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Approximations of the macroscopic strength criterion of reinforced soils,
with application to structural stability analyses

M. Gueguin, G. Hassen & P. de Buhan
Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR
Universit́e Paris-Est, Marne-La-Vallée, France.

ABSTRACT: The macroscopic strength properties of a stone column reinforced soil are investigated numer-
ically. Using the kinematic approach of the yield design theory applied to the reinforced soil’s unit cell, a
numerical upper bound estimate of its strength domain is provided. Since this domain cannot be used directly
for a structural stability analysis, an approximation method is performed, using a sum of ellipsoidal sets. The
result is a rigorous upper bound estimate for the macroscopic strength criterion depending on few parameters.
The relative error of this method is quantified not exceedinga few percents. Then, this approximation is used in
order to treat the problem of an embankment resting upon a stone column reinforced soil. Again, performing the
kinematic approach on this structure, a rigorous upper bound estimate of the ultimate stability factor is obtained
numerically. The gain in terms of ultimate capacity improvement is observed, as compared to the non reinforced
configuration. This result is compared to a simplified analysis, based on a rule of mixture formula, where strong
disparities are highlighted.

1 INTRODUCTION

1.1 Technological context

There are many ways to improve the poor quality of
soils, in order to provide enhanced bearing capacity
to the native soil. In the case of purely cohesive soft
clayey soils, the techniques consist in incorporating
an additional material with improved strength prop-
erties. Traditionally, the reinforcement techniques use
a periodic distribution of columns, which can be ob-
tained by mixing the weak soil mass with a percentage
of lime or lime-cement, like in the so-calledlime col-
umn technique (Broms 1982), or by replacing a per-
centage of the native soil by a vibrocompacted gran-
ular material or ballast, known asstone columnrein-
forcement technique (Priebe 1995).

This contribution is focused on the stability analy-
sis of an embankment resting upon a stone column re-
inforced soil (see Fig.1). The complexity of the direct
analysis of such a three-dimensional problem, analyt-
ically or numerically, has already been highlighted by
some authors (Jellali et al. 2007, Hassen et al. 2013).
One rigorous alternative way to do so is to use the pe-
riodic homogenization method in the context of the
yield design theory.

1.2 Yield design homogenization method

The well-known homogenization approach has been
applied to the yield design theory in a general frame-
work (Suquet 1987) or in the context of reinforced
soil mechanics (de Buhan 1986) about thirty years
ago. For periodic media, it first consists in exhibit-
ing from the initial problem the smallest representa-
tive volume of reinforced soil, calledunit cell.

Then, a yield design auxiliary problem, is solved
on this unit cell, considered here as a (micro)structure
(see Fig.1). The result of this first calculation is an
evaluation of the anisotropicmacroscopic strength
domainof the reinforced soil, denoted here byGhom.
The determination of the macroscopic strength do-
main of a stone column reinforced soil is presented
in Section 2.

The final step of the homogenization method is
to solve thehomogenized equivalent problem. The
volume occupied by the reinforced soil in the initial
problem is now replaced by an equivalent homoge-
nized material, which obey the so-obtained macro-
scopic strength criterion. Section 3 is devoted to solv-
ing the homogenized problem.

The interesting result of the yield design homoge-
nization approach is that the homogenized configura-
tion leads to the same ultime load as the initial prob-
lem, provided that the characteristic length of the unit
cell (denoted here byL) is kept way smaller than the



Figure 1: Principle of the periodic homogenization method.

characteristic dimension of the structural problem, de-
noted byB.

2 EVALUATION OF THE MACROSCOPIC
STRENGTH DOMAIN

2.1 Solving the yield design auxiliary problem

The native soil obeys aTrescastrength criterion of the
form:

f s(σ) = σM − σm − 2Cs ≤ 0 (1)

whereσM andσm are the major and minor principal
stress components respectively andCs denotes the co-
hesion of the soft clay.

The stone columns are incorporated into the native
soil with a volume fractionη. The strength condition
of their purely frictional constituent material is de-
scribed by aMohr-Coulombcondition, defined by the
following yield strength function:

f r(σ) = (1 + sinϕr)σM − (1− sinϕr)σm ≤ 0 (2)

with ϕr representing the friction angle of the rein-
forcing material.

