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Breakage of non-Newtonian character in flow through porous medium: 

evidence from numerical simulation 

J. Bleyer, P. Coussot 

Laboratoire Navier, Univ. Paris-Est, Champs sur Marne, France 

 

Abstract: We study the flow, through a model 2D porous medium, of Newtonian fluids, power-

law fluids and viscoplastic fluids in the laminar regime and with moderate or dominant effects 

of the yielding term. A numerical technique able to take properly into account yielding effects 

in viscoplastic flows without any regularization is used to determine the detailed flow 

characteristics. We show that as soon as the distance between the disks forming the porous 

medium is sufficiently small, the velocity field, and in particular the distribution function of the 

velocity of these different fluids in a wide range of flow regimes are similar. Moreover the 

volume fraction of fluid at rest is negligible even at low flow rate. Thus the non-Newtonian 

character of a fluid flowing through such a complex geometry tends to be broken. We suggest 

that this is due to the fact that in a flow through a channel of rapidly varying cross-section, the 

deformation, and thus the flow field, is imposed to the fluid, a situation which is encountered 

almost everywhere in a porous medium. These results make it possible to deduce a general 

expression for the Darcy’s law of these fluid types and estimate the parameters appearing in this 

expression. 

 

1. Introduction 

Flows of non-Newtonian fluids are involved in a wide range of applications [1] such as the 

injection of cement in soils, penetration of glue in porous substrates, propagation of blood 

through kidney, hydraulic fracture [2], etc. One of the most important applications concerns oil 

reservoir engineering in which a wide range of complex fluids (foams, polymers, emulsions) are 

used to improve oil recovery [3]. In these processes the flow characteristics of such fluids in 

porous media remain poorly known due to the complexity of the fluid behaviour and the opacity 

of the solid structure.  

For yield stress fluids (mud, cement, concentrated emulsions or foams), which flow like liquids 

only beyond a critical stress and behave as solids otherwise, various analytical or numerical 

approaches [4] have been developed in order to predict the pressure gradient ( p ) vs average 

velocity (V ) through the porous medium, but the validity of their physical assumptions could 

not be checked in the absence of any information concerning the flow characteristics inside the 

medium. For Newtonian fluids (of constant viscosity  ) we know that any element of the liquid 

network flows and in the absence of inertia effects the velocity field scaled by the average 

velocity (V ) is constant (Stokes flow). As a consequence p  is proportional to V  by a factor 

K  in which K  is a characteristic of the porous medium, namely its permeability. Some 

studies suggested that with yield stress fluids two critical effects could occur: (i) at the pore 

scale the flowing volume increases with the pressure gradient [5] and (ii) at a macroscopic scale 

the flow starts as a percolation effect, i.e. at a critical pressure drop liquid regions exist only 

along a specific path throughout the porous medium [5-6] and as p  is increased more flowing 

paths progressively form within the porous medium.  



Recent simulations [7] of Bingham fluid flow through porous medium using a Lattice-

Boltzmann TRT (Two Relaxation Time) scheme support these assumptions: as the pressure 

increases the fluid flows first in only one channel, then new paths open and finally all the fluid 

flows.  

On the other hand a recent experimental study [8] of the flow characteristics inside a model bead 

packing provided unexpected results which contradict the above conclusions. An NMR (Nulcear 

Magnetic Resonance) technique was used, which provided straightforward information on the 

average local flow characteristics, more precisely the probability density function (pdf) for the 

velocity, without being affected by any spatial resolution problem. It was shown [8] that the pdf 

is apparently similar for Newtonian fluids, power-law fluids and viscoplastic fluids in the 

laminar regime and with moderate or dominant effects of the yielding term. Moreover it appears 

that the fraction of region of fluid at rest is negligible even at low V  values. Under these 

conditions all occurs as if the non-Newtonian character of the fluid was broken. 

