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Optimal transport bounds between the time-marginals of a

multidimensional diffusion and its Euler scheme

A. Alfonsi, B. Jourdain∗ and A. Kohatsu-Higa †

May 27, 2014

Abstract

In this paper, we prove that the time supremum of the Wasserstein distance between the
time-marginals of a uniformly elliptic multidimensional diffusion with coefficients bounded
together with their derivatives up to the order 2 in the spatial variables and Hölder continuous
with exponent γ with respect to the time variable and its Euler scheme with N uniform time-

steps is smaller than C
(

1 + 1γ=1

√

ln(N)
)

N−γ . To do so, we use the theory of optimal

transport. More precisely, we investigate how to apply the theory by Ambrosio et al. [2] to
compute the time derivative of the Wasserstein distance between the time-marginals. We
deduce a stability inequality for the Wasserstein distance which finally leads to the desired
estimation.

1 Introduction

Consider the R
d-valued Stochastic Differential Equation (SDE) :

Xt = x0 +

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, t ≤ T (1.1)

with T > 0 a finite time-horizon, (Wt)t∈[0,T ] a d-dimensional standard Brownian motion, b :

[0, T ] × R
d → R

d and σ : [0, T ] × R
d → Md(R) where Md(R) denotes the set of real d × d-

matrices. In what follows, σ and b will be assumed to be Lispchitz continuous in the spatial
variable uniformly for t ∈ [0, T ] and such that supt∈[0,T ](|σ(t, 0)| + |b(t, 0)|) < +∞ so that
trajectorial existence and uniqueness hold for this SDE.

We now introduce the Euler scheme. To do so, we consider for N ∈ N
∗ the regular time

grid ti = iT
N . We define the continuous time Euler scheme by the following induction for

i ∈ {0, . . . , N − 1} :

X̄t = X̄ti + b(ti, X̄ti)(t− ti) + σ(ti, X̄ti)(Wt −Wti), t ∈ [ti, ti+1], (1.2)
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with X̄t0 = x0. By setting τt = ⌊NtT ⌋ TN , we can also write the Euler scheme as an Itô process :

X̄t = x0 +

∫ t

0
b(τs, X̄τs)ds+

∫ t

0
σ(τs, X̄τs)dWs, t ≤ T. (1.3)

The goal of this paper is to study the Wasserstein distance between the laws L(Xt) and L(X̄t)
of Xt and X̄t. We first recall the definition of the Wasserstein distance. Let µ and ν denote two
probability measures on R

d and ρ ≥ 1. The ρ-Wasserstein distance between µ and ν is defined
by

Wρ(µ, ν) =

(

inf
π∈Π(µ,ν)

∫

Rd×Rd

|x− y|ρπ(dx, dy)
)1/ρ

, (1.4)

where Π(µ, ν) is the set of probability measures on R
d ×R

d with respective marginals µ and ν.
In this paper, we will work with the Euclidean norm on R

d, i.e. |x|2 =∑d
i=1 x

2
i .

We are interested in supt∈[0,T ]Wρ(L(Xt),L(X̄t)). Thanks to the Kantorovitch duality (see Corol-
lary 2.5.2 in Rachev and Rüschendorf [15]), we know that for t ∈ [0, T ],

W1(L(Xt),L(X̄t)) = sup
f :Rd→R, Lip(f)≤1

|E[f(X̄t)− f(Xt)]|,

where Lip(f) = supx 6=y
|f(x)−f(y)|

|x−y| . From the weak error expansion given by Talay and Tubaro [17]

when the coefficients are smooth enough, we deduce that W1(L(XT ),L(X̄T )) ≥ C
N for some con-

stant C > 0. Since, by Hölder’s inequality, ρ 7→ Wρ is non-decreasing, we cannot therefore hope
the order of convergence of supt∈[0,T ]Wρ(L(Xt),L(X̄t)) to be better than one. On the other
hand, as remarked by Sbai [16], a result of Gobet and Labart [10] supposing uniform ellipticity
and some regularity on σ and b that will be made precise below implies that

sup
t∈[0,T ]

W1(L(Xt),L(X̄t)) ≤
C

N
.

In a recent paper [1], we proved that in dimension d = 1, under uniform ellipticity and for
coefficients b and σ time-homogeneous, bounded together with their derivatives up to the order
4, one has

sup
t∈[0,T ]

Wρ(L(Xt),L(X̄t)) ≤
C
√

ln(N)

N
(1.5)

for any ρ > 1. For the proof, we used that in dimension one, the optimal coupling measure π
between the measures µ and ν in the definition (1.4) of the Wasserstein distance is explicitly
given by the inverse transform sampling: π is the image of the Lebesgue measure on [0, 1] by the
couple of pseudo-inverses of the cumulative distribution functions of µ and ν. Our main result in
the present paper is the generalization of (1.5) to any dimension d when the coefficients b and σ
are time-homogeneous C2, bounded together with their derivatives up to the order 2 and uniform
ellipticity holds. We also generalize the analysis to time-dependent coefficients b and σ Hölder
continuous with exponent γ in the time variable. For γ ∈ (0, 1), the rate of convergence worsens
i.e. the right-hand side of (1.5) becomes C

Nγ whereas it is preserved in the Lipschitz case γ = 1.
These results are stated in Section 2 together with the remark that the choice of a non-uniform
time grid refined near the origin for the Euler scheme permits to get rid of the

√

ln(N) term in the
numerator in the case γ = 1. To our knowledge, they provide a new estimation of the weak error
of the Euler scheme when the coefficients b and σ are only Hölder continuous in the time variable.
The main difficulty to prove them is that, in contrast with the one-dimensional case, the optimal

2



coupling between L(Xt) and L(X̄t) is only characterized in an abstract way. We want to apply
the theory by Ambrosio et al. [2] to compute the time derivative d

dtW
ρ
ρ (L(Xt),L(X̄t)). To do

so, we have to interpret the Fokker-Planck equations giving the time derivatives of the densities
of Xt and X̄t with respect to the Lebesgue measure as transport equations : the contribution
of the Brownian term has to be written in the same way as the one of the drift term. This
requires some regularity properties of the densities. In Section 3, we give a heuristic proof of
our main result without caring about these regularity properties. This allows us to present in
a heuristic and pedagogical way the main arguments, and to introduce the notations related to
the optimal transport theory. In the obtained expression for d

dtW
ρ
ρ (L(Xt),L(X̄t)), it turns out

that, somehow because of the first order optimality condition on the optimal transport maps at
time t, their time-derivative does not appear. The contribution of the drift term is similar to the
one that we would obtain when computing d

dtE(|Xt − X̄t|ρ) i.e. when working with the natural
coupling between the SDE (1.1) and its Euler scheme. To be able to deal with the contribution
of the Brownian term, we first have to perform a spatial integration by parts. Then the uniform
ellipticity condition enables us to apply a key lemma on pseudo-distances between matrices to
see that this contribution is better behaved than the corresponding one in d

dtE(|Xt − X̄t|ρ) and
derive a stability inequality for Wρ

ρ (L(Xt),L(X̄t)) analogous to the one obtained in dimension
d = 1 in [1]. Like in this paper, we conclude the heuristic proof by a Gronwall’s type argument
using estimations based on Malliavin calculus. In [1], our main motivation was to analyze the
Wasserstein distance between the pathwise laws L((Xt)t∈[0,T ]) and L((X̄t)t∈[0,T ]). This gives
then an upper bound of the error made when one approximates the expectation of a pathwise
functional of the diffusion by the corresponding one computed with the Euler scheme. We were
able to deduce from the upper bound on the Wasserstein distance between the marginal laws
that the pathwise Wasserstein distance is upper bounded by CN−2/3+ε, for any ε > 0. This
improves the N−1/2 rate given by the strong error analysis by Kanagawa [12]. To do so, we
established using the Lamperti transform some key stability result for one-dimensional diffusion
bridges in terms of the couple of initial and terminal positions. So far, we have not been able to
generalize this stability result to higher dimensions. Nevertheless, our main result can be seen
as a first step in order to improve the estimation of the pathwise Wasserstein distance deduced
from the strong error analysis.

In Section 4, we give a rigorous proof of the main result. The theory of Ambrosio et al. [2]
has been recently applied to Fokker-Planck equations associated with linear SDEs and SDEs
nonlinear in the sense of McKean by Bolley et al. [3, 4] in the particular case σ = Id of an additive
noise and for the quadratic Wasserstein distance ρ = 2 to study the long-time behavior of their
solutions. In the present paper, we want to estimate the error introduced by a discretization
scheme on a finite time-horizon with a general exponent ρ and a non-constant diffusion matrix
σ. It turns out that, due to the local Gaussian behavior of the Euler scheme on each time-step, it
is easier to apply the theory of Ambrosio et al. [2] to this scheme than to the limiting SDE (1.1).
The justification of the spatial integration by parts performed on the Brownian contribution in
the time derivative of the Wasserstein distance is also easier for the Euler scheme. That is why
introduce a second Euler scheme with time step T/M and estimate the Wasserstein distance
between the marginal laws of the two Euler schemes. We conclude the proof by letting M → ∞
in this estimation thanks to the lower-semicontinuity of the Wasserstein distance with respect
to the narrow convergence. The computation of the time derivative of the Wasserstein distance
between the time-marginals of two Euler schemes can be seen as a first step to justify the formal
expression of the time derivative of the Wasserstein distance between the time-marginals of the
two limiting SDEs. We plan to investigate this problem in a future work.

Section 5 is devoted to technical lemmas including the already mentioned key lemma on the
pseudo-distances between matrices and estimations based on Malliavin calculus.
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Notations

• Unless explicitly stated, vectors are consider as column vectors.

• The set of real d× d matrices is denoted by Md(R).

• For a symmetric positive semidefinite matrix M ∈ Md(R), M
1
2 denotes the symmetric

positive semidefinite matrix such that M =M
1
2M

1
2 .

• For n ∈ N, we introduce

C0,n
b (R) = {f : [0, T ] ×R

d → R continuous, bounded and

n times continuously differentiable in its d last variables with bounded derivatives},

For γ ∈ [0, 1], we also define

Cγ,nb (R) = {f ∈ C0,n
b (R), s. t. ∃K ∈ [0,+∞),∀s, t ∈ [0, T ],∀x ∈ R

d, |f(t, x)−f(s, x)| ≤ K|t−s|γ},

Cγ,nb (Rd) = {f : [0, T ] ×R
d → R

d such that ∀1 ≤ i ≤ d, fi ∈ Cγ,nb (R)},
Cγ,nb (Md(R)) = {f : [0, T ] ×R

d → Md(R) such that ∀1 ≤ i, j ≤ d, fij ∈ Cγ,nb (R)}.

• For f : Rd → R differentiable and g : Rd → R
d, we denote by ∇f(g(x)) the gradient

(∂xif)1≤i≤d of f computed at g(x).

• For f : Rd → R
d, we denote by ∇f the Jacobian matrix (∂xifj)1≤i,j≤d and by ∇∗f its

transpose.

• For f : Rd → R, we denote by ∇2f the Hessian matrix (∂xixjf)1≤i,j≤d.

• For f : E × R
d → R, we denote by ∇xf(e, x), the partial gradient of f with respect to its

d last variables.

• For two density functions p and p̄ on R
d, if there is a measurable function f : Rd → R

d

such that the image of the probability measure p(x)dx by f admits the density p̄, we write
p#f = p̄.

2 The main result

Our main result is the following theorem.

Theorem 2.1 Assume that

• b ∈ Cγ,2b (Rd),

• σ ∈ Cγ,2b (Md(R)) and is such that a(t, x) = σ(t, x)σ(t, x)∗ is uniformly elliptic, i.e.

∃a > 0 s.t. ∀t ∈ [0, T ], ∀x ∈ R
d, a(t, x) − aId is positive semidefinite.
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Then

∀ρ ≥ 1, ∃C < +∞, ∀N ≥ 1, sup
t∈[0,T ]

Wρ(L(Xt),L(X̄t)) ≤
C
(

1 + 1γ=1

√

ln(N)
)

Nγ
, (2.1)

where C is a positive constant that only depends on ρ, a, (‖∂αa‖∞, ‖∂αb‖∞, 0 ≤ |α| ≤ 2), and
the coefficients K, q involved in the γ-Hölder time regularity of a and b. In particular C does
not depend on the initial condition x0 ∈ R.

