s,V ′t) x′-cut
cG′(V ′s,V ′′t).

(54)

Eventually, since E and E′ are represented by G and G ′ respectively,

min
(V ′′s,V ′′t) x′′-cut

cG′′(V ′′s,V ′′t) = E(x1, . . . , xn) + C + E′(x1, . . . , xk, xn+1, . . . , xn+m−k) + C ′

= E′′(x1, . . . , xn+m−k) + C ′′,
(55)

that is, E′′ = E + E′ is graph-representable.

B Cuts in Graphs

Let us show in this section all the cuts in details for each graph, so that one can check that the graph
does represent the function.

Unary function We recall that such a function can be written as:

Ei(xi) =

{

E0 if xi = 0
E1 if xi = 1.

(56)

Then Figure 17 shows every possible cut on the graph we have proposed.

s txi

E1 E0

(a) xi = 0, Ei(xi) = E0

s txi

E1 E0

(b) xi = 1, Ei(xi) = E1

Figure 17: Cuts for the unary function as constructed in Section 3.1.2.
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s t

xi

xj

E11 E01

E01 + E10

−E00 − E11

E00 − E01

(a) (xi, xj) = (0, 0), Ei,j(xi, xj) = E00

s t

xi

xj

E11 E01

E01 + E10

−E00 − E11

E00 − E01

(b) (xi, xj) = (1, 1), Ei,j(xi, xj) = E11

s t

xi

xj

E11 E01

E01 + E10

−E00 − E11

E00 − E01

(c) (xi, xj) = (0, 1), Ei,j(xi, xj) = E01

s t

xi

xj

E11 E01

E01 + E10

−E00 − E11

E00 − E01

(d) (xi, xj) = (1, 0), Ei,j(xi, xj) = E10

Figure 18: Cuts for the pairwise function as constructed in Section 3.1.2.

s t

xi

xj

+∞

Figure 19: Special representation for function Energy::forbid01, preventing the configuratin (xi =
0, xj = 1). In the code, the infinite weight is replaced by the maximal representable value.

Pairwise function Such a function can be written as:

Ei,j(xi, xj) =















E00 if xi = 0 and xj = 0
E01 if xi = 0 and xj = 1
E10 if xi = 1 and xj = 0
E11 if xi = 1 and xj = 1.

(57)

Then Figure 18 shows every possible cut on the graph we have proposed. To avoid the risk of
overflow in this representation, a simpler graph representation equivalent to E00 = E10 = E11 =
0,E01 = +∞ is illustrated in Figure 19 and used in function Energy::forbid01 in the code.

C Submodular Condition in the F2 Theorem

We have shown in Section 3.1 that the submodularity condition is sufficient to make the function E
graph-representable. As proved in [3, 5], it is also a necessary condition. We will not reproduce the
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s t

xi

xj

a b

e f

c d

Figure 20: A graph representing a pairwise function.

proof here. Nevertheless, let us show that a pairwise function cannot be represented by a graph with
two nodes, as in Figure 20 if it is not submodular. The situation with more than two variables is
more complex and is left out of the following proof.

Let G be a graph representing E with nonnegative weights: a, b, c, d, e, f ≥ 0, see Figure 20, and
with a constant C. Then, the following linear system must be satisfied:

a+ c+ C = Ei,j(1, 1) (58)

b+ d+ C = Ei,j(0, 0) (59)

a+ d+ e+ C = Ei,j(1, 0) (60)

b+ c+ f + C = Ei,j(0, 1). (61)

Adding equalities (60) and (61) yields

Ei,j(0, 1) + Ei,j(1, 0) = a+ b+ c+ d+ e+ f + 2C

= (a+ c+ C) + (b+ d+ C) + e+ f

= Ei,j(0, 0) + Ei,j(1, 1) + e+ f

≥ Ei,j(0, 0) + Ei,j(1, 1),

(62)

since e+ f is nonnegative. �
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