In the present work we provide a further analysis of this problem and suggestions for 

understanding it. From numerical simulations using a 2D finite element discretization and a 

second-order cone programming optimization solvers, which are able to take properly into 

account yielding effects in viscoplastic flows without any regularization, we show that the same 

result (i.e. breakage of the non-Newtonian character) is obtained in a simple 2D porous 

geometry. We suggest that this is due to the fact that in a flow through a channel of rapidly 

varying cross-section, if the macroscopic flow rate is imposed, the deformation, and thus the 

flow field, is essentially imposed to the fluid, a situation which is encountered almost 

everywhere in a porous medium. 

 

2. Materials, geometry and simulation technique  

In this work we developed specific tools for modelling yield stress fluid flows as this is a 

complex situation which encompasses simpler cases such as Newtonian or shear-thinning fluid 

flows.  

The constitutive equation of simple yield stress fluids (with negligible thixotropic character) in 

simple shear can be very well represented by a HB (Herschel-Bulkley) model: 0 γττ
c

  

(solid regime); n
cc γ k+τ=ττ>τ   (liquid regime), in which τ  is the shear stress, γ  the shear 

rate, 
c
τ  the yield stress, and k  and n  two material parameters [9]. In laminar conditions the 

flow is governed by the Bingham number, n
c k Bi , where   is a characteristic shear rate 

which can be written as the ratio of a characteristic velocity (V ) to a characteristic length ( l ) 

of the system. This dimensionless number estimates the ratio of the constant (plastic) to the rate-

dependent (viscous) parts of the constitutive equation, and finally gives an idea of the relative 

importance of the solid and liquid regions in the sample. Thus flows through similar porous 

media at different average velocities and with different pore sizes (similar distributions when 

rescaled by a characteristic length) or yield stress values have similar flow characteristics (after 

appropriate rescaling using the characteristic length and velocity) as soon as they have the same 

Bingham number. Varying Bi  in a wide range makes it possible to include almost purely plastic 

flows ( 1Bi  ), flows with both plastic and viscous effects playing a significant role ( 1Bi  ), 

simple power-law fluid flows ( 0Bi  ). We also did simulations for Newtonian fluids ( 0Bi   

and 1n ). 



Since the effects above described concerning the pdf have been observed in a specific porous 

medium, namely a granular packing, we have first to discuss their generality for any porous 

medium. We can consider that a typical porous medium is basically made of (possibly 

interconnected) channels in which the fluid can flow throughout the system. In general the cross-

section of these channels widely varies (from one “pore” to another) and they are not straight 

(tortuosity). The geometry of a granular packing effectively contains these basic ingredients.  

However numerical simulations of flows through a 3D bead packing pose several problems: it 

is difficult to make precise simulations in a volume including more than a few beads, due to the 

high computational cost of adopting a very dense 3D mesh to properly describe the porous 

geometry as well as the potential interfaces in the fluid domain between flowing and arrested 

regions in the case of yield stress fluids; it is rather uneasy to compare the local flow 

characteristics (in the form of 3D velocity fields) obtained when varying some parameters, so 

that people generally tend to focus on possible preferential flow regions or macroscopic 

properties (i.e. permeability) [10], but we can fear that in a disordered system observed at a 

relatively small scale these characteristics are greatly influenced by the specificities of the 

geometrical region under consideration.  

 

 

Figure 1: Scheme of the flow geometry. 

 

In order to avoid these problems and in particular obtain readily comparable data for different 

fluid types under different flow regimes we carried out 2D numerical simulations of flow 

through an ordered array of disks (which may be seen in 3D as cylinders perpendicular to the 

plane of observation). More precisely the geometry consists in identical circles of diameter d  

situated at equal distance b  (between centers) from each other (see Figure 1). By this way we 

represent interconnected tortuous channels of rapidly varying cross-sections and we avoid the 

problem of preferential flows induced by heterogeneities observed at a local scale. Moreover 

the velocity fields can now be studied and compared in detail. Note that it may be considered 

that an apparent strong difference between such a geometry and a real 3D bead packing is the 

absence of contacts between the disks. Actually a 2D image of the section of a bead packing is 

a similar picture, namely a set of disks of various sizes dispersed in the plane with only a very 

small fraction of them in contact (this fraction increases with the thickness of the section). This 

means that in a 2D planar section through the bead packing the flow can be considered to have 



general trends close to that through our set of similar disks except that there are additional flows 

entering or leaving this section due to the 3D structure. 