Remark 2.2 Under the assumptions of Theorem 2.1 with γ = 1, by discretizing the SDE (1.1)
with the Euler scheme on the non-uniform time grids refined near the origin

(

ti = ( iN )βT
)

0≤i≤N

with β > 1, one gets rid of the
√

ln(N) term in the numerator (see Remark 3.2 below for
elements of proof):

∃C < +∞, ∀N ≥ 1, sup
t∈[0,T ]

Wρ(L(Xt),L(X̄t)) ≤
C

N
.

To our knowledge, Theorem 2.1 is a new result concerning the weak error of the Euler scheme,
for coefficients σ, b only γ-Hölder continuous in the time variable with γ < 1. For γ = 1, as
remarked by Sbai [16], a result of Gobet and Labart [10] supposing uniform ellipticity and that
b ∈ C1,3

b (Rd), σ ∈ C1,3
b (Md(R)) are continuously differentiable in time, implies that

sup
t∈[0,T ]

W1(L(Xt),L(X̄t)) ≤
C

N
.

Compared to this result, we have a slightly less accurate upper bound due to the
√

ln(N)
term, but Theorem 2.1 requires slightly less assumptions on the diffusion coefficients and most
importantly concerns any ρ-Wasserstein distance. Using Hölder’s inequality and the well-known
boundedness of the moments of both Xt and X̄t for t ∈ [0, T ], one deduces that

Corollary 2.3 For any function f : Rd → R such that

∃α ∈ (0, 1], ∃C, q ∈ (0,+∞), ∀x, y ∈ R
d, |f(x)− f(y)| ≤ C(1 + |x|q + |y|q)|x− y|α,

one has

∃C < +∞, ∀N ≥ 1, sup
t∈[0,T ]

|E(f(Xt))− E(f(X̄t))| ≤
C
(

1 + 1γ=1

√

ln(N)
)α

Nαγ
.

Remark 2.4 We have stated Theorem 2.1 under assumptions that lead to a constant C that
does not depend on the initial condition x0. This is a nice feature that we used in [1] to bound
the Wasserstein distance between the pathwise laws L((Xt)t∈[0,T ]) and L((X̄t)t∈[0,T ]) from above.
However, Theorem 2.1 still holds with a constant C depending in addition on x0 if we relax the
assumptions on b and σ as follows:

• b and σ are globally Lipschitz with respect to x, i.e.

∀f ∈ {b, σ},∃K ∈ [0,+∞),∀t ∈ [0, T ],∀x, y ∈ R
d, |f(t, y)− f(t, x)| ≤ K|x− y|,
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• b and σ are twice continuously differentiable in x and γ-Hölder in time, and such that we
have the following polynomial growth

∀f ∈ {b, σ},∃K, q ∈ [0,+∞), ∀s, t ∈ [0, T ],∀x ∈ R
d, |f(t, x)− f(s, x)| ≤ K|t− s|γ(1 + |x|q),

for any 1 ≤ i, j, k, l ≤ d, α ∈ N
d, such that |α| = 2 and f ∈ {∂xkxlbi, ∂xkxlσij},

∃K, q > 0,∀t ≥ 0, x ∈ R
d, |f(t, x)| ≤ K(1 + |x|q),

• a(t, x) = σ(t, x)σ(t, x)∗ is uniformly elliptic.

Since by Hölder’s inequality, ρ 7→ Wρ is non-increasing, it is sufficient to prove Theorem 2.1 for ρ
large enough. Thus, we will assume without loss of generality that ρ ≥ 2 in the remainder of the
paper. By the uniform ellipticity and regularity assumptions in Theorem 2.1, for t ∈ (0, T ], Xt

and X̄t admit densities respectively denoted by pt and p̄t with respect to the Lebesgue measure.
By a slight abuse of notation, we still denote by Wρ(pt, p̄t) the ρ-Wasserstein distance between
the probability measures pt(x)dx and p̄t(x)dx on R

d.

3 Heuristic proof of the main result

The heuristic proof of Theorem 2.1 is structured as follows. First, we recall some optimal
transport results about the Wasserstein distance and its associated optimal coupling, and we
make some simplifying assumptions on the optimal transport maps that will be removed in the
rigorous proof. Then, we can heuristically calculate d

dtW
ρ
ρ (pt, p̄t), and get a sharp upper bound

for this quantity. Last, we use a Gronwall’s type argument to conclude the heuristic proof.

3.1 Preliminaries on the optimal transport for the Wasserstein distance

We introduce some notations that are rather standard in the theory of optimal transport (see
[2, 15, 18]) and which will be useful to characterize the optimal coupling for the ρ-Wasserstein
distance. We will say that a function ψ : Rd → [−∞,+∞] is ρ-convex if there is a function
ζ : Rd → [−∞,+∞] such that

∀x ∈ R
d, ψ(x) = sup

y∈Rd

(−|x− y|ρ − ζ(y)) .

In this case, we know from Proposition 3.3.5 of Rachev and Rüschendorf [15] that

∀x ∈ R
d, ψ(x) = sup

y∈Rd

(

−|x− y|ρ − ψ̄(y)
)

, where for y ∈ R
d, ψ̄(y) := sup

x∈Rd

(−|x− y|ρ − ψ(x)) .

(3.1)
We equivalently have,

ψ(x) = − inf
y∈Rd

(

|x− y|ρ + ψ̄(y)
)

and ψ̄(x) = − inf
y∈Rd

(|x− y|ρ + ψ(y)) . (3.2)

This result can be seen as an extension of the well-known Fenchel-Legendre duality for convex
functions which corresponds to the case ρ = 2. We then introduce the ρ-subdifferentials of these
functions. These are the sets defined by

∂ρψ(x) = {y ∈ R
d : ψ(x) = −(|x− y|ρ + ψ̄(y))}, (3.3)

∂ρψ̄(x) = {y ∈ R
d : ψ̄(x) = −(|x− y|ρ + ψ(y))}. (3.4)
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Let t ∈ [0, T ]. According to Theorem 3.3.11 of Rachev and Rüschendorf [15], we know that
there is a couple (ξt, ξ̄t) of random variables with respective densities pt and p̄t which attains
the ρ-Wasserstein distance :

E[|ξt − ξ̄t|ρ] =W ρ
ρ (pt, p̄t).

Such a couple is called an optimal coupling for the Wasserstein distance. Besides, there exist
two ρ-convex function ψt and ψ̄t satisfying the duality property (3.1) and such that

ξ̄t ∈ ∂ρψt(ξt) and ξt ∈ ∂ρψ̄t(ξ̄t), a.s..

Now that we have recalled this well known result of optimal transport, we can start our heuristic
proof of Theorem 2.1. To do so, we will assume that the ρ-subdifferentials ∂ρψt(x) and ∂ρψ̄t(x)
are non empty and single valued for any x ∈ R

d, i.e.

∂ρψt(x) = {Tt(x)}, ∂ρψ̄t(x) = {T̄t(x)}.

The functions Tt(x) and T̄t(x) depend on ρ but we do not state explicitly this dependence for
notational simplicity. Now, we clearly have

ψt(x) = −
[

|x− Tt(x)|ρ + ψ̄t(Tt(x))
]

and ψ̄t(x) = −
[

|x− T̄t(x)|ρ + ψt(T̄t(x))
]

. (3.5)

Besides, we can write the Wasserstein distance as follows:

W ρ
ρ (pt, p̄t) =

∫

Rd

|x− Tt(x)|ρpt(x)dx =

∫

Rd

|x− T̄t(x)|ρp̄t(x)dx. (3.6)

Since on the one hand ξ̄t = Tt(ξt) and ξt = T̄t(ξ̄t) almost surely, and on the other hand
pt(x)p̄t(x) > 0 thanks to the uniform ellipticity assumption,

dx a.e., T̄t(Tt(x)) = Tt(T̄t(x)) = x. (3.7)

In the remaining of Section 3, we will perform heuristic computations without caring about the
actual smoothness of the functions ψt, ψ̄t, Tt and T̄t. In particular, we suppose that

∀x ∈ R
d, T̄t(Tt(x)) = Tt(T̄t(x)) = x (3.8)

∇ψ̄t(Tt(x)) = ρ|x− Tt(x)|ρ−2(x− Tt(x)), (3.9)

∇ψt(T̄t(x)) = ρ|x− T̄t(x)|ρ−2(x− T̄t(x)). (3.10)

where the two last equations are the first order Euler conditions of optimality in the minimization
problems (3.2).

3.2 A formal computation of d
dt
W ρ
ρ (pt, p̄t)

We now make a heuristic differentiation of (3.6) with respect to t. A computation of the same
kind for the case ρ = 2 and with identity diffusion matrix σ is given by Bolley et al. : see p2437
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and Remark 3.6 p2445 in [3] or p431 in [4].

d

dt
W ρ
ρ (pt, p̄t) =

∫

Rd

|x− Tt(x)|ρ∂tpt(x)dx+

∫

Rd

ρ|x− Tt(x)|ρ−2(Tt(x)− x).∂tTt(x)pt(x)dx

=

∫

Rd

|x− Tt(x)|ρ∂tpt(x)dx−
∫

Rd

∇ψ̄t(Tt(x)).∂tTt(x)pt(x)dx

=

∫

Rd

(

|x− Tt(x)|ρ + ψ̄t(Tt(x))
)

∂tpt(x)dx

−
∫

Rd

(

∇ψ̄t(Tt(x)).∂tTt(x)pt(x) + ψ̄t(Tt(x))∂tpt(x)
)

dx

= −
∫

Rd

ψt(x)∂tpt(x)dx− d

dt

∫

Rd

g(Tt(x))pt(x)dx

∣

∣

∣

∣

g=ψ̄t

,

where we used (3.9) for the second equality and (3.5) for the fourth. Since the image of the
probability measure pt(x)dx by the map Tt is the probability measure p̄t(x)dx, which we write
as

p̄t = Tt#pt

in what follows, we have
∫

Rd g(Tt(x))pt(x)dx =
∫

Rd g(x)p̄t(x)dx and thus d
dt

∫

Rd g(Tt(x))pt(x)dx =
∫

Rd g(x)∂tp̄t(x)dx. This heuristic calculation finally gives

d

dt
W ρ
ρ (pt, p̄t) = −

∫

Rd

ψt(x)∂tpt(x)dx−
∫

Rd

ψ̄t(x)∂tp̄t(x)dx. (3.11)

Let us assume now that the following Fokker-Planck equations for the densities pt and p̄t hold
in the classical sense

∂tpt(x) =
1

2

d
∑

i,j=1

∂xixj(aij(t, x)pt(x))−
d
∑

i=1

∂xi(bi(t, x)pt(x)), (3.12)

∂tp̄t(x) =
1

2

d
∑

i,j=1

∂xixj(āij(t, x)p̄t(x))−
d
∑

i=1

∂xi(b̄i(t, x)p̄t(x)), (3.13)

where
(

ā
b̄

)

(t, x) = E

((

a
b

)

(τt, X̄τt)|X̄t = x

)

. (3.14)

The first equation is the usual Fokker-Planck equation for the SDE (1.1). For the second one,

we also use the result by Gyöngy [11] that ensures that the SDE with coefficients b̄ and ā
1
2 has

the same marginal laws as the Euler scheme. Now, plugging these equations in (3.11), we get

d

dt
W ρ
ρ (pt, p̄t) =− 1

2

∫

Rd

Tr(∇2ψt(x)a(t, x))pt(x)dx+

∫

Rd

∇ψt(x).b(t, x)pt(x)dx

− 1

2

∫

Rd

Tr(∇2ψ̄t(x)ā(t, x))p̄t(x)dx+

∫

Rd

∇ψ̄t(x).b̄(t, x)p̄t(x)dx

by using integrations by parts and assuming that the boundary terms vanish. We now use
p̄t = Tt#pt and

∇ψt(x) = ρ|Tt(x)− x|ρ−2(Tt(x)− x) = −∇ψ̄t(Tt(x)), (3.15)
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which comes from (3.8), (3.9) and (3.10), to get

d

dt
W ρ
ρ (pt, p̄t) =− 1

2

∫

Rd

Tr[∇2ψt(x)a(t, x) +∇2ψ̄t(Tt(x))ā(t, Tt(x))]pt(x)dx

−
∫

Rd

(

∇ψt(x).b(t, x) +∇ψ̄t(Tt(x)).b̄(t, Tt(x))
)

pt(x)dx

=− 1

2

∫

Rd

Tr[∇2ψt(x)a(t, x) +∇2ψ̄t(Tt(x))ā(t, Tt(x))]pt(x)dx

+ ρ

∫

Rd

|Tt(x)− x|ρ−2(Tt(x)− x).
(

b̄(t, Tt(x))− b(t, x)
)

pt(x)dx. (3.16)

This formula looks very nice but due to the lack of regularity of ψt and ψ̄t, which are merely semi-
convex functions, it is only likely to hold with the equality replaced by ≤ and the ∇2ψt and ∇2ψ̄t
replaced by the respective Hessians in the sense of Alexandrov of ψt and ψ̄t. See Proposition
4.4 where such an inequality is proved rigorously for the Wassertein distance between the time
marginals of two Euler schemes.

