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Abstract

This paper introduces an extension to undirected

graphical models of the classical continuous time

Markov chains. This model can be used to solve

a transductive or unsupervised multi-class classi-

fication problem at each point of a network de-

fined as a set of nodes connected by segments of

different lengths. The classification is performed

not only at the nodes, but at every point of the

edge connecting two nodes. This is achieved by

constructing a Potts process indexed by the con-

tinuum of points forming the edges of the graph.

We propose a homogeneous parameterization

which satisfies Kolmogorov consistency, and

show that classical inference and learning algo-

rithms can be applied.

We then apply our model to a problem from geo-

matics, namely that of labelling city blocks auto-

matically with a simple typology of classes (e.g.

collective housing) from simple properties of the

shape and sizes of buildings of the blocks. Our

experiments shows that our model outperform

standard MRFs and a discriminative model like

logistic regression.

1 INTRODUCTION

Connections in networks typically have a length or weight

that gives a measure of distance between the nodes con-

nected, or the intensity of their interaction. This length in-

formation has been used to perform unsupervised or semi-

supervised classification on graphs based among others on

graph partitioning algorithms (see e.g. Zhu and Goldberg,

2009). When defining probabilistic graphical models on

such networks, it is not clear how to take this distance into

account naturally so that the interaction decreases with the

distance. In this paper, we propose an unoriented counter-

part of the continuous-time Markov process on a tree pro-

posed by Holmes and Rubin (2002) which is naturally gen-

eralized to any unoriented graph.

In a continuous time Markov chain, a random state Xt is

associated with every point t ∈ R+. The generalization

to a continuous tree mode considered by Holmes and Ru-

bin (2002) is most simply described through its applica-

tion in phylogenetics. The phylogenetic tree of a family of

species is assumed given as a directed tree with branches of

different lengths. The length of the branches measure the

genetic distance between extant or extinct species. Branch-

ing nodes are associated with speciation events. Each point

of each branch of the tree corresponds to the form taken

by a species as it existed at one time in the past and the

variable modeled as a random process and defined at each

such point is typically a discrete trait of that species such

as the nucleic acid among {A,C, T,G} at a certain posi-

tion in the DNA. In the absence of speciation event, the

state evolves like a continuous-time Markov chain, with

time here being measure in terms of the genetic distance

along an edge. When a branching occurs, the Markov chain

is split into two identical states which continue to involve

independently. For that process, if the edges of the trees

are identified with line segments, there is a random vari-

able Xt associated with every point t of each of these seg-

ments. Since a tree is simply connected, removing point t

will split the tree in at least two components, and with this

model we have the fundamental Markov property that the

subprocesses defined on each component are conditionally

independent given Xt.

We aim to extend these models in two ways. First,

these continuously indexed processes are fundamentally

oriented. This stems for the fact that the continuous

Markov chain in this model is homogeneous, which implies

that the conditional distributions forward in time are con-

stant, a property which, while true forward, is not in general

true backwards in time. This implies in particular that all

marginals of the process on any finite set of points includ-

ing at least all nodes of degree different than two is natu-

rally parameterized as a product of conditionals p(xs|xt)
whose value depends on the graph only through the dis-

tance between s and t. We aim to propose natural parame-

terization for unoriented continuously indexed models with

the same Markov property as the oriented trees. Second,



the considered models are simply connected and we would

like to propose an extension from weighted trees to general

weighted graphs, where all edges are identified with a real

segment of lengths equal to their weights, and which satisfy

the Markov property in the sense that if a finite set of points

A on these segments cuts the graph into several connected

components, the processes on the two subgraphs are con-

ditionally independent given (Xa)a∈A. The obtained mod-

els will be Potts models that take into account in a natural

way the length of the edges and such that the interaction

between two nodes decreases with the distance separating

them.

After a discussion of related work, we first consider the

simplest case of an unoriented continuous chain for which

we propose an exponential family parametrization. Next,

we show how this parametrization is naturally extended

to general unoriented continuous graphs. We derive the

marginal log-likelihood of different subsets of nodes, as

well as the form of its gradients, and show that inference

and learning in these models can be obtained with classical

algorithms. We then extend the model and algorithms to the

hidden Markov random field case where a feature vector is

attached to a certain number node. In terms of experiments,

we consider first a transductive classification problem from

geomatics, which consists in assigning city blocks to dif-

ferent classes from simple buildings characteristics, while

taking into account the distances between the blocks. Then

we illustrate the possibility of using the model for transfer

learning in order to refine predictions for city blocks from

a new entirely unlabelled city.

2 RELATED WORK

The model we consider in this work can be viewed as an ex-

tension to undirected graphs of the continuous time Markov

chain (CTMC). The continuous-time Markov chain (Nor-

ris, 1997) is a fundamental model in probability and statis-

tics for random variables that take values in a set of discrete

states and that can transition at any point in continuous time

from one state to another. Beyond its theoretical value, it

has been applied directly in queuing theory, for the statisti-

cal modeling of chemical reactions and in genetics.