The resolution of the yield design auxiliary prob-
lem implies to find a stress fieldσ in equilibrium (stat-
ically admissible) with the macroscopic stress loading
Σ and satisfying the strength conditions of the differ-
ent constituents at any point of the unit cell:

Σ ∈ Ghom ⇔







∃σ statically admis. withΣ
f s(σ) ≤ 0 in the soil
f r(σ) ≤ 0 in the columns

(3)

As for a Tresca or Mohr-Coulomb criterion, the
macroscopic strength domainGhom may be defined

by either a yield strength function or a support func-
tion, denoted here byπhom and obtained by dualisa-
tion of the strength condition. This second definition
involves the macroscopic strain rate tensorD, associ-
ated withΣ, and is given by:

Ghom(η,Cs, ϕr) =
⋂

D

{

Σ |Σ : D ≤ πhom(D)
}

(4)

In the case of stone column reinforced soils, the
macroscopic strength domain is a convex set depend-
ing on the reinforcement volume fraction as well as
the strength properties of both constituents.

The exact resolution of the yield design auxiliary
problem being impossible in most cases, approaches
have been developed to frameGhom. The static ap-
proach of the yield design theory, based on a stress
field statically admissible withΣ, permits to obtain a
lower bound, whereas thekinematicapproach, which
consists in considering a velocity field admissible
with D, gives anupper bound. Only the second ap-
proach will be used here and we will obtain as a result
a strength domainGkine, includingGhom:

Ghom ⊆ Gkine (5)

In order to obtain accurate bounds, the static and
kinematic approaches of the yield design theory,
which are expressed as optimization problems, can
be solved using numerical methods. It provides quite
good assessment of the macroscopic strength domain
(Gueguin et al. 2014a).

The problem of the embankment resting upon a re-
inforced soil may be considered as a plane strain prob-
lem in the(x1, x2)-plane, wherex1 denotes the rein-
forcement direction (see Fig.1). The numerical deter-
mination ofGkine under these conditions is then de-



rived for a stone column reinforced soil, with the fol-
lowing characteristics:

η = 0.2 andϕr = 40◦ (6)

Figure 2 depicts the so-obtained upper
bound in the space of non dimensional stresses
(Σ11/Cs,Σ22/Cs,Σ12/Cs). Some important remarks
should be made at this stage. First, there are many
strain rate directions which don’t admit any load
limit, so that the support function value becomes
infinite. It is also worth noting that for a pure shear
stress sollicitation, the strength of the reinforced soil
cannot exceed the cohesion of the native soilCs.
Moreover, despite the fact that the reinforcement
material is cohesionless, the reinforced soil displays
a significant strength in the region of tensile stresses,
due to the fact that the column is surrounded by the
native cohesive soil.

Figure 2: Upper bound to the macroscopic strength domain of a
stone column reinforced soil.

2.2 Approximation of the macroscopic strength
criterion

The so-obtained macroscopic strength criterion can
hardly be incorporated into the homogenized equiv-
alent problem, since the complex corresponding yield
surface cannot be expressed through analytical for-
mulas such as (1) and (2). In the context of bounded
strength domains, some authors have developed a nu-
merical procedure, based on the use of convex ellip-
soidal sets, which permits to approximate these do-
mains (Bleyer and de Buhan 2013).

An extension of this method has been proposed
in order to take unbounded strength domains into
account (Gueguin et al. 2013). It provides accurate
closed-form approximations to the macroscopic
criteria, involving relatively few parameters, which
makes the approximated criteria much easier to
handle than the initial ones.

This method is applied here to approximate the ob-
tained upper bound ofGhom. In order to keep a rig-
orous status for the strength domainGkine

app, which will
used for an upcoming structural application, this ap-
proximation is chosen as an upper bound ofGkine.
Thus, it is ensured that:

Ghom ⊆ Gkine ⊆ Gkine
app (7)

The approximation is performed here with a sum of
5 ellipsoidal sets. A cross section of the yield surfaces
of the upper bound estimate and its approximation is
diplayed in Figure 3, withΣ12/Cs = 0. It confirms the
accuracy of the approximation method, since for some
macroscopic strain rate directions the two strength do-
mains are coincident.

Figure 3: Cross section of the numerical and approximated upper
bound estimates of the macroscopic strength domain of a stone
column reinforced soil.

2.3 Remarks on the relative gap

The relative error due to the approximation method
can be quantified for each macroscopic strain rate
admitting a limit load. The macroscopic strain rate
tensorD can be defined by two angles in the space
(D11,D22,2D12). The angleγ corresponds to the
orientation of D in the (D11,D22)-plane and δ
indicates the value of the shear strain component
(see Fig.4). If the strength domain is a bounded set,
the couple orientations belongs to the whole space:
(γ, δ) ∈ ([−π,π], [−π/2, π/2]).