3.3 Derivation of a stability inequality for W ρ
ρ (pt, p̄t)

In (3.16), the contribution of the drift terms only involves the optimal transport and is equal to
ρE
(

|ξ̄t − ξt|ρ−2(ξ̄t − ξt).
(

b̄(t, ξ̄t)− b(t, ξt)
))

for any optimal coupling (ξt, ξ̄t) between pt and p̄t.
To obtain this term, it was enough to use the first order optimality conditions (3.9) and (3.10).
To deal with the Hessians ∇2ψt and ∇2ψ̄t which appear in the contribution of the diffusion
terms, we will need the associated second order optimality conditions.

Differentiating (3.15) with respect to x, we get

∇2ψt(x) = ρ|Tt(x)− x|ρ−2

(

Id + (ρ− 2)
Tt(x)− x

|Tt(x)− x|
(Tt(x)− x)∗

|Tt(x)− x|

)

(∇∗Tt(x)− Id) . (3.17)

By symmetry and (3.8),

∇2ψ̄t(Tt(x)) = ρ|Tt(x)− x|ρ−2

(

Id + (ρ− 2)
Tt(x)− x

|Tt(x)− x|
(Tt(x)− x)∗

|Tt(x)− x|

)

(

∇∗T̄t(Tt(x))− Id
)

.

By differentiation of (3.8), we get that∇∗Tt(x) is invertible and have∇∗T̄t(Tt(x)) = (∇∗Tt(x))
−1.

Plugging these equations into (3.16), we get

d

dt
W ρ
ρ (pt, p̄t) =ρ

∫

Rd

|Tt(x)− x|ρ−2(Tt(x)− x).
(

b̄(t, Tt(x)) − b(t, x)
)

pt(x)dx

+
ρ

2

∫

Rd

|Tt(x)− x|ρ−2 Tr

[(

Id + (ρ− 2)
Tt(x)− x

|Tt(x)− x|
(Tt(x)− x)∗

|Tt(x)− x|

)

{

(Id −∇∗Tt(x)) a(t, x) +
(

Id − (∇∗Tt(x))
−1
)

ā(t, Tt(x))
}

]

pt(x)dx.

In order to make the diffusion contribution of the same order as the drift one, we want to
upper-bound the trace term by the square of a distance between a(t, x) and ā(t, Tt(x)). The
key Lemma 5.2 permits to do so. To check that its hypotheses are satisfied, we remark that the
second order optimality condition for (3.2)

∇2ψt(T̄t(x)) + ρ|T̄t(x)− x|ρ−2

(

Id + (ρ− 2)
T̄t(x)− x

|T̄t(x)− x|
(T̄t(x)− x)∗

|T̄t(x)− x|

)

≥ 0 (3.18)
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computed at x = Tt(y) combined with (3.8) and (3.17) gives that

(

Id + (ρ− 2)
Tt(y)− y

|Tt(y)− y|
(Tt(y)− y)∗

|Tt(y)− y|

)

∇∗Tt(y)

is a positive semidefinite matrix. It is in fact positive since it is the product of two invertible
matrices. We can then apply the key Lemma 5.2 and get:

d

dt
W ρ
ρ (pt, p̄t) ≤ρ

∫

Rd

|Tt(x)− x|ρ−1
∣

∣b(t, x) − b̄(t, Tt(x))
∣

∣ pt(x)dx

+
ρ(ρ− 1)2

8a

∫

Rd

|Tt(x)− x|ρ−2 Tr
[

(a(t, x)− ā(t, Tt(x)))
2
]

pt(x)dx.

Finally, using that p̄t = Tt#pt, we get

d

dt
W ρ
ρ (pt, p̄t) ≤ρ

∫

Rd

|x− T̄t(x)|ρ−1
∣

∣b(t, T̄t(x)) − b̄(t, x)
∣

∣ p̄t(x)dx (3.19)

+
ρ(ρ− 1)2

8a

∫

Rd

|x− T̄t(x)|ρ−2 Tr
[

(

a(t, T̄t(x)) − ā(t, x)
)2
]

p̄t(x)dx.

Now, we use the triangle inequalities |b(t, T̄t(x))− b̄(t, x)| ≤ |b(t, T̄t(x))−b(t, x)|+|b(t, x)− b̄(t, x)|
and Tr

[

(

a(t, T̄t(x)) − ā(t, x)
)2
]

≤ 2
[

Tr
[

(

a(t, T̄t(x)) − a(t, x)
)2
]

+Tr
[

(a(t, x)− ā(t, x))2
]]

to-

gether with the assumptions on a and b to get that there is a constant C depending only on ρ,
a and the spatial Lipschitz constants of a and b such that

d

dt
W ρ
ρ (pt, p̄t) ≤C

(

W ρ
ρ (pt, p̄t) +

∫

Rd

|x− T̄t(x)|ρ−1
∣

∣b(t, x)− b̄(t, x)
∣

∣ p̄t(x)dx (3.20)

+

∫

Rd

|x− T̄t(x)|ρ−2 Tr
[

(a(t, x) − ā(t, x))2
]

p̄t(x)dx

)

.

Remark 3.1 Equation (3.19) illustrates the difference between the weak error and the strong
error analysis. To study the strong error between Xt and X̄t, one would typically apply Itô’s
formula and take expectations to get

d

dt
E(|Xt − X̄t|ρ) = ρE

(

|Xt − X̄t|ρ−2(Xt − X̄t).(b(t,Xt)− b(τt, X̄τt)) +
1

2
|Xt − X̄t|ρ−2

× Tr

[(

Id + (ρ− 2)
Xt − X̄t

|Xt − X̄t|
(Xt − X̄t)

∗

|Xt − X̄t|

)

× (σ(t,Xt)− σ(τt, X̄τt))(σ(t,Xt)− σ(τt, X̄τt))
∗

]

)

≤ CE

(

|Xt − X̄t|ρ−2

{

|Xt − X̄t|2 + (Xt − X̄t).(b(t, X̄t)− b(τt, X̄τt))

+ Tr

[(

Id + (ρ− 2)
Xt − X̄t

|Xt − X̄t|
(Xt − X̄t)

∗

|Xt − X̄t|

)

× (σ(t, X̄t)− σ(τt, X̄τt))(σ(t, X̄t)− σ(τt, X̄τt))
∗

]}

)

.

The diffusion contribution is very different from the one in (3.20) : indeed, the absence of condi-
tional expectation in the quadratic factor (σ(t, X̄t)−σ(τt, X̄τt))(σ(t, X̄t)−σ(τt, X̄τt))

∗ in the trace

term does not permit cancellations like in (3.20) where
∫

Rd Tr
[

(a(t, x)− ā(t, x))2
]

p̄t(x)dx =

E
(

Tr((E(a(t, X̄t)− a(τt, X̄τt)|X̄t))
2)
)

.
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As an aside remark, we see that when σ is constant, the diffusion contributions disappear in
both equations. In this case, supt∈[0,T ] E

1/ρ(|Xt − X̄t|ρ) can be upper bounded by C/Nγ where
γ denotes the Hölder exponent of the coefficients b and σ in the time variable. For γ = 1, this
leads to the improved bound supt∈[0,T ]Wρ(pt, p̄t) ≤ C/N .

3.4 The argument based on Gronwall’s lemma

Starting from (3.20), we can conclude by applying a rigorous Gronwall type argument, which is
analogous to the one used in the one-dimensional case in [1]. For the sake of completeness, we
nevertheless repeat these calculations since we consider here in addition coefficients which are
not time-homogeneous but γ-Hölder continuous in time.

We set ζρ(t) = W2
ρ (pt, p̄t) and define for any integer k ≥ 1,

hk(x) = k−2/ρh(kx) where h(x) =

{

x2/ρ if x ≥ 1,

1 + 2
ρ (x− 1) otherwise.

Since hk is C1 and non-decreasing, we get from (3.20) and Hölder’s inequality

hk

(

ζρ/2ρ (t)
)

≤ hk(0) + C

∫ t

0
h′k

(

ζρ/2ρ (s)
)

[

ζρ/2ρ (s)

+ ζ(ρ−1)/2
ρ (s)

(∫

Rd

|b(s, x)− b̄(s, x)|ρp̄s(x)dx
)1/ρ

+ ζ(ρ−2)/2
ρ (s)

(∫

Rd

Tr
[

(a(s, x)− ā(s, x))2
]ρ/2

p̄s(x)dx

)2/ρ ]

ds.

Since (h′k)k≥1 is a non-decreasing sequence of functions that converges to x 7→ 2
ρx

2
ρ
−1

as k → ∞,
we get by the monotone convergence theorem and (3.14)

ζρ(t) ≤
2C

ρ

∫ t

0
ζρ(s) + ζρ(s)

1/2
E
1/ρ[|b(s, X̄s)− E[b(τs, X̄τs)|X̄s]|ρ]

+ E
2/ρ[Tr((a(s, X̄s)− E[a(τs, X̄τs)|X̄s])

2)ρ/2]ds.

Let us focus for example on the diffusion term. First,

Tr[(a(s, X̄s)− E[a(τs, X̄τs)|X̄s])
2]ρ/2 ≤ dρ−2

d
∑

i,j=1

|aij(s, X̄s)− E[aij(τs, X̄τs)|X̄s]|ρ.

We have
|aij(s, X̄s)− aij(τs, X̄s)| ≤ K|s− τs|γ

and

aij(τs, X̄s)− aij(τs, X̄τs) =(X̄s − X̄τs).

∫ 1

0
∇xaij(τs, vX̄s + (1− v)X̄τs)dv

=∇xaij(τs, X̄s).
[

σ(τs, X̄s)(Ws −Wτs)
]

+∇xaij(τs, X̄s).
[

(σ(τs, X̄τs)− σ(τs, X̄s))(Ws −Wτs) + b(τs, X̄τs)(s− τs)
]

+ (X̄s − X̄τs).

∫ 1

0
∇xaij(τs, vX̄s + (1− v)X̄τs)−∇xaij(τs, X̄s)dv.

(3.21)
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Now, we use Jensen’s inequality together with the boundedness of b and the boundedness and
Lipschitz property of x 7→ ∇xaij(t, x), uniformly in t ∈ [0, T ], to get

E
[

|aij(s, X̄s)− E[aij(τs, X̄τs)|X̄s]|ρ
]

≤ C

Nγρ
+ CE[|σ∗(τs, X̄s)∇xaij(τs, X̄s)|ρ|E[(Wτs −Ws)|X̄s]|ρ]

+ C

[

1

Nρ
+ E[|(σ(τs, X̄τs)− σ(τs, X̄s))(Ws −Wτs)|ρ + |X̄τs − X̄s|2ρ]

]

.

By the boundedness of σ and b, one easily checks that

∀q ≥ 1, ∃C ∈ [0,+∞), ∀0 ≤ s ≤ t ≤ T, E(|X̄t − X̄s|q) ≤ C(t− s)q/2. (3.22)

With Lemma 5.5 and the spatial Lipschitz continuity of σ, we deduce that

E
[

|aij(s, X̄s)− E[aij(τs, X̄τs)|X̄s]|ρ
]

≤ C(s− τs)
γρ + C

(

(s − τs) ∧
(

(s− τs)
2

s
+

1

N2

))ρ/2

(3.23)

≤ C

Nγρ
+

C

Nρ/2 ∨ (Nρsρ/2)
.

As a similar bound holds for the drift contribution, we finally get:

ζρ(t) ≤C
∫ t

0
ζρ(s) + ζρ(s)

1/2

(

1

Nγ
+

1

N1/2 ∨ (Ns1/2)

)

+
1

N2γ
+

1

N ∨ (N2s)
ds

≤ C

∫ t

0
ζρ(s) +

1

N2γ
+

1

N ∨ (N2s)
ds

≤ C

∫ t

0
ζρ(s)ds+ C

(

1

N2γ
+

ln(N)

N2

)

,

and we obtain Theorem 2.1 by Gronwall’s lemma.