In genetics, CTMC models have been notably used to pro-

pose models of the evolution of DNA at the nucleotide level

(Nielsen, 2005; Durrett, 2008), with among several others,

the celebrated Jukes-Cantor model. In this context, these

models have been extended to directed trees, where the

tree corresponds to a phylogeny of species or of proteins,

and which has been used to estimate rate matrices or for

genetic sequence alignment (Von Bing and Speed, 2004).

Like for CTMCs, the fact that these models are continuous

arise from temporality, and the models derived are thus in-

trinsically oriented. For these CTMC on trees, Holmes and

Rubin (2002) proposed an exponential family parametriza-

tion of the likelihood and showed that it was possible to

design an EM algorithm to learn the rate matrices model-

ing the substitution of DNA bases over time, in a way that

generalizes the classical EM algorithm on trees.

As is the case for the CTMC, continuously indexed pro-

cesses arise typically as the limit of discretely indexed pro-

cesses. Along these lines, Yaple and Abrams (2013) con-

sider a continuum limit of the Ising model on a regular grid

where the lengths of the edges are infinitesimal and use it to

characterize the patterns of magnetic polarity in ferromag-

netic materials through the resolution of integro-differential

equations.

A different but also recent line of research combining

ideas from the graphical models literature with stochas-

tic processes is known under the name of continuous time

Bayesian networks (CTBNs, Nodelman et al., 2002). These

are models of structured multivariate stochastic processes

in time in which the interaction between the different com-

ponents of the process can be modeled by a graphical

model. These models are quite different than the continu-

ous time tree models or the models we will propose in this

paper in that, for CTBNs, the graphical model structure is

somehow orthogonal to the direction of time which is the

unique global oriented continuous variable for the process.

Last but not least, a common family of approaches which

take into account the length of edges in a graph in the con-

text of unsupervised or semi-supervised classification are

the graph partitioning and related spectral clustering tech-

niques (see e.g. Zhu and Goldberg, 2009, chap. 5). A re-

view of these techniques is beyond the scope of this paper.

We however discuss how these methods differ and are not

directly comparable to ours in section 7.

3 NOTATIONS

All multinomial variables considered in the paper take val-

ues in K = {1, . . . ,K} and are represented by the indi-

cator vector x ∈ {0, 1}K whose sole non zero entry is

xk when the multinomial is the kth state. We thus define

X = {x ∈ {0, 1}K |
∑

k∈K xk = 1}. Given a vector

x ∈ R
K , Diag(x) is the diagonal matrix whose elements

are the entries in x.

We use ⊙ (resp. ⊘) to denote the Hadamard prod-

uct (resp. division), that is the entrywise multiplication

(resp. division) of matrices.

We will denote nodes of graphical model with the sans-serif

font a, b, and set of nodes with upper capitals of the same

font: A,B.

4 CONTINUOUS GRAPH POTTS

MODELS

4.1 An unoriented continuous chain model

To derive a parameterization of the model, we start with the

case of an unoriented chain that we identify with the [0, l]



segment, where without loss of generality l is an integer.

We will denote by Xa a multinomial random variable asso-

ciated with the point a ∈ [0, l]. Before defining the process

at any point of the segment, we model the joint distribution

of the random variables Xk for k an integer in {0, . . . , l}.

Denoting by xk ∈ {0, 1}K an instance of Xk, and assum-

ing that both unary and binary potentials are constant, the

joint distribution of (Xk)k∈{0,1,...,l} can be written in mul-

tiplicative form as

p(x0, x1, . . . , xl; U, h) ∝

l
∏

k=0

h⊺xk

l−1
∏

k=0

x
⊺

kUxk+1,

with h ∈ R
K
+∗ the vector of unary potential values and

U ∈ R
K×K
+∗ the matrix of binary potential values. For

reasons of symmetry and invariance along the chain, we

assume that those parameters do not depend on the posi-

tion k and that U = U⊺. Note that, while similar in spirit,

the assumption that these parameters are constant is dif-

ferent from assuming that the Markov chain is homoge-

neous; we discuss this point in section 7. To get concise

forms for the distributions induced on subsets of the Xks

by marginalization, we introduce furtherH = Diag(h) and

W = H
1
2UH

1
2 . If in particular we marginalize all vari-

ables except for the extreme points of the segment we then

have

p(x0, xl; W,h)∝
∑

x1··· xl−1

l−1
∏

i=0

x
⊺

i Uxi+1

l
∏

i=0

h
⊺

xi

∝ h⊺x0

(

x
⊺

0H
− 1

2W lH− 1
2xl

)

h⊺xl,

(See appendix for details).