The simulations are carried out assuming a similar flow field in each similar area of this periodic 

array. The only imposed condition is a constant average velocity V  through the porosity (

VV  , where   is the porosity, which here expresses as   2321 bd  ). Here we will 

focus on the velocity fields for different values of the ratio db , namely 610 , 810 , and 910 , 

which correspond to a minimum relative distance between solid surfaces (   ddba  ) equal 

to 32 , 41 , and 91 . This range thus encompasses situations for which the particles are at a 

distance from the order of their size to situations for which they are at a distance much smaller 

than their size.  

Simulation of yield stress fluid flows is a challenging task from a numerical point of view due 

to the non-regular nature of the constitutive relation between stresses and strain rates. A simple 

approach, which can be classified as “regularizing methods”, consists of approximating the 

visco-plastic behavior by a more regular constitutive relationship, generally involving a so-

called regularizing parameter. The regularizing model consists in assuming that at low shear 

rates the material exhibits a high viscosity (e.g. bi-viscous model, Papanastasiou model) [11]. 

However, the distinction between rigid and flowing region is much harder since rigid regions 

are approximated as liquid regions flowing at a very small rate. Besides, the solution process 

can deteriorate when changing the regularization parameter. It is not clear whether such a 

technique can provide relevant results in the case of complex flows. 

The other category of numerical methods, namely “non-regularizing methods”, aims at solving 

the original non-smooth visco-plastic problem using a variational formulation and efficient 

optimization techniques. The present work falls into this category so as to keep the true visco-

plastic nature of the yield stress fluid without introducing any artificial parameter. It uses a 

second-order cone programming (SOCP) formulation of the arising minimization problem, for 

which dedicated interior point solvers are available. It has been suggested quite recently [12] 

that such state-of-the-art numerical tools are extremely efficient for the simulation of yield stress 

fluid flows and offer some computational advantages over traditional techniques like the 

Augmented Lagrangian approach for instance [13]. 

More precisely, the simulations rely on a finite element discretization of the 2D fluid domain 

using a quadratic interpolation of the velocity field inside each triangular element. The energy 

minimum principle is then discretized and the minimization problem is reformulated in a form 

suitable for by the SOCP solver Mosek [14]. An interesting feature is that the strain 

compatibility and incompressibility equations are directly enforced at the element level so that 

there is no need to introduce any auxiliary mechanical fields as Lagrange multipliers. Besides, 

the optimization solver is tailored so that there is no need to tune any algorithmic input 

parameter. More details on the numerical implementation and the validation of the technique 

can be found in [12].  

 

3. Results 

In Figures 2-4 we present the velocity fields obtained in the Newtonian case (n=1) and in the 

case n=0.4 for a series of Bi number values in the range [0-100]. We thus cover the Newtonian 



case, a typical pure shear-thinning case (n=0.4, Bi=0), a typical Herschel-Bulkley behavior 

(n=0.4) with comparable effect of the yielding and the shear-dependent terms (Bi=1), dominant 

effect of the yielding term (Bi=10) and almost purely plastic flow (Bi=100). Here the Bingham 

number is computed using V  for the velocity and dbl   for the characteristic length.  