Remark 3.2 In case γ = 1, choosing β > 1 and replacing the uniform time-grid by the grid
(

ti = ( iN )βT
)

0≤i≤N
refined near the origin, one may take advantage of (3.23) which is still valid

with the last discretization time τt before t now equal to
(

⌊N(t/T )1/β⌋
N

)β
T , since the largest step

in the grid is tN − tN−1 ≤ βT
N . Adapting the above argument based on Gronwall’s lemma, one

obtains the statement in Remark 2.2. Indeed, one has

∫ T

0

(

(s− τs)
2

s
+

1

N2

)

∧ (s− τs)ds ≤
∫ T/Nβ

0
(s− τs)ds +

∫ T

T/Nβ

(s− τs)
2

s
ds+

T

N2

=
T 2

2N2β
+ T 2

N−1
∑

k=1

(

k

N

)2β [1

2
(1 + 1/k)2β − 1

2
+ 2− 2(1 + 1/k)β + β ln(1 + 1/k)

]

+
T

N2
.

Expanding the term between square brackets in powers of 1/k, one easily checks that this term
behaves like O(k−3). Now

N−1
∑

k=1

(

k

N

)2β 1

k3
= N−2β

N−1
∑

k=1

k2β−3 = N−2βO(N2β−2) = O(N−2).

One concludes that

∃C < +∞, ∀N ≥ 1,

∫ T

0

(

(s− τs)
2

s
+

1

N2

)

∧ (s − τs)ds ≤
C

N2
.
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Remark 3.3 If we only use the assumptions of Remark 2.4, we now deduce from (3.21) the
existence of finite constants C, q > 0 depending on ρ,

E
[

|aij(s, X̄s)− E[aij(τs, X̄τs)|X̄s]|ρ
]

≤ CE[(1 + |X̄s|q)]
Nγρ

+ CE[|E[(Wτs −Ws)|X̄s]|ρ(1 + |X̄s|q)]

+ CE

[

(1 + |X̄s|q + |X̄τs |q)
(

1

Nρ
+ |X̄τs − X̄s|ρ|Ws −Wτs |ρ + |X̄τs − X̄s|2ρ

)

]

.

We can conclude that (2.1) still holds with a constant C depending on x0 by using that the
moments of the Euler scheme are uniformly bounded i.e. ∀q′ ≥ 1, E[supt∈[0,T ] |X̄t|q

′
] ≤ Kq′(1 +

|x0|q
′
), an adpatation of Lemma 5.5 and the Cauchy-Schwarz inequality.

4 A rigorous proof of Theorem 2.1

We start by listing the simplifying hypotheses that we made in the Sections 3.1, 3.2 and 3.3.

1. The ρ-subdifferentials ∂ρψt(x) and ∂ρψ̄t(x) are single valued.

2. The optimal transport and the densities pt and p̄t are smooth enough to get the time
derivative of the Wasserstein distance (3.11).

3. The Fokker-Planck equations (3.12) and (3.13) hold in the classical sense.

4. The functions ψt and ψ̄t are smooth enough and the integration by parts leading to (3.16)
are valid.

Let us now comment how we will manage to prove our main result without using these simplifying
hypotheses. The first one was mainly used to get that the optimal transport maps are inverse
functions (see (3.8) above). Still, the optimal transport theory will give us the existence of
optimal transport maps that are inverse functions of each other.

The second point is more crucial and is related to the third. Let us assume that there are Borel
vector fields vt(x) and v̄t(x) such that

∫ T

0

(∫

Rd

|vt(x)|ρpt(x)dx
)1/ρ

dt+

∫ T

0

(∫

Rd

|v̄t(x)|ρp̄t(x)dx
)1/ρ

dt <∞ (4.1)

and the so-called transport equations

∂tpt +∇.(vtpt) = 0 and ∂tp̄t +∇.(v̄tp̄t) = 0 (4.2)

hold in the sense of distributions. This means that for any C∞ function ϕ with compact support
on (0, T )× R

d,
∫ T

0

∫

Rd

(∂tϕ(t, x) + vt(x).∇ϕ(t, x)) pt(x)dxdt = 0,

and the same for p̄t. Then, we know from Theorem 8.3.1, Theorem 8.4.7 and Remark 8.4.8
in Ambrosio, Gigli and Savaré [2] that

d

dt
W ρ
ρ (pt, p̄t) = ρ

∫

Rd

|Tt(x)−x|ρ−2(x−Tt(x)).vt(x)pt(x)+ |T̄t(x)−x|ρ−2(x− T̄t(x)).v̄t(x)p̄t(x)dx.
(4.3)
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To be more precise, Theorem 23.9 of Villani [18] gives this result in the quadratic case (ρ = 2)
while Theorem 8.4.7 in [2] is only stated for d

dtW
ρ
ρ (pt, π), when π is a fixed density such that

∫

Rd |x|ρπ(x)dx <∞. However, by symmetry, its proof can be easily adapted to our case.

Thus, it would be sufficient to show that the Fokker-Planck equations may be reformulated as
the transport equations (4.2). Concerning pt, for the integrability condition (4.1) to be satisfied

by the natural choice vt(x) = b(t, x)− ∇∗
x.(a(t,x)pt(x))

2pt(x)
deduced from (3.12), one typically needs

∫ T

0

(
∫

Rd

|∇x ln pt(x)|ρpt(x)dx
)1/ρ

dt < +∞ (4.4)

For ρ = 2, one may generalize the argument given by Bolley et al. p2438 [3] in the particular
case σ = Id. Using (3.12) and an integration by parts for the last equality, one obtains formally

d

dt

∫

Rd

ln pt(x)pt(x)dx =

∫

Rd

ln pt(x)∂tpt(x)dx +

∫

Rd

∂tpt(x)dx

=

∫

Rd

b(t, x).∇xpt(x)−
1

2

d
∑

i,j=1

(

∂xipt(x)∂xjaij(t, x) + aij(t, x)
∂xipt(x)∂xjpt(x)

pt(x)

)

dx+ 0

to deduce with the uniform ellipticity condition and the positivity of the relative entropy
∫

Rd ln((2π)
d/2pT (x)e

|x|2/2)pT (x)dx that for t0 ∈ (0, T ],

∫ T

t0

∫

Rd

|∇x ln pt(x)|2pt(x)dxdt ≤
2

a

(∫

Rd

ln pt0(x)pt0(x)dx +
1

2
E[|XT |2] +

d

2
ln(2π)

+

∫ T

t0

∫

Rd

d
∑

i=1

∂xipt(x)

(

bi(t, x)−
1

2

d
∑

j=1

∂xjaij(t, x)

)

dxdt

)

.

When a ∈ C0,2
b (Md(R)) and b ∈ C0,1

b (Rd) with spatial derivatives of respective orders 2 and
1 globally Hölder continuous in space, the Gaussian bounds for pt and ∇xpt deduced from
Theorems 4.5 and 4.7 in [9], ensure that the estimation (4.4) should hold for ρ = 2 as soon as
the time integral is restricted to the interval [t0, T ] with t0 > 0. To our knowledge, even with
such a restriction of the time-interval, (4.4) is not available in the literature for ρ > 2.

In fact, we are going to replace the diffusion by another Euler scheme X̃ with time step T/M
and estimate the Wasserstein distance between the marginal laws of the two Euler schemes.
We take advantage of the local Gaussian properties of the Euler scheme on each time-step to
check that (4.4) holds when pt is replaced by p̄t and to get rid of the boundary terms when
performing spatial integration by parts. Finally, we obtain an estimation of the Wasserstein
distance between the marginal laws of the diffusion and the Euler scheme by letting M → ∞.
Note that we need less spatial regularity on the coefficients σ and b than in Theorem 2.2 in [1]
which directly estimates Wρ(pt, p̄t) in dimension d = 1 by using the optimal coupling given by
the inverse transform sampling.

Proposition 4.1 Under the assumptions of Theorem 2.1, for any ρ ≥ 1, there exists a finite
constant C such that

∀N,M ≥ 1, sup
t∈[0,T ]

Wρ(L(X̃t),L(X̄t)) ≤ C





(

1 + 1γ=1

√

ln(N)
)

Nγ
+

(

1 + 1γ=1

√

ln(M)
)

Mγ



 .

(4.5)
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In what follows, we denote the probability density of X̃t for t ∈ (0, T ] by p̃t and also set
Wρ(p̃t, p̄t) =Wρ(L(X̃t),L(X̄t))) even for t = 0 when there is no density. Let us now explain how
we can deduce Theorem 2.1 from Proposition 4.5. Thanks to the triangle inequality, we have

sup
t∈[0,T ]

Wρ(pt, p̄t) ≤ sup
t∈[0,T ]

Wρ(pt, p̃t) + sup
t∈[0,T ]

Wρ(p̃t, p̄t).

From the strong error estimate given by Kanagawa [12] in the Lipschitz case and Proposition 14
of Faure [7] for coefficients Hölder continuous in time (see also Theorem 4.1 in Yan [19]), we
obtain supt∈[0,T ]Wρ(pt, p̃t) ≤ supt∈[0,T ] E

1/ρ[|X̃t −Xt|ρ] →
M→+∞

0, and then deduce Theorem 2.1

from (4.5). Note that since the Wasserstein distance is lower semicontinuous with respect to the
narrow convergence, the convergence in law of X̃t towards Xt would be enough to obtain the
same conclusion.

Concerning the fourth point, we see that the equation (4.3) given by the results of Ambrosio
Gigli and Savaré already gives “for free” the first of the two spatial integrations by parts needed
to deduce (3.16) from (3.11). We will not be able to prove the second integration by parts on
the diffusion terms as in (3.16), but the regularity of the optimal transport maps is sufficient to
get an inequality instead of the equality in (3.16) and to go on with the calculations.

The proof is structured as follows. First, we state the optimal transport results between the
two Euler schemes X̄ and X̃ . Then, we show the Fokker-Planck equation for the Euler scheme
and deduce an explicit expression for d

dtWρ(p̃t, p̄t). Next, we show how we can perform the
integration by parts. Last, we put the pieces together and conclude the proof.

4.1 The optimal transport for the Wasserstein distance Wρ(p̃t, p̄t)

By Theorem 6.2.4 of Ambrosio, Gigli and Savaré [2], for t ∈ (0, T ], there exist measurable
optimal transport maps : T̃t, T̄t : R

d → R
d such that T̃t(X̃t) and T̄t(X̄t) have respective densities

p̄t and p̃t and

W ρ
ρ (p̃t, p̄t) =

∫

Rd

|x− T̃t(x)|ρp̃t(x)dx =

∫

Rd

|x− T̄t(x)|ρp̄t(x)dx. (4.6)

Moreover, the positivity of the densities p̃t and p̄t, combined with Theorem 3.3.11 and Remark
3.3.14 (b) of Rachev and Rüschendorf [15] ensure that

dx a.e., T̃t(x) ∈ ∂ρψ̃t(x) and T̄t(x) ∈ ∂ρψ̄t(x),

where ψ̃t and ψ̄t : R
d → [−∞,+∞] are two ρ-convex (see (3.1)) functions satisfying the duality

equation

ψ̃t(x) = − inf
y∈Rd

(

|x− y|ρ + ψ̄t(y)
)

and ψ̄t(y) = − inf
x∈Rd

(

|x− y|ρ + ψ̃t(x)
)

. (4.7)

We recall that

∂ρψ̃t(x) = {y ∈ R
d : ψ̃t(x) = −(|x− y|ρ + ψ̄t(y))}, (4.8)

∂ρψ̄t(x) = {y ∈ R
d : ψ̄t(x) = −(|x− y|ρ + ψ̃t(y))}. (4.9)

Let us stress that T̄t(x) now denotes the optimal transport from the law of X̄t to the law of X̃t,
while, in Section 3.1, it denoted the optimal transport from the law of X̄t to the one of Xt.
However, there is no possible confusion since we will only work in the remainder of Section 4
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with the coupling between X̄t and X̃t. By the uniqueness in law of the optimal coupling, see e.g
Theorem 6.2.4 of Ambrosio, Gigli and Savaré [2], (X̃t, T̃t(X̃t)), (T̄t(X̄t), X̄t), (T̄t(X̄t), T̃t(T̄t(X̄t)))
and (T̄t(T̃t(X̃t)), T̃t(X̃t)) have the same distribution. The equality of the laws of (X̃t, T̃t(X̃t)) and
(T̄t(T̃t(X̃t)), T̃t(X̃t)) implies that p̄t(y)dy a.e. L(X̃t|T̃t(X̃t) = y) and L(T̄t(T̃t(X̃t))|T̃t(X̃t) = y)
are both equal to the Dirac mass at T̄t(y) so that X̃t = T̄t(T̃t(X̃t)) a.s.. By positivity of the
densities and symmetry we deduce that

dx a.e., x = T̄t(T̃t(x)) = T̃t(T̄t(x)). (4.10)

Since, for ρ ≥ 2, the function c(x, y) = |x−y|ρ satisfies the conditions (Super), (Twist), (locLip),
(locSC) and (H∞) in [18], Theorems 10.26-10.28 of Villani [18] ensure that ψ̃t and ψ̄t are locally
Lipschitz continuous, locally semi-convex, differentiable outside a set of dimension d − 1, and
satisfy

dx a.e., ∇ψ̃t(x) + ρ|T̃t(x)− x|ρ−2(x− T̃t(x)) = ∇ψ̄t(x) + ρ|T̄t(x)− x|ρ−2(x− T̄t(x)) = 0.
(4.11)

Let us be more precise on the semi-convexity property. When ρ = 2, we have ψ̄t(x) + |x|2 =
supy∈Rd{2x.y − (ψ̃t(y) + |y|2)} and ψ̃t(x) + |x|2 = supy∈Rd{2x.y − (ψ̄t(y) + |y|2)}, and these
functions are convex as they are the suprema of convex functions. When ρ > 2, we show
in Lemma 5.4 below that there is a finite constant Cr such that ψ̄t(x) + Cr(|x|2 + |x|ρ) and
ψ̃t(x) + Cr(|x|2 + |x|ρ) are convex on B(r), where B(r) = {x ∈ R

d, |x| ≤ r} denotes the ball
in R

d centered in 0 with radius r > 0.