Similar calculations show that, for any sequence a0 = 0<
a1 < . . . < am = l with ak ∈ {0, . . . , l}, denoting dj =
d(aj , aj−1) = aj−aj−1 the distances between consecutive

nodes and A = {a0, · · · , am}, we have:

p(xA; W,h) ∝

m
∏

j=0

h⊺xaj

m
∏

j=1

x⊺aj−1
H− 1

2W djH− 1
2xaj .

By simply taking the logarithm of this expression we ob-

tain a curved exponential family of distributions with log-

likelihood

ℓ (xA; θ)=
m
∑

j=0

η⊺xaj+
m−1
∑

j=0

x⊺ajΛ(θ, dj)xaj+1
−A(θ), (4.1)

with ∀k ∈ K, ηk = log(hk), θ = (W, η), A the log-

partition function and where Λ(θ, d) is defined entrywise

by [Λ(θ, d)]kk′ = log([H− 1
2W dH− 1

2 ]kk′).

It is now very natural to try and use this formula to ex-

tend the definition of the process to any sequence of points

a0 = 0 < a1 < . . . < am = l that are no longer restricted

to take integer values. This requires however that for all

for all s ≥ 0, W s should be a well defined real valued

matrix with non-negative (or for learning purposes posi-

tive) entries. The fact that W is real symmetric and that all

its powers should be real implies that it should have non-

negative eigenvalues. Since we can approximate a low rank

matrix with a full rank matrix, we assume for convenience

that all it eigenvalues are positive (any low rank matrix can

be approximated by a full rank one). W is then a matrix ex-

ponential W = exp(Π). The fact that all its powers should

have non-negative entries implies in particular that for any

s, W s is completely positive1. We therefore need to char-

acterize which conditions on Π are needed to obtain a valid

W . Note that Π can be viewed as the counterpart of the

rate matrix for CTMCs.

4.2 Infinitesimal generator Π

To easily compute the matrix exponential we use the eigen-

decomposition of Π:

Π = P ⊺ΣP, Σ = Diag(σ), P ⊺P =PP ⊺=IK (4.2)

and exponentiate its eigenspectrum2.

In the context of learning, it is natural to assume that the

entries of W s are actually strictly positive so that the log-

likelihood is always finite. The following lemma provides

sufficient and necessary conditions on Π for the entries of

exp (lΠ) to be either non negative or positive.

Lemma 1. For Π a square matrix, [exp (lΠ)]i,j ≥ 0 ∀l ∈
R+ and ∀i, j if and only if Πi,j ≥ 0 for all i 6= j. Similarly,

[exp (lΠ)]i,j > 0 for all i, j and ∀l ∈ R
∗
+, if and only if

the sequences
(

u
(k)
i,j

)

k∈N
with u

(k)
i,j =

[

Πk
]

i,j
is such that

its first non-zero value exists and is strictly positive, for all

i 6= j .

This lemma is proved in the appendix.

It is easy to see from the proof of the lemma that Πi,j > 0
for i 6= j is a sufficient condition for [exp (lΠ)]i,j to be

positive for all i, j and for all l ∈ R
∗
+.

Note that the likelihood obtained in (4.1) is invariant by a

multiplication ofH orU and thus ofW by a positive scalar,

because of normalization. As a result it is also invariant by

addition of a constant multiple of the identity matrix to Π
or equivalently to σ.

This means that the likelihood is invariant by addition of an

arbitrary identical constant to all the eigenvalues (σi)i∈K.

In particular, it is possible to choose this constant sufficient

large to guarantee that the diagonal of Π is positive. This

implies that it will be conveniently possible to parameterize

the model by the entrywise logarithm of Π.
1A ∈ R

K×K is completely positive iff there exists B ∈

R
K×m

+ with A = BB⊺ (see e.g. Seber (2008) p. 223).
2One caveat of this parametrization is that if W is close to low

rank, the corresponding eigenvalues in σ have to take large nega-
tive values. This could be addressed by working with (σ−1

k
)k∈K.



4.3 Existence of the process on the chain

Proposition 2. There exists a stochastic process

(Xa)a∈[0,l] defined at all points of the segment [0, l]
whose finite marginal on any finite set of points containing

a0 and al is given by (4.1).

Proof. Let A = {a0, . . . , am} and B = {b0, . . . , bn} two

such sets with a0 = b0 = 0 and am = bn = l. It is clear

that using (4.1) to define a joint probability distribution on

(Xa)a∈A∪B, the distribution obtained by marginalization of

elements of A\B using the same type of derivation used

in (4.1) is still of the form of (4.1). Since the same holds

for B\A, we just showed that the collection of proposed

marginals are consistent and by Kolmogorov’s extension

theorem (Chung and Speyer, 1998, chap. 6). This proves

the existence of the process.