For 32a , the velocity fields are clearly different (see Figure 2) in the different situations. The 

contours of the field are similar for the different values of n for Bi=0, except for the highest 

velocity range. On the contrary these contours significantly evolve for a fixed n value when Bi 

increases from 0 to 100: the region along the mean flow direction separating two neighbouring 

particles progressively takes a shell shape, the region of almost constant velocity in the diagonal 

flow channel widens, and the size of the stagnant region (dark blue) above and before a particle 

increases. For 41a  the same effects are observed (see Figure 3) but they are slightly less 

marked: the region between two particles has already almost a shell shape for Bi=0 and the 

width of almost constant velocity in the diagonal flow does not vary significantly when Bi 

increases. 

 

 

Figure 2: (Color online) Field of the velocity modulus in the model porous medium (here 32a ) scaled 

by the average velocity through the void volume (V) and represented in colour scales for different 

materials and flow regimes: (from left to right) (n=1) Bi=0; (n=0.4) Bi=0, 1, 10, 100.  



 

 

 

 

Figure 3: (Color online) Field of the velocity modulus in the model porous medium (here 41a ) scaled 

by the average velocity through the void volume (V) and represented in colour scales for different 

materials and flow regimes: (from left to right) (n=1) Bi=0; (n=0.4) Bi=0, 1, 10, 100.  

 

For 91a  these evolutions are much less marked (see Figure 4): at first sight the velocity fields 

appear similar. In fact there are still some slight local differences: the stagnant region below and 

above the particle grows with Bi  and tends to a small cone which approximately represents 

about 1/20 of the total fluid volume, the extent of the region of almost constant velocity in the 

diagonal channel decreases with the Bingham number. Besides it is interesting to remark that 

now the Newtonian case yields a velocity field with a global aspect rather close to those for the 

shear-thinning or plastic cases. 

 



 

Figure 4: (Color online) Field of the velocity modulus in the model porous medium (here 91a ) scaled 

by the average velocity through the void volume (V) and represented in colour scales for different materials 

and flow regimes: (from left to right) (n=1) Bi=0; (n=0.4) Bi=0, 1, 10, 100.  

 

It finally appears that the velocity fields observed for the different fluids and under different 

flow regimes exhibit differences which for most of them tend to disappear when a  tends to 0. 

In order to more precisely appreciate this effect it is necessary to have a quantified 

characterization of the velocity fields.  

In that aim we can compute the pdf for each of the two components of the velocity (vertical and 

transversal). This pdf, often called “1D velocity propagator”, and which is noted f , is such that 

the fraction of fluid having a velocity between v  and vv d  is vvf d)( . In order to appreciate 

the data in a straightforward way we think it more appropriate to look at the distribution function 

defined as:  


v

uufvF d)( )( . For example, for the flow through a capillary, F  is a straight line 

between 0 and the maximum velocity. For a yield stress fluid there is an unsheared region (plug) 

around the center of the duct which is associated with a vertical jump at the end of the 

distribution (i.e. for the maximum velocity) [8]. The height of this step varies from 0 to 1 when 

Bi varies from 0 to infinity, so that in the latter extreme case the velocity distribution has the 

form of a single peak situated at the maximum velocity. On the contrary, if the fluid is arrested 



in a region of volume fraction 
A

  the distribution globally starts by a jump to a finite level (

A
F )0( ) [8].This illustrates how the distribution function can be a fingerprint of the flow 

behavior. 

Our results for the vertical and transversal components of the distribution function show that 

they are significantly different in the different regimes or for the different values of n (see Figure 

5) for 32a : in particular for increasing Bi two steps form in the distribution, situated around 

1v  and 2v , and which correspond to the growth of the two regions of almost constant 

velocity (see Figure 2) (orange area between two particles, and blue area in the diagonal 

channel). There are also some differences between the distributions obtained for   41a  but 

they are less marked, which is consistent with the observations of the velocity field (see Figure 

3). 