From Theorem 14.25 of Villani [18] also known as Alexandrov’s second differentiability theorem,
we deduce that there is a Borel subsetA(ψ̄t) of R

d such that Rd\A(ψ̄t) has zero Lebesgue measure
and for any x ∈ A(ψ̄t), ψ̄t is differentiable at x and there is a symmetric matrix ∇2

Aψ̄t(x) ∈
Md(R) called the Hessian of ψ̄t such that

ψ̄t(x+ v) =
v→0

ψ̄t(x) +∇ψ̄t(x).v +
1

2
∇2
Aψ̄t(x)v.v + o(|v|2). (4.12)

Besides, according to Dudley [6] p167, ∇2
Aψ̄t(x)dx coincides with the absolutely continuous part

of the distributional Hessian of ψ̄t, and, by [6], the singular part is positive semidefinite in the
following sense : for any C∞ function φ with compact support on R

d with values in the subset
of Md(R) consisting in symmetric positive semidefinite matrices,

∫

Rd

d
∑

i,j=1

∂xiψ̄t(x)∂xjφij(x)dx ≤ −
∫

Rd

Tr(∇2
Aψ̄t(x)φ(x))dx. (4.13)

From (4.12), we can write the second order optimality condition for the minimization of y 7→
|x− y|ρ + ψ̄t(y) and get that

∀x ∈ R
d, ∀y ∈ ∂ρψ̃t(x) ∩ A(ψ̄t), ∇2

Aψ̄t(y) + ρ|y − x|ρ−2

(

Id + (ρ− 2)
x− y

|x− y|
(x− y)∗

|x− y|

)

≥ 0,

i.e. it is a positive semidefinite matrix. By Lemma 5.1,

dx a.e. , T̃t(x) ∈ ∂ρψ̃t(x) ∩ A(ψ̄t). (4.14)

We deduce that

dx a.e., ∇2
Aψ̄t(T̃t(x)) + ρ|T̃t(x)− x|ρ−2

(

Id + (ρ− 2)
x− T̃t(x)

|x− T̃t(x)|
(x− T̃t(x))

∗

|x− T̃t(x)|

)

≥ 0, (4.15)
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and similarly,

dx a.e., ∇2
Aψ̃t(T̄t(x)) + ρ|T̄t(x)− x|ρ−2

(

Id + (ρ− 2)
x− T̄t(x)

|x− T̄t(x)|
(x− T̄t(x))

∗

|x− T̄t(x)|

)

≥ 0. (4.16)

Remark 4.2 One may wonder whether the optimal transport maps T̃t(x) and T̄t(x) satisfy
additional regularity properties allowing to proceed as in the heuristic proof, for example to obtain
the optimality conditions (3.9) and (3.10). But, as recalled by Villani [18] p183, the optimal
transport is in general not smooth and the conditions (C) and (STwist) stated in Chapter 12
[18] to get smoothness results are not satisfied by our cost function c(x, y) = |x− y|ρ for ρ > 2.
Fortunately, the regularity and the optimality conditions that we have stated above on the optimal
transport will be enough to complete our calculations.

We set

τ̃t = ⌊Mt

T
⌋ T
M
, ã(t, x) = E(a(τ̃t, X̃τ̃t)|X̃t = x) and b̃(t, x) = E(b(τ̃t, X̃τ̃t)|X̃t = x). (4.17)

The rest of Section 4 will consist in proving the following result.

Proposition 4.3 Let us suppose that

∃K ∈ [0,+∞),∀x ∈ R
d, sup

t∈[0,T ]
|σ(t, x)| + |b(t, x)| ≤ K(1 + |x|)

and assume uniform ellipticity : there exists a positive constant a such that a(t, x) − aId is
positive semidefinite for any (t, x) ∈ [0, T ]× R

d. Then, we have

d

dt
W ρ
ρ (p̃t, p̄t) ≤C

(

W ρ
ρ (p̃t, p̄t) +

∫

Rd

|x− T̄t(x)|ρ−1|b̄(t, x)− b(t, x)|p̄t(x)dx

+

∫

Rd

|x− T̃t(x)|ρ−1|b̃(t, x)− b(t, x)|p̃t(x)dx

+

∫

Rd

|x− T̄t(x)|ρ−2 Tr[(ā(t, x)− a(t, x))2]p̄t(x)dx

+

∫

Rd

|x− T̃t(x)|ρ−2 Tr[(a(t, x) − ã(t, x))2]p̃t(x)dx

)

,

where the finite constant C does not depend on t ∈ [0, T ], x0 ∈ R
d and N,M ≥ 1.

With this estimation, we can repeat the arguments of Subsection 3.4, and obtain Proposition 4.1
and thus Theorem 2.1.

4.2 Proof of Proposition 4.3

The proof is based on the second of the two next propositions which estimate the time-derivative
of the Wasserstein distance under gradually stronger assumptions on the coefficients a and b.
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Proposition 4.4 We assume ellipticity : a(t, x) is positive definite for any t ∈ (0, T ], x ∈ R
d.

We also suppose that ∃K ∈ [0,+∞),∀x ∈ R
d, supt∈[0,T ] |σ(t, x)| + |b(t, x)| ≤ K(1 + |x|). Then,

we have

d

dt
W ρ
ρ (p̃t, p̄t) ≤− 1

2

∫

Rd

Tr[∇2
Aψ̃t(x)ã(t, x)]p̃t(x)dx

− 1

2

∫

Rd

Tr[∇2
Aψ̄t(T̃t(x))ā(t, T̃t(x))]p̃t(x)dx (4.18)

+ ρ

∫

Rd

|T̃t(x)− x|ρ−2(T̃t(x)− x).
(

b̄(t, T̃t(x))− b̃(t, x)
)

p̃t(x)dx.

Proposition 4.5 Under the assumptions of Proposition 4.3, we have

d

dt
W ρ
ρ (p̃t, p̄t) ≤

ρ(ρ− 1)2

8a

∫

Rd

|T̃t(x)− x|ρ−2Tr[(ā(t, T̃t(x))− ã(t, x))2]p̃t(x)dx

+ ρ

∫

Rd

|T̃t(x)− x|ρ−2(T̃t(x)− x).
(

b̄(t, T̃t(x))− b̃(t, x)
)

p̃t(x)dx. (4.19)

where the finite constant C does not depend on t ∈ [0, T ] and N,M ≥ 1.

Remark 4.6 Notice that these two propositions still hold with

ã(t, x) = E(σ̂σ̂∗(τ̃t, X̃τ̃t)|X̃t = x) and b̃(t, x) = E(b̂(τ̃t, X̃τ̃t)|X̃t = x)

when X̃t is the Euler scheme with step T/M for the stochastic differential equation

Yt = y0 +

∫ t

0
b̂(s, Ys)ds+

∫ t

0
σ̂(s, Ys)dWs, t ≤ T

with y0 ∈ R
d, b̂ : [0, T ] × R

d → R
d and σ̂ : [0, T ] × R

d → Md(R) satisfying the same conditions
as b and σ.

Proposition 4.3 is deduced from Proposition 4.5 by using the triangle inequalities

|b̄(t, T̃t(x))− b̃(t, x)| ≤ |b̄(t, T̃t(x))− b(t, T̃t(x))| + |b(t, T̃t(x))− b(t, x)| + |b(t, x)− b̃(t, x)|,
1

3
Tr[(ā(t, T̃t(x))− ã(t, x))2] ≤ Tr[(ā(t, T̃t(x))− a(t, T̃t(x)))

2] + Tr[(a(t, T̃t(x))− a(t, x))2]

+ Tr[(a(t, x)− ã(t, x))2],

the bounds on the first derivatives of a and b and T̃t#p̃t = p̄t.

The proofs of Propositions 4.4 and 4.5 are given in the two next sections.

4.2.1 Proof of Proposition 4.4

The proof of Proposition 4.4 is split in the next two paragraphs. We first explicit the time
evolution of the probability density of the Euler scheme, which enables us to apply the results
of Ambrosio, Gigli and Savaré and get a formula for d

dtW
ρ
ρ (p̃t, p̄t) in (4.23). Then, we show that

we have the desired inequality by a spatial integration by parts. Of course, we work under the
assumptions of Proposition 4.4 in these two paragraphs.
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The Fokker-Planck equation for the Euler scheme. We focus on the Euler scheme X̄
and use the notations given in the introduction.

For k ∈ {0, . . . , N}, denoting by µ̄tk the law of X̄tk , one has that for t ∈ (tk, tk+1], the law of

(X̄tk , X̄t) is µ̄tk(dy)G
a,b
tk ,t

(y, x)dx where

Ga,btk ,t(y, x) =
e
− 1

2(t−tk)
(x−y−b(tk ,y)(t−tk)).a

−1(tk ,y)(x−y−b(tk ,y)(t−tk))

(2π(t− tk))d/2
√

det(a(tk, y))
.

Notice that µ̄0(dy) = δx0(dy) while for k ≥ 1, µ̄tk(dy) = p̄tk(y)dy.

Lemma 4.7 The function

v̄t(x) = b̄(t, x) − 1

2p̄t(x)

∫

Rd

a(τt, y)∇xG
a,b
τt,t(y, x)µ̄τt(dy) (4.20)

defined for t ∈ [0, T ]\{t0, t1, . . . , tN} and x ∈ R
d is such that

∫ T
0

(∫

Rd |v̄t(x)|ρp̄t(x)dx
)1/ρ

dt <∞
and ∂tp̄t +∇.(v̄tp̄t) = 0 holds in the sense of distributions on (0, T )× R

d.

Proof . Let ϕ be a C∞ function with compact support on (0, T ) × R
d. From (1.3), we apply

Ito’s formula to ϕ(t, X̄t) between 0 and T and then take the expectation to get

0 =

∫ T

0
E

[

∂tϕ(t, X̄t) +∇xϕ(t, X̄t).b(τt, X̄τt) +
1

2
Tr
(

∇2
xϕ(t, X̄t)a(τt, X̄τt)

)

]

dt

=

∫ T

0
E

[

∂tϕ(t, X̄t) +∇xϕ(t, X̄t).E[b(τt, X̄τt)|X̄t] +
1

2
Tr
(

∇2
xϕ(t, X̄t)a(τt, X̄τt)

)

]

dt,

from the tower property of the conditional expectation. This then leads to:

0 =

∫ T

0

[
∫

Rd

(∂tϕ(t, x) + b̄(t, x).∇xϕ(t, x))p̄t(x) +
1

2

∫

Rd

Tr(a(τt, y)∇2
xϕ(t, x))G

a,b
τt ,t(y, x)µ̄τt(dy)

]

dxdt.