4.4 Extending the model to graphs

4.4.1 Real graphs

To extend the model we proposed on a segment to undi-

rected trees and more generally to undirected graphs, we

first define what we will call continuous graphs or real

graphs3. Given a weighted graph G = (V,E) with the

weight dab associated with the edge (a, b) ∈ E, we define

the associated real graph G as the space constructed as the

union of line segments of lengths dab associated with the

edges (a, b) ∈ E and whose extreme points are respec-

tively identified with the nodes a and b through an equiv-

alence relation. Put informally, a real graph is the set of

line segments that we usually draw to represent an abstract

graph. For any pair of points a′, b′ on the same segment

[a, b], we will denote by da′b′ the length of that subseg-

ment.

It should be noted that, in a real graph, the segments con-

necting a node of degree two are essentially merged into a

single segment by concatenation. We will call all nodes of

degree different than two junction nodes. Conversely, iden-

tifying nodes and points in the real graph, any point that is

not a junction node can actually be viewed as a degree two

node.

Definition 3. Let S be the set of junction nodes. Given A

a set of points on the real graph, we will call the induced

discrete graph on A∪S, denoted by GA the graph with ver-

tices A ∪ S and whose edges EA link the nodes that can be

joined on the real graph by segments not containing ele-

ments of A ∪ S: EA = {(a, b) | ] a, b [∩ (A ∪ S) = ∅}. To

distinguish them from S \A, we will call the set of nodes in

A observed nodes.

3Real graphs extend the notion of real trees which have been
introduced previously in the literature (Chiswell, 2001) and are of
interest notably in mathematical cladistics and to construct Brow-
nian trees.

(a) (b)

Figure 4.1: (a) Representation of a real graph with a zoom that
shows that edges are actually a continuum of nodes linked by in-
finestimal unoriented edges. (b) The induced discrete graph asso-
ciated with the junction nodes in red and the observed nodes in
blue.

Figure 4.2: (left) Toy example illustrating that the process is
defined at all points of the continuous graph. For a model on three
classes (red, green blue) each point of each edge is colored with
the mixture of these three colors corresponding to the probability
of observing each of the classes, given that all the circle nodes are
observed with the given colors.

The concepts of real graph, junction node, observed node

and induced graph are illustrated on Figure 4.1.

4.4.2 Towards a Potts model on real graphs

To extend the stochastic process previously defined to real

graphs, we first define its marginals. In particular, given a

set of points A = {a0, · · · , am}, the marginal on A ∪ S is

naturally defined as follows: let GA = (A ∪ S, EA) be the

induced discrete graph on A ∪ S, we propose to define the

log-marginal distribution on (Xa)a∈A∪S as

ℓ (xA∪S; θ)=
∑

a∈A∪S

η⊺xa+
∑

(a,b)∈EA

x⊺aΛ(θ, dab)xb−A(θ), (4.3)

with θ = (η,W ) which we reparametrize from now on

with θ = (η,Π). If A does not contain S, then p (xA) is

obtained by marginalizing xS\A out in p (xA∪S).

4.4.3 Existence of the process on a real graph

The existence of the process on a real graph is again proven

using Kolmogorov’s theorem:

Proposition 4. There exists a stochastic process (Xa)a∈G

defined at all points of the real graph G with log-marginals

on any set of nodes A containing the junction nodes given

by Eq. (4.3).

Proof. Let A and B be two subsets of nodes on the real

graph G, for which the distributions xA and xB are obtained



by marginalizing S out of xA∪S and xB∪S in Eq. (4.3). We

note that a node on an edge is conditionally independent of

any node on a different edge given xS. Proposition 2 tells

us that the marginals are consistent on each edge with fixed

endpoints, from which we can deduce that the definition of

the definition of the process on A∪S and B∪S provided in

Eq. (4.3) is consistent since it is obtained by marginaliza-

tion of the joint distribution at the nodes A∪B∪S. The pro-

cess being consistent on A and A∪S by definition of p(xA),
and similarly on B and B∪S, we have proved Kolmogorov

consistency between A and B which in turn proves the ex-

istence of the process on the real graph.

We will refer to the obtained process, illustrated on Fig-

ure 4.2, as a continuous graph Potts model or continuous

graph Markov random field (CGMRF).

5 INFERENCE

Probabilistic inference is an operation which is key to

learning and making predictions in graphical models. In

the case of our continuous graph G, if we consider any seg-

ment [a, b] with a, b ∈ S and any a′, b′ ∈ [a, b], it should

be noted that p(x{a,a′,b′,b}) = p(x{a′,b′}|x{a,b})p(x{a,b})
where p(x{a,b}) is computed as a clique marginal of p(xS),
and p(x{a′,b′}|x{a,b}) has a simple analytical expression

given that reduces to the model on the segment. This im-

plies that marginal distributions on any finite collection of

nodes on the same edge can be computed efficiently pro-

vided the edge marginals of the induced model on S can be

computed efficiently. In spite of the fact that the graph has

uncountably many nodes, inference can thus be performed

by any classical inference algorithm, i.e. the sum-product

algorithm if the graph is a tree and typically approximate

inference techniques otherwise, such as loopy belief prop-

agation.