Figure 4: Angular parametrization of the plane strain loading.

For a given couple(γ, δ), the error is then defined
as the relative gap between the support function of the



approximated criterionGkine
app and that of the numerical

upper bound estimateGkine:

relgap(Gkine
app,G

kine) =
πkine

app (γ, δ)− πkine(γ, δ)

πkine(γ, δ)
(8)

Figure 5 displays the value of this relative gap as a
function of the strain rate orientation(γ, δ). The max-
imum value of this relative error is10.55% for the
approximation by a sum of5 ellipsoids, which the av-
erage value on all the strain rate directions admitting
a limit load, is equal to1.87%. It confirms the quality
of the so-obtained approximated domain, which could
be used now to treat a structural problem with confi-
dence.

Figure 5: Relative gap depending on the strain rate orientation
(γ, δ).

3 APPLICATION TO A STABILITY ANALYSIS
PROBLEM

3.1 Problem statement

As an application of the yield design homogenization
approach, we consider now an embankment resting
upon a reinforced soil (see Fig.6). The total length of
the stone column reinforced zone is denoted byB0

and its depth byh. The overlying slope is made of
a purely frictional material (friction angleφ). Its ge-
omety depends on the heightH, the lengthB and the
slope angleΘ. The unique loading parameter of the
problem is the specific weightΓ of the embankment
constituent soil, which, for the sake of simplicity, will
be taken equal to that of the underlying soft clay and
column material.

As it has been explained previously, this problem
may be investigated under plane strain conditions.
The stability of the embankment is governed by the
non dimensional parameterΓH/Cs, called stability
factor. The stability of the structure is ensured as far
as this factor remains lower than a critical value, de-
noted byF+, depending on the following geometrical

and strength parameters:

ΓH

Cs

≤ F+(φ, η,ϕr;Θ,H/h) (9)

the horizontal lengthsB andB0 being kept fixed.

This problem has already been studied analytically
in the case of a purely cohesive reinforcement
material (Jellali et al. 2011). Here, due to the high
frictional strength properties of the columns, the
problem must be treated numerically. Therefore,
the whole structure is discretized into six-noded
triangular elements, as shown in Figure 6.

Figure 6: Adopted finite element mesh for an upper bound esti-
mate of the ultimate stability factor, using ellipsoidal set approx-
imation of the macroscopic strength criterion.

In order to obtain an upper bound estimate of the
ultimate stability factor, a kinematic approach is per-
formed using numerical optimization of the velocity
field (Makrodimopoulos and Martin 2007). As a re-
sult, the upper bound estimateF ub, as well as the as-
sociated velocity fieldUopt, are obtained. The numer-
ical implementation ensures that:

F+(φ, η,ϕr;Θ,H/h) ≤ F ub(Ghom, Uopt) (10)

3.2 Results for a stone column reinforced soil

Since the exact macroscopic strength domainGhom

is unknown and its upper bound estimateGkine

cannot be expressed as an analytical function, we
consider that the anisotropic strength criterion of the
homogenized equivalent material corresponds to the
ellipsoidal set approximationGkine

app, introduced in the
previous section.

As an illustrative example, the following geometri-
cal characteristics have been selected:

H = h = 10m, B0 = 90m, B = 57m, Θ = 70◦ (11)

The reinforcement volume fraction and the friction
angle of the columns are the same as in the previous
section and the friction angle of the embankementφ
may be taken as smaller thanϕr, since it has not been
vibrocompacted.

φ = 30◦, η = 0.2 andϕr = 40◦ (12)



First the optimization is carried out for a non re-
inforced soil. The underlying soil layer is taken as a
purely cohesive material with the cohesion of the na-
tive soilCs. The corresponding upper bound estimate
of F+ is:

F ub(Gnr, Uopt
nr ) = 6.48 (13)

and the associated velocity field (failure mechanism)
is displayed in Figure 7(a).

The same calculation is performed for a stone col-
umn reinforced soil. After optimization, the ultimate
stability factor is smaller than:

F ub(Gkine
app, U

opt
app) = 15.29 (14)

The comparison of the upper bounds (13) and (14)
suggests that the reinforcement of the soil layer im-
proves the stability of the embankment by a factor
2.36. The velocity fieldUopt

app, associated with this up-
per bound estimate, is represented in Figure 7(b). We
can note that the failure mechanism in the reinforced
case is more superficial than for the non reinforced
soil. This has been also highlighted for a purely cohe-
sive reinforcement material (Jellali et al. 2011).