By performing one integration by parts with respect to x, we get that

∂tp̄t(x) +∇.(v̄t(x)p̄t(x)) = 0 (4.21)

holds in the sense of distributions in (0, T )× R
d.

It remains to check that
∫ T
0

(∫

Rd |v̄t(x)|ρp̄t(x)dx
)1/ρ

dt < ∞. From the assumption on b and σ,
the Euler scheme has bounded moments, and therefore

∫ T

0

(
∫

Rd

|b̄(t, x)|ρp̄t(x)dx
)

=

∫ T

0
E[|E(b(t, X̄τt)|X̄t)|ρ]dt

≤
∫ T

0
Kρ2ρ−1(1 + E[|X̄τt |ρ])dt <∞.

We can then focus on the second term in (4.20). We notice that for t ∈ (tk, tk+1), we have

∣

∣

∣

∣

1

p̄t(x)

∫

Rd

a(tk, y)∇xG
a,b
tk ,t

(y, x)µ̄tk (dy)

∣

∣

∣

∣

ρ

=
1

(t− tk)ρ

∣

∣

∣

∣

∣

∫

Rd(x− y − b(tk, y)(t− tk))G
a,b
tk ,t

(y, x)µ̄tk(dy)
∫

Rd G
a,b
t−tk

(y, x)µ̄tk(dy)

∣

∣

∣

∣

∣

ρ

≤
∫

Rd |x− y − b(tk, y)(t− tk)|ρGa,btk ,t(y, x)µ̄tk (dy)
(t− tk)ρp̄t(x)

,
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by Jensen’s inequality and using p̄t(x) =
∫

Rd G
a,b
t−tk

(y, x)µ̄tk (dy).
Since

Ga,btk ,t(y, x) = 2d/2G2a,b
tk ,t

(y, x)e
− 1

4(t−tk)
(x−y−b(tk ,y)(t−tk)).a

−1(tk ,y)(x−y−b(tk ,y)(t−tk))

and maxz≥0 z
ρ/2e−αz =

( ρ
2αe

)ρ/2
for α > 0, we get

|x− y − b(tk, y)(t− tk)|ρGa,btk ,t(y, x) ≤ 2d/2
(

2ρλ̄(a(tk, y))(t− tk)

e

)ρ/2

G2a,b
tk ,t

(y, x),

where λ̄(a) denotes the largest eigenvalue of the matrix a. Therefore,

∣

∣

∣

∣

1

p̄t(x)

∫

Rd

a(tk, y)∇xG
a,b
tk ,t

(y, x)µ̄tk (dy)

∣

∣

∣

∣

ρ

≤ 2d/2

p̄t(x)

∫

Rd

(

2ρK(1 + |y|)2
e(t− tk)

)ρ/2

G2a,b
tk ,t

(y, x)µ̄tk(dy),

since by assumption λ̄(a(t, x)) ≤ K(1 + |x|)2 for some K < +∞, and we deduce that

(∫

Rd

∣

∣

∣

∣

1

p̄t(x)

∫

Rd

a(tk, y)∇xG
a,b
tk ,t

(y, x)µ̄tk (dy)

∣

∣

∣

∣

ρ

p̄t(x)dx

)1/ρ

≤ 2
d
2ρ

(

2ρK

e(t− tk)

)1/2

E[(1+|X̄tk |)ρ]1/ρ.
(4.22)

Using
∫ T
0 (t− τt)

−1/2dt = 2
√
NT and the boundedness of the moments of the Euler scheme, we

get that
∫ T
0

(∫

Rd |v̄t(x)|ρp̄t(x)dx
)1/ρ

dt <∞.

The time derivative of the Wasserstein distance. To compute d
dtW

ρ
ρ (p̃t, p̄t), we also need

to introduce

ṽt(x) = b̃(t, x) − 1

2p̃t(x)

∫

Rd

a(τ̃t, y)∇xG
a,b
τ̃t,t

(y, x)µ̃τ̃t(dy)

where τ̃t is defined in (4.17) and µ̃τ̃t(dy) denotes the law of X̃τ̃t . Note that the conclusion of
Lemma 4.7 is also valid with (p̄t, v̄t) replaced by (p̃t, ṽt). From Theorem 8.3.1, Theorem 8.4.7
and Remark 8.4.8 of Ambrosio, Gigli and Savaré [2], we deduce that

d

dt
W ρ
ρ (p̃t, p̄t) = ρ

∫

Rd

|T̃t(x)−x|ρ−2(x− T̃t(x)).ṽt(x)p̃t(x)+ |T̄t(x)−x|ρ−2(x− T̄t(x)).v̄t(x)p̄t(x)dx.

By (4.11), (4.10), T̄t#p̄t = p̃t and plugging the expressions of v̄t and ṽt, we get

d

dt
W ρ
ρ (p̃t, p̄t) =−

∫

Rd

∇ψ̃t(x).ṽt(x)p̃t(x) +∇ψ̄t(x).v̄t(x)p̄t(x)dx

=
1

2

∫

Rd

∫

Rd

∇ψ̃t(x).a(τ̃t, y)∇xG
a,b
τ̃t,t

(y, x)dxµ̃τt(dy)

+
1

2

∫

Rd

∫

Rd

∇ψ̄t(x).a(τt, y)∇xG
a,b
τt,t(y, x)dxµ̄τt(dy) (4.23)

+ ρ

∫

Rd

|T̃t(x)− x|ρ−2(T̃t(x)− x).
(

b̄(t, T̃t(x))− b̃(t, x)
)

p̃t(x)dx.

The integration by parts inequality. The aim of this paragraph is to prove the following
inequality

∫

Rd

∫

Rd

∇ψ̄t(x).a(τt, y)∇xG
a,b
τt,t(y, x)dxµ̄τt(dy) ≤ −

∫

Rd

Tr[∇2
Aψ̄t(x)ā(t, x)]p̄t(x)dx. (4.24)
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To do so, we introduce cutoff functions to use the inequality (4.13). We recall that B(r) denotes
the closed ball in R

d centered in 0 with radius r > 0. For ℓ ≥ 1, we consider a C∞ function
ϕℓ : R

d → [0, 1] such that:

∀x ∈ B(ℓ), ϕℓ(x) = 1, ∀x 6∈ B(2ℓ), ϕℓ(x) = 0 and ∀x ∈ R
d, |∇ϕℓ(x)| ≤

2

ℓ
.

One has
∫

Rd

∇ψ̄t(x).a(τt, y)∇xG
a,b
τt,t(y, x)dx =

∫

Rd

∇ψ̄t(x).a(τt, y)∇x(ϕℓ(x)G
a,b
τt ,t(y, x))dx

+

∫

Rd

∇ψ̄t(x).a(τt, y)
(

(1− ϕℓ(x))∇xG
a,b
τt,t(y, x)−Ga,bτt,t(y, x)∇ϕℓ(x)

)

dx.

From (4.11) and (4.6), we have
∫

Rd |∇ψ̄t(x)|
ρ

ρ−1 p̄t(x)dx = ρ
ρ

ρ−1W ρ
ρ (p̃t, p̄t). By (4.22) and Hölder’s

inequality, we deduce that

∫

Rd

|∇ψ̄t(x)|
∣

∣

∣

∣

∫

Rd

a(τt, y)∇xG
a,b
τt,t(y, x)µ̄τt(dy)

∣

∣

∣

∣

dx

≤ 2
d
2ρ

(

2ρK

e(t− tk)

)1/2

E[(1 + |X̄tk |)ρ]1/ρ × ρW ρ−1
ρ (p̃t, p̄t).

We also have
∫

Rd×Rd

|∇ψ̄t(x).a(τt, y)∇ϕℓ(x)|Ga,bτt,t(y, x)µ̄τt(dy)dx ≤ 2

ℓ

∫

Rd×Rd

|∇ψ̄t(x)|λ̄(a(τt, y))Ga,bτt,t(y, x)µ̄τt(dy)dx.

≤ K

ℓ
E[(1 + |X̄τt |)2ρ]1/ρ × ρW ρ−1

ρ (p̃t, p̄t).

Using the dominated convergence theorem, we obtain

lim
ℓ→∞

∫

Rd×Rd

∇ψ̄t(x).a(τt, y)
(

(1− ϕℓ(x))∇xG
a,b
τt,t(y, x)−Ga,bτt,t(y, x)∇ϕℓ(x)

)

µ̄τt(dy)dx = 0.

On the other hand we use the inequality (4.13) to get

∫

Rd

∇ψ̄t(x).a(τt, y)∇x(ϕℓ(x)G
a,b
τt,t(y, x))dx ≤ −

∫

Rd

Tr(∇2
Aψ̄t(x)a(τt, y))ϕℓ(x)G

a,b
τt,t(y, x)dx,

for any y ∈ R
d, and thus

∫

Rd×Rd

∇ψ̄t(x).a(τt, y)∇xG
a,b
τt,t(y, x)dxµ̄τt(dy)

≤ − lim sup
ℓ→∞

∫

Rd×Rd

Tr(∇2
Aψ̄t(x)a(τt, y))ϕℓ(x)G

a,b
τt,t(y, x)µ̄τt(dy)dx

= − lim sup
ℓ→∞

∫

Rd

Tr(∇2
Aψ̄t(x)ā(t, x))ϕℓ(x)p̄t(x)dx, (4.25)

where we used the definition of ā for the equality. Using this definition again, we get
∫

Rd

|x− T̄t(x)|ρ−2|ā(t, x)|p̄t(x)dx =

∫

Rd×Rd

|x− T̄t(x)|ρ−2|a(τt, y)|Ga,bτt ,t(y, x)dxµ̄τt(dy)

≤W ρ−2
ρ (p̃t, p̄t)

(∫

Rd

(K(1 + |y|)2)ρ/2µ̄τt(dy)
)2/ρ

<∞.
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With (4.15), we deduce that Tr(∇2
Aψ̄t(x)ā(t, x))p̄t(x) is the sum of a non-negative and an in-

tegrable functions. Using Fatou’s Lemma for the contribution of the non-negative function
and Lebesgue’s theorem for the contribution of the integrable function in (4.25), we finally ob-
tain (4.24).
By symmetry, we have

∫

Rd

∫

Rd

∇ψ̃t(x).a(τ̃t, y)∇xG
a,b
τ̃t,t

(y, x)dxµ̃τt(dy) ≤ −
∫

Rd

Tr[∇2
Aψ̃t(x)ã(t, x)]p̃t(x)dx.

Using T̃t#p̃t = p̄t in the right-hand-side of (4.24) leads to

∫

Rd

∫

Rd

∇ψ̄t(x).a(τt, y)∇xG
a,b
τt,t(y, x)dxµ̄τt(dy) ≤ −

∫

Rd

Tr[∇2
Aψ̄t(T̃t(x))ā(t, T̃t(x))]p̃t(x)dx.

Plugging the two last inequalities in (4.23) gives Proposition 4.4.

4.2.2 Proof of Proposition 4.5

Let h(x) = |x|ρ. We have ∇h(x) = ρ|x|ρ−2x and (∇h)−1(x) = 1{x 6=0}ρ
− 1

ρ−1 |x|
2−ρ
ρ−1x. Notice that

when ρ = 2, (∇h)−1(x) = x
2 is also defined for x = 0.