6 LEARNING

In this section, we focus on learning the model from data.

Since the process values are only observed at a finite num-

ber of points, we are somehow always in the situation

where some nodes are unobserved. However, when all

junctions nodes are observed the joint likelihood of a given

set of nodes has the closed form expression of Eq. (4.3).

Since this a curved exponential family, the log-likelihood

is in general not a concave function of the parameters4.

To avoid having to cope with positivity constraints, and

given the rapid divergence of the likelihood on the bound-

ary of the domain we parameterize the likelihood by η and

the entrywise logarithm of Π, since given the remark fol-

lowing lemma 1, it possible to take Π positive entrywise.

4It is however clearly concave when all edges are of the same
length, because the constraint of equality of the parameters for all
potentials is a convex constraint.

For the CTMC directed tree, Holmes and Rubin (2002)

consider the likelihood of the entire process, show that it

has a canonical exponential family form with a small num-

ber of sufficient statistics and derive an EM algorithm based

on this representation to learn the parameters. A similar

exponential family form can be obtained for our process,

with also a small number of sufficient statistics and in the-

ory it is possible to construct a similar EM algorithm. Un-

fortunately, in our case the M-step of the algorithm would

still require solving a convex optimization problem whose

solution is not closed form. We therefore do not pursue

further this approach or detail the corresponding canoni-

cal exponential family form of the process. We propose

instead to optimize the likelihood using a gradient based

method. We show that the gradient can be computed from

the moments obtained by performing the probabilistic in-

ference on the model in different settings. In the next sec-

tions (sections 6.1 - 6.4), we derive the form of the gra-

dient of the likelihood, first when all junction nodes are

observed, then, when any set of nodes is observed, and

finally, when some nodes are observed and another (typi-

cally larger) set of nodes emits observed vectors of features

that are each conditionally independent given the state of

associated node, as in a hidden Markov random field set-

ting. Since computing the inference is typically intractable

in graphs, we introduce a variational approximation in 6.5

that allows for faster (linear) computation. The proofs of

lemmas and propositions presented can be found in the ap-

pendix.

6.1 Gradient of the likelihood on a segment

Given that the model is parameterized by exponentials of

Π, the gradients involve the differential of the matrix ex-

ponential. We will therefore repeatedly use the function

ψl,Π with ψl,Π (X) = P ⊺
(

(PXP ⊺) ⊙ Γl,Π

)

P, where

Π = P Diag(σ)P ⊺ is the eigenvalue decomposition of Π
and

[Γl,Π]i,j =







exp (l σi)− exp (l σj)

σi − σj
if σi 6= σj

l exp(l σj) if σi = σj .

The function ψ is such that the gradient of x⊺ exp (lΠ) y is

ψl,Π (xy⊺). It is essentially switching to the spectral space

of Π, where the gradient has a simple multiplicative form

given by Γ and then maps the result back to the original

space. With this function, we thus have

Lemma 5. The gradient with respect to variable Π of the

log-likelihood ℓ of xa and xb on a segment of length l whose

end points are a and b can be written as

∇Πℓ (xa, xb; θ) = ψl,Π

(

(xax
⊺

b
− E [XaX

⊺

b
])⊘W l

)

.

6.2 Gradient of the likelihood in a real graph

We now compute the gradient of the log-likelihood for the

joint distribution of the nodes (xa)a∈A, with the subset A



containing the junction nodes S. We still denote GA =
(A, EA) the induced discrete graph of A on G. And since

Π is identical for every edge, a direct application of the

chain rule implies that:

Proposition 6. The gradient of the likelihoods are com-

puted5 as

∇Πℓ (xA; θ) =
∑

(a,b)∈EA

ψdab,Π

(

(xax
⊺

b
− µab)⊘W dab

)

∇ηℓ (xA; θ) =
∑

a∈A

(xa−µa)−
1
2

∑

(a,b)∈EA

(xa−µa + xb−µb).

with µa = E [Xa] and µab = E [XaX
⊺

b
].