Finally the most striking result is that obtained for 91a . The distributions now appear almost 

identical for Bi  ranging from 0 to 100, and with n  equal to either 0.4 or 1, both for the 

longitudinal and the transversal components (see Figure 6). These results are consistent with our 

observations of almost identical velocity fields (see Figure 4 and comments). Moreover, the 

arrested volume above and below the particles, which corresponds to the small step at the bottom 

of these curves, slightly increases with Bi , but at its maximum only represents a volume of the 

order of 5% (see Figure 2), a result which is also consistent with our above estimation from the 

velocity field. Finally we have a kind of breakage of the non-Newtonian character of the fluid 

flowing through such a geometry: the impact of the rheological behavior or flow regime on the 

velocity field appears negligible. 
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Figure 5: (Color online) Distribution function for the vertical velocity in the model porous medium for 

41a  (upper curves) and 32a  (lower curves): (n=1) Bi=0 (thin continuous orange line); (n=0.4) Bi=0 

(thick continuous black line), 1 (dashed light blue line), 10 (red dotted line), 100 (dark blue dash dot). The 

inset shows the distribution function for the transversal component when 32a . 
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Figure 6: (Color online) Distribution function for the vertical velocity in the model porous medium for 

91a : (n=1) Bi=0 (thin continuous orange line); (n=0.4) Bi=0 (thick continuous black line), 1 (dashed 

light blue line), 10 (red dotted line), 100 (dark blue dash dot). The inset shows the distribution function for 

the transversal component. 

 

 

4. Discussion 

We now focus on the effect of velocity field similarity observed in the case 91a . In view of 

identifying the origin of this phenomenon we can review the main characters of a porous 

medium as we have listed them above and see how they can have an impact on the flow 

characteristics. By itself the tortuosity of the geometry, i.e. the fact that the fluid has to turn 

around a solid region, does not seem to be able to explain the effect. Indeed, for the flow of a 

large volume of fluid around a single object we have strongly different flow characteristics 

depending on the flow regime: at high Bi  we have a liquid region close to the object while the 

rest of the fluid remains in its solid regime [15], whereas for a Newtonian fluid ( 0Bi  ) the flow 

intensity decreases slowly with the distance from the object [16]. On another side the 

connectivity between the pores of the porous medium does not play a role in the effect here 

since, due to the symmetry, it simply creates a frontier with perfect slip between the basic areas. 

These conclusions are further supported by the fact the velocity fields are significantly different 

for 32a  and 41a  whereas we already have a connectivity between the pores and a 

tortuosity which are very close to those in the case 91a . 

Finally it seems that the characteristics of the porous medium which plays a major role in the 

breakage of the non-Newtonian character is the rapid variation of the cross-section of the flow 

channels. For 91a  the maximum distance (scaled by d ) between a fluid element and a solid 

surface varies between 0.14 and 0.055 along the flow over a distance of 0.33. Actually we have 



seen that if we increase the distance between the beads the effect progressively disappears: the 

distribution functions significantly changes when the Bingham number varies. At the same time 

the variation of distance between solid surfaces along the flow is smoother: for 41a  the 

maximum distance between fluid and solid varies from 0.22 to 0.125 over a distance 0.36, and 

for 32a  it varies from 0.46 to 0.33 over a distance of 0.48. As the value of a tends to zero we 

have stronger reduction of the section over shorter distance. Thus the breakage of the non-

Newtonian character occurs only if the variations of the cross-section of the flow channels are 

sufficiently rapid. 

Here we suggest that through the rapid variations of the channel cross-section we more or less 

impose the deformation, and thus the velocity field, which explain the similarity of the velocity 

distribution in very different flow regimes. In order to further prove this effect let us consider 

the flow through the simplest geometry with a linearly varying cross-section, i.e. a trapezoidal 

geometry (see Figure 7). At the entrance we impose the velocity field associated with the 

uniform flow of the fluid at the same Bingham number in a conduit of same diameter, while the 

flow is free at the exit. This leads to very different velocity profiles at the entrance (see Figure 

8).   

 

 

 

Figure 7: (Color online) Field of the velocity modulus through a trapezoidal geometry scaled by the average 

velocity at the entrance (V) and represented in colour scales for different materials and flow regimes: (from 

left to right) (n=1) Bi=0; (n=0.4) Bi=0, 1, 10, 100.  