By (4.11), we have dx a.e. T̄t(x) = x + (∇h)−1(∇ψ̄t(x)), T̃t(x) = x + (∇h)−1(∇ψ̃t(x)). Us-
ing (4.10) and Lemma 5.1 with A = {x ∈ R

d : T̄t(x) = x + (∇h)−1(∇ψ̄t(x))}, we deduce
that

dx a.e., x = x+ (∇h)−1(∇ψ̃t(x)) + (∇h)−1(∇ψ̄t(x+ (∇h)−1(∇ψ̃t(x)))),
and thus

dx a.e., ∇ψ̃t(x) = −∇ψ̄t(x+ (∇h)−1(∇ψ̃t(x))). (4.26)

When ρ = 2, ∇∗(∇h)−1(x) = 1
2Id and when ρ > 2, ∇∗(∇h)−1(x) = ρ

− 1
ρ−1 |x|

2−ρ
ρ−1

(

Id +
2−ρ
ρ−1

xx∗

|x|2

)

for x 6= 0. Because of the singularity of ∇∗(∇h)−1(x) at the origin for ρ > 2, we set E = {x ∈
R
d, T̃t(x) 6= x} if ρ > 2 and E = R

d if ρ = 2.
By (4.14), Lemma 5.4 and Property (i) in Theorem 14.25 of Villani [18], we can thus perform
first order expansions in equation (4.26) to get that dx a.e. on E ,

∇2
Aψ̃t(x) = −∇2

Aψ̄t(x+ (∇h)−1(∇ψ̃t(x)))
[

Id +∇∗(∇h)−1(∇ψ̃t(x))∇2
Aψ̃t(x)

]

. (4.27)

Using (4.11), we get

∇∗(∇h)−1(∇ψ̃t(x)) =
1

ρ
|x− T̃t(x)|2−ρ

(

Id +
2− ρ

ρ− 1
vxv

∗
x

)

, dx a.e. on E

with vx = x−T̃t(x)

|x−T̃t(x)|
. We define the positive definite matrix A(x) = Id + (ρ− 2)vxv

∗
x with inverse

A−1(x) = Id +
2−ρ
ρ−1vxv

∗
x. Plugging the above identities in (4.27), we obtain

∇2
Aψ̃t(x) +∇2

Aψ̄t(T̃t(x)) = −1

ρ
|x− T̃t(x)|2−ρ∇2

Aψ̄t(T̃t(x))A
−1(x)∇2

Aψ̃t(x), dx a.e. on E . (4.28)

We set M(x) = 1
ρ |x − T̃t(x)|2−ρ∇2

Aψ̃t(x) + A(x) for x ∈ E such that the right-hand-side makes
sense. By (4.15), Lemma 5.1 and (4.10), M(x) is a positive semidefinite matrix dx a.e. on E .
Moreover,

∇2
Aψ̃t(x) = ρ|x− T̃t(x)|ρ−2(M(x) −A(x)), dx a.e. on E .
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Using this equality in the right hand side of (4.28), we get∇2
Aψ̃t(x) = −∇2

Aψ̄t(T̃t(x))A
−1(x)M(x),

which gives

−∇2
Aψ̄t(T̃t(x))A

−1(x)M(x) = ρ|x− T̃t(x)|ρ−2(M(x) −A(x)), dx a.e. on E .
Therefore dx a.e. on E , every element of Rd in the kernel of the matrix M(x) belongs to the
kernel of the invertible matrix A(x) so that M(x) is invertible. We finally have

−∇2
Aψ̄t(T̃t(x)) = ρ|x− T̃t(x)|ρ−2(A(x) −A(x)M−1(x)A(x)), dx a.e. on E .

Plugging this equality in (4.18), we obtain that

d

dt
W ρ
ρ (p̃t, p̄t) ≤ ρ

∫

Rd

|T̃t(x)− x|ρ−2(T̃t(x)− x).
(

b̄(t, T̃t(x))− b̃(t, x)
)

p̃t(x)dx

+
1

2

∫

E
ρ|x− T̃t(x)|ρ−2 Tr[(A(x)−M(x))ã(t, x) + (A(x) −A(x)M−1(x)A(x))ā(t, T̃t(x))]p̃t(x)dx

− 1

2

∫

Rd\E
Tr[∇2

Aψ̃t(x)ã(t, x) +∇2
Aψ̄t(T̃t(x))ā(t, T̃t(x))]p̃t(x)dx. (4.29)

When ρ > 2 and x 6∈ E , we have from (4.10), (4.15), (4.16) and Lemma 5.1 that ∇2
Aψ̃t(x) and

∇2
Aψ̄t(T̃t(x)) are positive semidefinite dx a.e. on R

d \ E and therefore

Tr[∇2
Aψ̃t(x)ã(t, x) +∇2

Aψ̄t(T̃t(x))ā(t, T̃t(x))] ≥ 0 dx a.e. on R
d \ E .

Therefore the third term in the right-hand-side of (4.29) is non positive. Using Lemma 5.2 for
the second term, we conclude that (4.19) holds by remarking that the definition of E ensures
that

∫

Rd\E
|T̃t(x)− x|ρ−2 Tr[(ā(t, T̃t(x)) − ã(t, x))2]p̃t(x)dx = 0.

5 Technical Lemmas

5.1 Transport of negligible sets

Lemma 5.1 Let A be a Borel subset of Rd such that Rd \ A has zero Lebesgue measure. Then
for any t ∈ (0, T ], dx a.e. T̃t(x) ∈ A and T̄t(x) ∈ A.

Proof. Since T̃t#p̃t = p̄t and R
d \ A has zero Lebesgue measure,

∫

Rd 1A(T̃t(x))p̃t(x)dx =
∫

Rd 1A(x)p̄t(x)dx = 1. By positivity of p̃t, one concludes that dx a.e. T̃t(x) ∈ A.

5.2 A key Lemma on pseudo-distances between matrices

The next Lemma holds as soon as ρ > 1 and not only under the assumption ρ ≥ 2 made from
Section 3.1 on.

Lemma 5.2 For v ∈ R
d such that |v| = 1, let A denote the positive definite matrix Id + (ρ −

2)vv∗. Let M,a1, a2 ∈ Md(R) be positive definite symmetric matrices. Then for any a > 0 such
that ai − aId is positive semidefinite for i ∈ {1, 2}, one has

Tr
[

A
{

(Id −A−1M)a1 + (Id −M−1A)a2
}]

≤ (1 ∨ (ρ− 1))2

4a(1 ∧ (ρ− 1))
Tr
[

(a1 − a2)
2
]

. (5.1)
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Notice that the left-hand side of the inequality is linear in a1 and a2, whereas thanks to the

positivity of a we obtain the quadratic factor Tr
[

(a1 − a2)
2
]

in the right-hand side.

Proof. We define M̃ = A− 1
2MA− 1

2 , where A− 1
2 is the inverse of the square-root A

1
2 of the sym-

metric positive definite matrix A. Let T = Tr
[

A
{

(Id −A−1M)a1 + (Id −M−1A)a2
}]

denote
the quantity to be estimated. We have, using the cyclicity of the trace for the third equality
below,

T = Tr
[

(A−M)a1 + (A−AM−1A)a2
]

= Tr
[

A
1
2 (Id − M̃)A

1
2a1 +A

1
2 (Id − M̃−1)A

1
2a2

]

= Tr
[

(Id − M̃)
{

A
1
2 a1A

1
2 − M̃−1A

1
2 a2A

1
2

}]

.

Let (λ1, . . . , λd) denote the vector of eigenvalues of the symmetric positive definite matrix M̃ ,
D(λ1, . . . , λd) be the diagonal matrix with diagonal coefficients λ1, . . . , λd and O be the orthog-
onal matrix such that M̃ = O∗D(λ1, . . . , λd)O. We define

(Id ∨ M̃)−1 := O∗D((1 ∨ λ1)−1, . . . , (1 ∨ λd)−1)O,

(Id − M̃)+ := O∗D((1− λ1)
+, . . . , (1− λd)

+)O,

(M̃ − Id)
+ := O∗D((λ1 − 1)+, . . . , (λd − 1)+)O.

Since for all λ ∈ R, 1 − λ = (1 − λ)(1 ∨ λ)−1 − λ−1((λ − 1)+)2 and (1 − λ)λ−1 = (1 − λ)(1 ∨
λ)−1 + λ−1((1− λ)+)2, we have

T =Tr

[

(Id − M̃)(Id ∨ M̃)−1[A
1
2 (a1 − a2)A

1
2 ]

]

− Tr

[

M̃−1((M̃ − Id)
+)2A

1
2 a1A

1
2

]

− Tr

[

M̃−1((Id − M̃)+)2A
1
2 a2A

1
2

]

. (5.2)

On the one hand, by Cauchy-Schwarz and Young’s inequalities, for symmetric matrices S1, S2,

Tr(S1S2) ≤
√

Tr(S2
1)Tr(S

2
2) ≤ a(1 ∧ (ρ− 1))Tr(S2

1) +
1

4a(1 ∧ (ρ− 1))
Tr(S2

2),

which implies that

Tr

[

(Id − M̃)(Id ∨ M̃ )−1[A
1
2 (a1 − a2)A

1
2 ]

]

≤ a(1 ∧ (ρ− 1))

d
∑

i=1

(1− λi)
2

(1 ∨ λi)2
+

1

4a(1 ∧ (ρ− 1))
Tr

[

(

A
1
2 (a1 − a2)A

1
2

)2
]

.

On the other hand, we recall that Tr(S1S2) ≥ cTr(S1) when S1, S2 are symmetric positive
semidefinite matrices such that S2 − cId is positive semidefinite. Since the smallest eigenvalue
of A is 1 ∧ (ρ− 1), A

1
2 a1A

1
2 − a(1 ∧ (ρ− 1))Id is positive semidefinite and we get

Tr

[

M̃−1((M̃ − Id)
+)2A

1
2a1A

1
2

]

≥ a(1 ∧ (ρ− 1))

d
∑

i=1

((λi − 1)+)2

λi
,

and similarly

Tr

[

M̃−1((Id − M̃ )+)2A
1
2a2A

1
2

]

≥ a(1 ∧ (ρ− 1))

d
∑

i=1

((1− λi)
+)2

λi
.
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Since (1−λi)
2

(1∨λi)2
− ((λi−1)+)2

λi
− ((1−λi)

+)2

λi
≤ 0, we finally get that:

T ≤ 1

4a(1 ∧ (ρ− 1))
Tr

[

(

A
1
2 (a1 − a2)A

1
2

)2
]

≤ (1 ∨ (ρ− 1))2

4a(1 ∧ (ρ− 1))
Tr
[

(a1 − a2)
2
]

.

We have used for the last inequality the cyclicity of the trace and Tr(AS) ≤ (1 ∨ (ρ− 1))Tr(S)
for any positive semidefinite matrix S, since the largest eigenvalue of A is 1 ∨ (ρ− 1).

Remark 5.3 1. In dimension d = 1, the only eigenvalue of A is ρ−1, and we get the slightly
better bound

A
{

(1−A−1M)a1 + (1−M−1A)a2
}

≤ (ρ− 1)

4a
(a1 − a2)

2 .

2. Inequality (5.1) still holds with Tr((a1 − a2)
2) replaced by Tr((a1 − a2)(a1 − a2)

∗] in the
right-hand side for all a1, a2 ∈ Md(R) such that a1 + a∗1 − 2aId and a2 + a∗2 − 2aId are
positive semidefinite.

3. Since the second and third terms in the right-hand-side of (5.2) are non-positive, applying
Cauchy-Schwarz inequality to the first term, one obtains that ∀a1, a2 ∈ Md(R),

Tr
[

A
{

(Id −A−1M)a1 + (Id −M−1A)a2
}]

≤
√

(d+ ρ− 2)(1 ∨ (ρ− 1))
√

Tr((a1 − a2)(a1 − a2)∗).

5.3 Semi-convexity of ρ-convex functions for ρ > 2

Lemma 5.4 Let ρ > 2 and t ∈ (0, T ]. Under the framework of Subsection 4.1, for any r ∈
(0,+∞), there is a finite constant Cr such that x 7→ ψ̄t(x) + Cr(|x|2 + |x|ρ) and x 7→ ψ̃t(x) +
Cr(|x|2 + |x|ρ) are convex on the closed ball B(r) centered at the origin with radius r.

Proof. We do the proof for ψ̃t and follow the arguments of Figalli and Gigli [8]. Let r ∈ (0,+∞).
We consider the set

A = {y ∈ R
d,∃x ∈ B(r), ψ̃t(x) ≤ −|x− y|ρ − ψ̄t(y) + 1}.

Let us check that the existence of a finite constant Kr,ρ depending on r and ρ such that
supy∈Aminx∈B(r) |x − y| ≤ Kr,ρ ensures that the conclusion holds. We have A ⊂ B(K ′

r,ρ)
with K ′

r,ρ = Kr,ρ + r. This gives that

∀x ∈ B(r), ψ̃t(x) = sup
y∈A

−(ψ̄t(y) + |x− y|ρ) = sup
y∈B(K ′

r,ρ)
−(ψ̄t(y) + |x− y|ρ).