6.3 Partially observed junction nodes

To learn from partially labelled data it is necessary to con-

sider the likelihood ofXB for B a set of nodes that does not

necessarily contain S. Let B be a set of observed nodes, i.e.

for which we know the states xB, and A a set of unobserved

nodes containing S\B. We have the following distributions

ℓ (xA∪B; θ) =
∑

a∈A∪B

η⊺xa+
∑

(a,b)∈EA∪B

x⊺aΛ(θ, dab)xb −AA∪B(θ)

ℓ (xA|xB; θ) =
∑

a∈A∪B

η⊺xa+
∑

(a,b)∈EA∪B

x⊺aΛ(θ, dab)xb −AA|B(θ, xB) ,

We can rewrite the log-likelihood as follows (Wainwright

and Jordan, 2008) :

ℓ (xB; θ) = AA|B (Π, h, xB)−AA∪B (Π, h) ,

and its gradient are therefore computed as

Proposition 7.

∇Πℓ (xB; θ) =
∑

〈a,b)∈EA∪B

ψdab,Π

(

(µab|B − µab)⊘W dab

)

∇ηℓ (xB; θ) =
∑

a∈A∪B

µa|B−µa

− 1
2

∑

(a,b)∈EA∪B

(

µa|B−µa + µb|B−µb

)

.

with µab|B=E [XaX
⊺

b
|XB=xB], µa|B=E [Xa|XB=xB].

6.4 Hidden Markov model

We consider a hidden Markov random field variant of our

model in which some nodes have, in addition to the state

variable, a feature vector with a state specific distribution.

More precisely, we envision to learn from data on a graph

in which the states of a set of nodes B are observed and in

5Note that a single spectral decomposition of Π allows to com-
pute W dab efficiently for all pairs (a, b).

which each node in a set A (with A ∩ B 6= ∅) provides an

observed feature vectors ya which is conditionally indepen-

dent of the rest of the graph given the corresponding node

state xa. For simplicity, we assume that S ⊂ A ∪ B.

The joint and conditional distribution of observed and un-

observed variables are very similar as above

ℓ (xA∪B, yA; θ, κ) =
∑

a∈A∪B

η⊺xa+
∑

a∈A

log (p (ya|xa;κ))

+
∑

(a,b)∈EA∪B

x⊺aΛ(θ, dab)xb −AA∪B (θ, κ)

ℓ (xA|yA, xB; θ, κ) =
∑

a∈A∪B

η⊺xa +
∑

a∈A

log (p (ya|xa) ;κ)

+
∑

(a,b)∈EA∪B

x⊺aΛ(θ, dab)xb −AA|B (θ, κ, xB, yA) ,

which allows us to rewrite the likelihood of observations as

ℓ (xB, yA) = AA|B (θ, κ, yA, xB)−AA∪B (θ, κ).
Given that the model for p(ya|xa) is Gaussian or at least

an exponential family, when envisioning an EM algorithm

to learn κ and θ, it is easy to see that the update for κ is

closed form while that of θ is not. This motivates a variant

of the EM algorithm which does not attempt to maximize

with respect to both κ and θ simultaneously but which ei-

ther maximizes the expected likelihood with respect to κ

or maximizes it with respect to θ. The algorithm can then

be summarized as an E-M1-E-M2 algorithm, where the E-

step is the usual computation of expected sufficient statis-

tics given current parameters, M1 solves for κ in closed

form and M2 maximizes with respect to θ using gradient

ascent6.

6.5 Variational approximation

For graphs with cycles, since inference is intractable, we

replace the likelihood by a pseudo-likelihood obtained us-

ing a variational approximation of the log-partition. Our

variational approximation is the one associated with the

entropy of Bethe (see, e.g. section 4.1 in Wainwright and

Jordan, 2008), but other choices would be possible. The

main motivation behind this approximation is that the exact

gradient of this pseudo-likelihood is directly obtained from

the pseudo-moments given by loopy BP. In practice, damp-

ing needs to be used (see Wainwright and Jordan, 2008,

chap. 7).

In term of complexity, the parametrization of CGMRF

could suggest that inference is slower than in the dis-

crete setting since the computation of the SVD of Π is re-

quired. However, since the number of states is typically

much smaller than the number of nodes in the graph, the

computational cost of the SVD is negligeable compared to

6Note that gradient ascent itself requires to perform some in-
ference to recompute the log-partition function



the overall cost of the algorithm. Hence, inference in the

CGMRF is just as hard as for any discrete MRF.

The log-likelihood is a curved exponential family and is in

particular not a convex function of the parameters, while

it is convex for a standard MRF. As a consequence the

pseudo log-likelihood based on the variational approxima-

tion is also non-convex. We use gradient descent with a

line-search based on the Wolfe conditions to find a local

minimum (see Nocedal and Wright, 1999, chap. 3). Em-

pirically the algorithm is not trapped in bad local minima

but takes more iterations to converge than the MRF coun-

terpart. Experiments showed that the training for CGMRFs

was only two times longer than for regular MRFs.

7 DISCUSSION

In this section, we discuss more precisely features of CGM-

RFs that are unique or common with other models and ap-

proaches existing in the literature.