 

We find that the corresponding velocity fields in our range of Bi  are similar at first sight (see 

Figure 7). In fact the significant difference around the entrance induces some difference up to 

about half the channel distance. Moreover the velocity fields differ close to the exit where the 

fluid is no longer constrained. Thus the effect of imposing the deformation may be seen after 

some distance of flow through this trapezoid. This may be seen more precisely from a series of 

horizontal velocity profiles taken at different distances from the entrance (see Figure 8): the 

velocity profiles are initially obviously completely different for the different Bi  values, and as 

we advance in the channel they first keep this difference essentially along the wall while the rest 

of the fluid exhibit similar profiles for the different Bi  values. Finally the difference along the 

wall also disappears at the approach of the exit where we have an almost unique velocity profile 

(with still some slight difference along the wall). Once again we see that the rapid variation of 



the channel cross-section has apparently broken the non-Newtonian character of the fluid. This 

effect occurs more rapidly when the deformation undergone by the fluid is larger, i.e. if the angle 

is larger, but it obviously disappears if the channel length or the angle are sufficiently small. 
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Figure 8: (Color online) Profile of the longitudinal velocity (scaled by V) as a function of the distance from 

the central axis scaled by the width for different distances from the entrance in the trapezoidal channel: (red, 

lower) x=0, (blue, middle) x=0.7, (black, upper) x=0.9; and different flow regimes: (n=1) Bi=0 (thin 

continuous line); (n=0.4) Bi=0 (thick continuous line), 1 (dashed line), 10 (dotted line), 100 (dash-dot).  

 

 

5. Darcy’s law for yield stress fluids  

For a yield stress fluid the usual 3D form of the constitutive equation [9], which leads to a HB 

model in simple shear, is: 0 d
cII
  (solid regime)  and ddτ

1
2




n

II

n

IIccII
kdd  

(liquid regime), in which τ  is the deviatoric stress tensor, d  the strain rate tensor and 

2tr 2
d

II
d . The viscous dissipation inside a bead packing (of volume  ) is 

 
d).tr( τdP

. Introducing the constitutive equation in this expression we deduce 

   d2d2
1





n

IIIIc
dkdP , which may be rewritten as: 

    1


n

nc
DVDVP   

with    d21 
II

d
V

D
  and    d21

1














n

IIn
d

V

D
 

The above results concerning the approximately unique scaled velocity field obtained for 

different flow regimes lead to conclude that  
II

dVD  can be considered as a unique 

dimensionless function weakly dependent of the effective behaviour of the material or velocity 

and mainly depending on the structure of the porous medium. In this context   and 
n

  are two 



dimensionless coefficients depending only on this distribution of shear rate intensity and on the 

coefficient n . Since the viscous dissipation may also be expressed through a macroscopic 

approach as VpVp ..   , we deduce the Darcy’s law for yield stress fluids (which includes 

power-law and Newtonian fluids):  

n

n

c

D

V

D
k

D
p 










1



         (1) 

The form of this law is consistent with the analysis of a series of measurements of p  as a 

function of V  for different yield stress fluids and pore sizes [17].  
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Figure 9: Distribution function for the second invariant of the strain rate tensor (scaled by V/d) for different 

flow regimes: (n=1) Bi=0 (thin continuous line); (n=0.4) Bi=0 (thick continuous line), 1 (dashed line), 10 

(dotted line), 100 (dash-dot). The inset shows the corresponding values of   (circles) and n  (squares). 

 

It is interesting to test the consistency of this description within the frame of the flow through 

the model 2D porous medium. As expected from our conclusion that the velocity is 

approximately independent of the flow regime the distribution function for the second invariant 

are very close for different Bingham number values (see Figure 9). Note however that the 

distribution function for the Newtonian case significantly departs from these curves at low shear 

rate. This tends to suggest that in this case the shear-thinning character of the fluid introduces a 

distinction in the flow characteristics. The two coefficients (  and 
n

 ) can be computed by 

integration from the results of these simulations. We find almost constant values for each of 

these parameters (see inset of Figure 9). Note that the value for    in the Newtonian case is 

slightly different (48.6) than the average value in the shear-thinning case with n=0.4 (21).  