(a) Non reinforced soil

(b) Stone column reinforced soil

Figure 7: Failure mechanism obtained by a numerical optimiza-
tion.

It is then possible to evaluate the relative error made
on the stability factor estimate, due to the approxima-
tion method. Since the velocity fieldUopt

app has been
obtained numerically, we can use the kinematic ap-
proach of the macroscopic strength domainGkine to
evaluate an upper bound estimate ofF+.

F ub(Gkine
app, U

opt
app)− F ub(Gkine, Uopt

app)

F ub(Gkine, Uopt
app)

= 4.52% (15)

The global error only amounts to a few percents. It
confirms that using an ellipsoid set approximation al-
lows to treat stability problems, unlike the initial up-
per bound estimate, and provides an accurate result
with a rigorous status of upper bound.

3.3 Comparison with an approach based on a
simplified criterion

A common design practice consists in considering the
stone column reinforced soil as a Mohr-Coulomb ma-
terial, the strength characteristics of which are equal
to the weighted average values of the strength proper-
ties of the soil and column material (Priebe 1995).

In its simplest form, this average value is calculated
according to arule of mixtureformula involving the
reinforcement volume fraction:

〈C〉 = ηCr + (1− η)Cs (16a)

tan 〈ϕ〉 = η tanϕr + (1− η) tanϕs (16b)

whereCr andϕs are null in the case of soft clays
reinforced by stone columns.

Using the same finite element mesh and geometri-
cal characteristics as for the previous stability analy-
sis, we obtain an upper bound estimate ofF+ with
this simplified criterion equal to

F ub(〈C〉 , 〈ϕ〉) = 61.62 (17)

With this kind of simplified criterion, the reinforced
soil may be considered as an equivalent material with
isotropic strength properties(〈C〉 , 〈ϕ〉). As we have
already highlighted previously, the assumption is in
strong contradiction with the numerical assessment of
the macroscopic strength domain.

As a result, the stability factor evaluation is over-
estimated by a factor4 when adopting the simplified
criterion. Such a result can be, at least partially, ex-
plained by the fact that, unlike for the exact macro-
scopic strength criterion, the strength of the rein-
forced soil under a pure shear solicitation remains un-
limited with this simplified criterion.

4 CONCLUDING REMARKS

The present contribution concerns the evaluation of
the macroscopic strength domain of a stone column
reinforced soil. Using a numerical code, the obtained
result represents a rigorous upper bound estimate of
this domain. It has been highlighted that the direct use
of this domain is impossible for a structural stability
analysis. Hence, a numerical procedure has been used
in order to approximate the so-obtained strength do-
main. The accuracy of this approximation method has
been quantified.

This approximation is then used on an illustrative
example. The case of an embankment resting upon a
stone column reinforced soil is treated. As expected,
the reinforcement technique provides a gain in terms
of ultimate stability factor, comparatively to the non
reinforced soil structure. However, this gain is less
substantial than that predicted with a non rigorous



simplified method, based on a rule of mixture for-
mula.

The same method could be used for a yield design
static approach. This approach would provide a lower
bound estimate for the macroscopic strength domain
(Gueguin et al. 2014a) and the approximation by a
set of ellipsoids could be performed as well. Finally,
a lower bound estimate of the ultimate stability factor
would be obtained andF+ could be framed between
two rigorous bounds.

As it has been previously underlined, the strength
of the stone column reinforced soil is limited to the
cohesion of the native soil for a pure shear solicita-
tion. This remark certainly has an influence on the
stability analysis for a structure using this kind of re-
inforced soil.

An alternative soil reinforcement technique has
been quite recently developed: the so-calledcross
trench reinforcement technique (Jeanty et al. 2013).
The frictional reinforcing material is introduced in
the form of a network of two perpendicular arrays
of trenches, in much the same way as a honeycomb
structure.

It could represent an interesting alternative to the
columnar configuration, since it provides an infinite
strength under pure shear macroscopic stresses. The
improvement of the structural behaviour due to this
configuration has already been highlighted in the case
of a purely cohesive reinforcement material (Gueguin
et al. 2014b) and could also be expected in the case of
a frictional material.
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