First, we note that for a tree, our model is not equivalent to

that of Holmes and Rubin (2002). Their model uses a con-

stant rate matrix (i.e. the Markov process is homogeneous)

while we use constant infinitesimal potentials, which do not

lead to a constant rate matrix on any orientation of the tree.

If the tree is just the segment [0, L], for s and t with 0 <
s < t < L a CTMC is such that p(xt|xs) only depends on

t− s and not on L. By contrast for our model log p (xt|xs)
depends also on L − t and L − s since log p (xt|xs) =
x⊺sΛ (t−s)xt+x

⊺

t η+x
⊺

tΛ (L−t)1−x⊺sΛ (L−s)1,where

for simplicity we omitted the dependance in θ, and 1 is the

constant vector equal to 1. See the appendix for an illustra-

tion and further discussion of the differences between the

models.

Our model has in common with graph partitioning tech-

niques and spectral clustering (SC) that the distance be-

tween nodes are taken into account. But there are several

important differences: first, in SC, there is no model learn-

ing in the sense that no parameters are learned to optimize

the model (Bach and Jordan (2006) who learn the metric

for SC, are an exception). Second, our model captures that

there could be different transition probabilities between dif-

ferent classes along the graph which is not possible in SC.

Then, the main assumption in SC is that classes are sepa-

rated by edges of smaller weights so that each class is as

disconnected as possible. By contrast, our model autho-

rizes (to some extent) transitions between classes on short

edges and moreover permits that each class corresponds to

several connected components. Our models extends natu-

rally to a hidden Markov model that makes it possible to

include feature vectors for some nodes and not for others,

which is not possible with SC techniques.

Another graph-based approach to classification which is

perhaps more related to ours is the work of Zhu et al. (2003)

on binary classification with harmonic functions. Indeed,

the Gaussian field considered there is similar to the Potts

model we obtain on the junction nodes. The approach of

Zhu et al. (2003) is however just concerned by inference

and not by learning, but their approach could be extended

both to multi-class classification and to perform learning of

the parameters.

8 EXPERIMENTS

We present in this section experiments on real data. Syn-

thetic experiments on the core model of the CGMRF (with-

out hidden layer) can be found in section 6 of the appendix.

In geographic information systems, data is often aggre-

gated either on regular grid or on cells corresponding to ab-

stract administrative boundaries, which do not necessarily

reflect the structure of a city. A fairly natural type of rep-

resentation for urban environment is based on graphs and

in particular weighted graphs which can encode a distance

information.

We consider a problem from geomatics in which this

type of representation could be beneficial and which con-

sists in predicting building use in urban and peri-urban

environments from a few annotations and simple build-

ing shape characteristics that can be extracted easily from

aerial images. More precisely, we consider the transduc-

tive learning problem of assigning city blocks to one cate-

gory from {individual housing, collective housing, indus-

trial/commercial area}.

8.1 Building the city block continuous graph

A city can be divided into city blocks using its layout and

road network as in Figure 8.1. Assuming that the blocks

are given, we compute the Voronoi diagram of the block

centroids and link together blocks with adjacent Voronoi

cells. Edges are annotated with a proximity measure, in

our case the distance between their respective closest build-

ings. This provides a continuous graph encapsulating the s

tructure of the city. Each block is then annotated into one

of three categories : individual residential, collective resi-

dential and industrial/commercial area. The blocks are an-

notated by hand using cadastral information, business reg-

istration codes, and resorting to Google street view images

for ambiguous blocks (see Figure 8.1).

8.2 Data descriptors and learning setting

A block is then described by the weighted average of char-

acteristics of the buildings it contains, each building count-

ing with a weight proportional to its volume. We tested

10 different building descriptors, found that floor area and

height were the most discriminative, and that adding more

descriptors actually decreases the performance of all tested

algorithms.

We use the example of Sevran, a French city of 50 000

inhabitants north of Paris. We divided it into 461 blocks,



Figure 8.1: (left) Buildings and road network of Sevran. (middle) Division into city blocks. (right) City blocks with

annotations. Blue: individual housing, cyan: collective housing, red: industrial/commercial area. (Best seen in color.)

400 of which can clearly be assigned one of three labels

mentioned above and the rest being of insignificant size,

ambiguous, or corresponding to other categories such as

schools or hospitals.

We consider the transductive learning problem of predict-

ing all block labels from a subset of labelled blocks. In our

experiments, 7% of annotated labels, corresponding to 28

blocks, are used for training and the remaining are used for

testing.

8.3 Competing algorithms

As baselines we consider two algorithms that do not take

into account spatial information: a generative Gaussian

mixture model and a logistic regression trained each using

the 7% revealed labels. We also consider classical hidden

MRFs, which cannot take into account the distance, and

whose graph is either the same as for the CGMRF or a

pruned graph in which all edges longer than a threshold

(corresponding to the average city block radius) have been

removed. The different graphs are illustrated on Figure 8.2.