Let us know analyse the implications of these results on the description of flow through porous 

media. For a Newtonian fluid ( 0
c
 , k  and 1n ) the permeability ( pVK   ) is defined 

as: 1

2 DK  . Measurements of K  for a bead packing gives 15002DK   [17], which implies 



that 500
1
 . Since we do not know the details of the distribution of 

II
d  in the fluid we cannot 

immediately deduce   and 
n

  from the value of 
1
  determined from a measurement of K  with 

a Newtonian fluid. This means that the previous approaches in literature which consider that the 

Darcy’s law for a yield stress fluid can be inferred through the Newtonian form and using the 

apparent viscosity of the complex fluid, are a priori erroneous.  

The distribution function for the second invariant in our 2D porous medium (for the shear-

thinning fluid) can rather well be fitted by the function Axexp1  (where we now write the 

dimensionless second invariant x ) in which A  is a parameter depending on the flow 

characteristics. Looking at the shape of the distribution function for the longitudinal velocity of 

the flow through a bead packing (see [8]), which can well be fitted by the same type of function, 

it seems probable that the distribution function for the second invariant can also well be 

represented by the same type of function with in that case an a priori unknown but single 

parameter A  for both the Newtonian and the shear-thinning fluids at any Bingham number 

value. Since now n  may be expressed as uuunA nn d)(exp)1( )2(
0

1 


  we deduce from the 

above experimental value for 1  (500) that A  should be equal to 8, thus leading to 16  which 

is not too far from the value found for simple yield stress fluids [17], i.e. Carbopol gels ( 12

). [Note that a smaller value for   (5.5) was found from a more limited and finally much less 

robust set of data with an emulsion]. Moreover we can now also compute n  in that case : it is 

equal to 50, a value which is very close to that found from the same series of tests ( 58
n

 , with 

36.0n ).  

 

6. Conclusion 

Our results from numerical simulations show that in a flow through a complex geometry with 

rapid variations of cross-section the fluid properties do not play a significant role in the velocity 

field. These results are consistent with those obtained from NRM measurements with different 

fluid types flowing through granular packing. This suggests that in those flows the deformation 

field is more or less imposed, so that the fluid specificities are forgotten in the velocity field. 

Note however that the local viscous properties of the fluid still play their fundamental role in 

the mechanical resistance to flow.  

These results also make it possible infer the general form of the Darcy’s law for yield stress 

fluids which relies on parameters deduced from the distribution of the second invariant of the 

strain rate tensor. This suggests that this distribution is a fundamental characteristics of the flow 

through porous media, which may be considered as slightly varying with the fluid type or flow 

regime but varying strongly with the structure of the medium.   

It remains that these results are in contradiction with those inferred from conceptual analyses 

[5-6] or from other types of simulations [7]. This contradiction might be due to the fact that in 

our approach the flow rate is clearly imposed: in the NMR experiments of [8] there is a piston 

pushing the fluid from upstream, and for a slow flow the fluid advances as a plug up to a very 

short distance from the sample entrance; in the present simulations there is no disorder and the 

flow rate is impose in the same through every entrance channel. On the contrary, for the previous 

analyses this is the pressure which is controlled, so that the fluid might have more possibilities 

to choose some preferential channel to flow. This difference can easily be understood from the 



simple case of a model porous medium made of two parallel ducts with different radii: if the 

yield stress fluid is pushed from upstream by a piston close to the cylinder entrance it will flow 

through both ducts; if the pressure is progressively increased the fluid will first flow through the 

largest duct for a critical pressure then through the second one only when the pressure will be 

higher than a second critical value.   
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