Note that the Gaussian mixture model does not take the

graph structure into account, and can be interpreted as an

edgeless MRF

In all Markov models, we use Gaussian emissions to model

the distribution of the building descriptors given the block

label, which can conveniently be optimized in closed form.

To train the CGMRF and MRF models we learn the param-

eter θ with the maximum likelihood principle following the

approach presented in section 6.5.

8.4 Results analysis

For each model, we construct a precision-coverage curve,

obtained by sorting the probabilistic predictions by increas-

ing values of their entropies, and reported on Figure 8.3.

The confidence bands represented corresponds to one stan-

dard error for the estimation of the mean precision.

We can see that enriching the simple Gaussian mixture

model by adding a graph structure significantly improves

the overall performance. Building a MRF using all the

edges from the Voronoi proximity or only retaining a frac-

tion of the shorter edges yields similar results, on par with

logistic regression. Building a CMRF using the edges an-

notated with a distance measure leads to a performance

which is significantly above all others based on estimated

standard errors.

When making prediction for all unlabeled points from

the 7% of revealed annotations, the different algorithms

yield the following average precisions (over the 300 resam-

plings): for the Gaussian mixture model 88.0%, for logistic

regression 92.5%, the full MRF 92.4%, the pruned MRF

91.6% and our CGMRF 94.0%. Both pruned MRF and

full MRF outperform the simple Gaussian mixture model,

but not logistic regression, even though their precision at

intermediate coverage is higher. The misclassification er-

ror of the CGMRF is 20% smaller than that of logistic re-

gression, 21.5% smaller than for the best MRF model, and

50.2% smaller than for the Gaussian mixture. The gain

in precision is not only obtained in average since the mis-

classification error in the CMRF was lower than MRF and

logistic regression in respectively 193 and 293 out of 300
experiments. Wilcoxon signed rank tests assigns respec-

tively p-values of 7 · 10−26 and 3 · 10−24 to the common

median hypothesis.

In this experiment, with 461 nodes and 2718 edges the in-

ference takes less than 0.1s on a CPU at 3.3GHz. Learning

requires usually around 50 calls to the inference step for the

MRF (5s total), while it is closer to 100 for the CGMRF

(10s total).

8.5 Transfer learning on another city

We now consider the problem of predicting block labels

on a new unannotated city using partial annotation from

a given city. More precisely, we train our model with

15% of revealed labels from Sevran, and consider several



Figure 8.2: (left) continuous graph used to train the HCGMRF, the darker the edge the shorter the annoted distance,

(middle) graph used for the HMRF including all edges or (right) with only edges shorter than a threshold.

schemes to make predictions on the neighboring urban area

formed by Pierrefitte-sur-Seine together with Stains, for a

total of 63000 inhabitants and 583 blocks, for which both

graph and features are available but no labels are revealed.

We consider logistic regression and the Gaussian mixture

model trained from the annotated blocks from Sevran as

baselines, and test for each of the CGMRF and MRF the

models learnt as follows:

• θ and κ are learnt on data from Sevran

• idem followed by a single EM-step on κ alone (E-M2)

on the graph of Pierrefitte+Stains

• idem followed by an EM-step on θ (E-M1) and then

an EM-step on κ (E-M2).

We use the 359 labelled blocks (out of 583) of the Pier-

refitte/Stains conglomeration as a testing set and construct

the precision-coverage curves reported on Figure 8.4 (see

the appendix for a figure comaring more approaches). We

observe that the CGMRF setting is superior to its competi-

tors, and that the relearning step improves the performance.

The MRFs does not perform as well, which can be ex-

plained by the initial prediction being inferior, and relearn-

ing degrades its performance. The setting where only one

E-M2 step is performed yields in both cases results com-

prised between the two other settings.

9 CONCLUSION

In this paper, we constructed a Potts model over a contin-

uous graph and showed how to compute the likelihood of

several of its variants as well as the corresponding gradi-

ents, for the purpose of learning.

Our experiments on a problem from geomatics show that

this model outperforms regular MRFs, and compares favor-

ably with logistic regression which although discriminative

does not leverage unlabelled data. Finally, we showed that

the model can be used to perform transfer learning from a

first partially labelled graph towards a new completely un-

labeled graph.

Figure 8.3: Precision coverage curves on Sevran. Aver-
aged precision coverage curves for the inference for 300 random
resamplings of 7% of revealed labels on the city of Sevran. (Best
seen in color.)

Figure 8.4: Precision coverage curves for transfer learn-
ing. Averaged precision coverage curves for the inference on the
Pierrefitte/Stains conglomeration for 200 random resamplings of
15% of revealed labels on the city of Sevran. (Best seen in color.)
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