We also remark that for a constant Cr large enough, x 7→ −|x− y|ρ + Cr(|x|2 + |x|ρ) is convex
for any y ∈ B(K ′

r,ρ). In fact, the Hessian matrix

−ρ|x− y|ρ−2

(

Id + (ρ− 2)
(x − y)(x− y)∗

|x− y|2
)

+ Cr

(

2Id + ρ|x|ρ−2

(

Id + (ρ− 2)
xx∗

|x|2
))

is positive semidefinite for Cr large enough since for any y ∈ B(K ′
r,ρ) and x ∈ R

d, |x− y|ρ−2 ≤
2(ρ−3)+((K ′

r,ρ)
ρ−2 + |x|ρ−2). Thus, for x ∈ B(r), ψ̃t(x) + Cr(|x|2 + |x|ρ) is convex as it is the

supremum of convex functions.
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We now prove that supy∈Aminx∈B(r) |x − y| ≤ Kr,ρ. Let y ∈ A. If y ∈ B(r + 1), we have

minx∈B(r) |x − y| ≤ 1. When |y| > r + 1, we consider x ∈ B(r) such that ψ̃t(x) ≤ −|x − y|ρ −
ψ̄t(y) + 1. We have for x′ ∈ R

d,

ψ̃t(x
′) ≥ −ψ̄t(y)− |x′ − y|ρ = −ψ̄t(y)− |x− y|ρ + |x− y|ρ − |x′ − y|ρ

≥ ψ̃t(x)− 1 + |x− y|ρ − |x′ − y|ρ.
We have |x − y| ≥ 1 and we take x′ = x− λ(x− y) with λ ∈ [0, 1/|x − y|] so that |x′| ≤ r + 1.
We get

ψ̃t(x
′)− ψ̃t(x) + 1 ≥ |x− y|ρ(1− (1− λ)ρ).

There is η ∈ (0, 1) such that ∀λ ∈ [0, η], 1 − (1− λ)ρ ≥ ρ
2λ. We choose λ = η/|x− y| and get

ψ̃t(x
′)− ψ̃t(x) + 1 ≥ ρ

2
η|x− y|ρ−1.

Therefore |x − y| ≤
(

2
ρη [supx′∈B(r+1) ψ̃t(x

′)− infx∈B(r) ψ̃t(x) + 1]
)1/(ρ−1)

with the function ψ̃t

locally bounded since it is locally Lipschitz according to Theorem 10.26 [18].

5.4 Estimations using Malliavin calculus

Lemma 5.5 Under the assumptions of Theorem 2.1, we have for all ρ ≥ 1 :

∃C < +∞, ∀N ≥ 1, ∀t ∈ [0, T ], E
[∣

∣E
[

Wt −Wτt |X̄t

]∣

∣

ρ] ≤ C

(

(t− τt) ∧
(

(t− τt)
2

t
+

1

N2

))ρ/2

.

Proof of Lemma 5.5. By Jensen’s inequality,

E
[

|E(Wt −Wτt |X̄t)|ρ
]

≤ E [|Wt −Wτt |ρ] ≤ C(t− τt)
ρ/2.

Let us now check that the left-hand-side is also smaller than C
(

(t−τt)2

t + 1
N2

)ρ/2
. To do this,

we will study
E
[

〈Wt −Wτt , g(X̄t)〉
]

,

where g : Rd → R
d is any smooth function.

In order to continue, we need to do various estimations on the Euler scheme, its limit and their
Malliavin derivatives, which we denote by Di

uX̄
j
t and Di

uX
j
t . Let ηt = min{ti; t ≤ ti} denote the

discretization time just after t. We have Di
uX̄

j
t = 0 for u > t, i, j = 1, ..., d and for u ≤ t,

Di
uX̄

j
t = 1{t≤ηu}σji(τt, X̄τt)

+ 1{t>ηu}

d
∑

k=1

(

1{k=j} +
(

∂xkσjl(τt, X̄τt)(W
l
t −W l

τt) + ∂xkbj(τt, X̄τt)(t− τt)
))

Di
uX̄

k
τt .

Let us define DX̄ := (DiX̄j)ij . Then by induction, one clearly obtains that for u ≤ t,

DuX̄t = σ(τu, X̄τu)
∗Ēu,t, (5.3)

σ = (σij)ij

Ēu,t =























I if τt < ηu
(

I +∇b(τt, X̄τt)(t− τt) + σ′(τt, X̄τt)(Wt −Wτt)
)

if ηu = τt
∏

Nτt
T

−1

i=Nηu
T

(

I +∇b(ti, X̄ti)(ti+1 − ti) + σ′(ti, X̄ti)(Wti+1 −Wti)
)

if ηu < τt

×
(

I +∇b(τt, X̄τt)(t− τt) + σ′(τt, X̄τt)(Wt −Wτt)
)

.
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Here ∇b := (∂xkbj)kj , σ
′ = (∂xkσj·)kj and

∏n
i=1Ai := A1 · · ·An. Therefore the above product

between σ′ and the increment of W is to be interpreted as the inner product between vectors
once k and j are fixed.

Note that Ē satisfies the following properties: 1. Ēu,t = Ēη(u),t and 2. Ēti,tj Ētj ,t = Ēti,t for
ti ≤ tj ≤ t.

We also introduce the process E as the d× d-matrix solution to the linear stochastic differential
equation

Eu,t = I +

∫ t

u
Eu,s∇b(s,Xs)ds+

∫ t

u
Eu,sσ′(s,Xs)dWs. (5.4)

The next lemma, the proof of which is postponed at the end of the present proof states some
useful properties of the processes E and Ē . From now on, for A ∈ Md(R), |A| =

√

Tr(A∗A)
denotes its Frobenius norm.

Lemma 5.6 Let us assume that b, σ ∈ C2
b . Then, we have:

sup
0≤s≤t≤T

E
[

|E−1
s,t |ρ

]

+ E [|Es,t|ρ] ≤ C, sup
0≤s≤t≤T

E
[

|Ēs,t|ρ
]

≤ C, (5.5)

sup
0≤s,u≤t≤T

E
[

|DuĒs,t|ρ + |DuEs,t|ρ
]

≤ C, (5.6)

sup
0≤t≤T

E
[∣

∣E0,t − Ē0,t
∣

∣

ρ] ≤ C

Nρ( 1
2
∧γ)

, (5.7)

where C is a positive constant depending only on ρ and T .

We next define the localization given by

ψ = ϕ
(

|E−1
0,t

(

E0,t − Ē0,t
)

|2
)

.

Here ϕ : R →[0, 1] is a C∞ symmetric function so that

ϕ(x) =

{

0, if |x| > 1
2 ,

1, if |x| < 1
4 .

Note that for M in the open ball B(Id, 2
−1/2) centered at Id with radius 2−1/2, one has that

|M − Id| < 2−1/2 and therefore the sum
∑∞

j=0(Id −M)k converges absolutely. In other words,

the map M 7→M−1 is well defined and bounded on B(Id, 2
−1/2).

Now, as ϕ(x) = 0 for |x| > 2−1, then if ψ > 0 we have that M := E−1
0,t Ē0,t ∈ B(Id, 2

−1/2).

Therefore Ē−1
0,t exists and

|Ē−1
0,t | ≤ |(E−1

0,t Ē0,t)−1||E−1
0,t | ≤

∞
∑

k=0

1
√
2
k
|E−1

0,t |. (5.8)

One has

E
[

〈Wt −Wτt , g(X̄t)〉
]

= E
[

〈Wt −Wτt , g(X̄t)〉ψ
]

+ E
[

〈Wt −Wτt , g(X̄t)〉(1 − ψ)
]

=

∫ t

τt

E
[

ψTr(DuX̄t∇g(X̄t))
]

du+ E

[
∫ t

τt

〈Duψ, g(X̄t)〉du
]

+ E
[

〈Wt −Wτt , g(X̄t)〉(1 − ψ)
]

.
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The second equality follows from the duality formula (see e.g. Definition 1.3.1 in [13]). Since
for τt ≤ u ≤ t

E
[

ψTr(DuX̄t∇g(X̄t))
]

= E
[

ψTr(σ(τt, X̄τt)
∗∇g(X̄t))

]

= t−1
E

[∫ t

0
ψTr(σ(τt, X̄τt)

∗(DsX̄t)
−1Dsg(X̄t))ds

]

= t−1
E

[

g(X̄t)
∗

∫ t

0
ψσ(τt, X̄τt)

∗Ē−1
s,t σ

−1
(

τs, X̄τs

)∗
δWs

]

.

Here δW denotes the Skorohod vector integral (see [13]). Then one deduces

E
[

Wt −Wτt | X̄t

]

= t−1

∫ t

τt

E

[
∫ t

0
ψσ(τt, X̄τt)

∗Ē−1
s,t σ

−1
(

τs, X̄τs

)∗
δWs

∣

∣

∣

∣

X̄t

]

du

+ E

[

∫ t

τt

Duψdu

∣

∣

∣

∣

∣

X̄t

]

+ E
[

(Wt −Wτt) (1− ψ)| X̄t

]

. (5.9)

In order to obtain the conclusion of the Lemma, we need to bound the Lρ-norm of each term on
the right-hand-side of (5.9). In particular, we will use the following estimate (which also proves
the existence of the Skorohod integral on the left side below) which can be found in Proposition
1.5.4 in [13]:

∥

∥

∥

∥

∫ t

0
ψσ(τt, X̄τt)

∗Ē−1
s,t σ

−1
(

τs, X̄τs

)∗
δWs

∥

∥

∥

∥

ρ

≤ C(ρ)
∥

∥ψσ(τt, X̄τt)
∗Ē−1

·,t σ
−1
(

τ·, X̄τ·

)∗∥
∥

1,ρ
, (5.10)

where ‖F·‖ρ1,ρ = E

[

(

∫ t
0 |Fs|2ds

)ρ/2
+
(

∫ t
0

∫ t
0 |DuFs|2dsdu

)ρ/2
]

. By Jensen’s inequality for ρ ≥ 2,

we have

‖F·‖ρ1,p ≤ tρ/2−1

∫ t

0
E[|Fs|ρ]ds+ tρ−2

∫ t

0

∫ t

0
E[|DuFs|ρ]dsdu, (5.11)

and we will use this inequality to upper bound (5.10). When 1 ≤ ρ ≤ 2, we will use alternatively

the following upper bound ‖F·‖ρ1,ρ ≤
(

∫ t
0 E[|Fs|2]ds

)ρ/2
+
(

∫ t
0

∫ t
0 E[|DuFs|2]dsdu

)ρ/2
that comes

from Jensen’s inequality.

Note that for any two invertible matrices A, B in Md(R), we have that |B∗A(B−1)∗| ≤
|B||A||B−1|. Choosing B = σ(τt, X̄τt) and A = Ē−1

s,t , remarking that |B−1| =
√

Tr(a−1(τt, X̄τt))
and using the boundedness of a and the uniform ellipticity, we deduce that there exists a finite
constant C such that

∫ t

0
E

[

(

ψ|σ(τt, X̄τt)
∗Ē−1
s,t σ

−1
(

τs, X̄τs

)∗ |
)ρ
]

ds ≤ C

∫ t

0
E

[

ψρ|Ē−1
0,t |ρ|Ē0,η(s)|ρ

]

ds (5.12)

≤ C
√

E[|E−1
0,t |2ρ]

∫ t

0

√

E[|Ē0,η(s)|2ρ]ds ≤ Ct,

by using the estimates (5.5). Note that we have used that ψĒ−1
s,t = ψĒ−1

0,t Ē0,η(s) and (5.8).

Next, we focus on getting an upper bound for

∫ t

0

∫ t

0
E

[

∣

∣Du

(

ψσ(τt, X̄τt)
∗Ē−1
s,t σ

−1
(

τs, X̄τs

)∗)∣
∣

ρ
]

dsdu. (5.13)
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To do so, we compute the above derivative using basic derivation rules, which gives for l = 1, ..., d

Dl
u

(

ψσ(τt, X̄τt)
∗Ē−1
s,t σ

−1
(

τs, X̄τs

)∗)
= Dl

uψσ(τt, X̄τt)
∗Ē−1
s,t σ

−1
(

τs, X̄τs

)∗

+ ψDl
uX̄τtσ

′(τt, X̄τt)
∗Ē−1
s,t σ

−1
(

τs, X̄τs

)∗

− ψσ(τt, X̄τt)
∗Ē−1
s,t D

l
uĒs,tĒ−1

s,t σ
−1
(

τs, X̄τs

)∗
1u≤τs

+ ψσ(τu, X̄τu)
∗σ−1

(

τs, X̄τs

)

Ē−1
s,t D

l
uσ

−1
(

τs, X̄τs

)∗
. (5.14)

Here Dl
uσ

−1
(

τs, X̄τs

)∗
=
∑d

k=1D
l
uX̄

k
τs

(

σ−1∂xkσσ
−1
(

τs, X̄τs

))∗
. One has then to get an upper

bound for the Lρ-norm of each term. As many of the arguments are repetitive, we show the
reader only some of the arguments that are involved. Let us start with the first term in (5.14).
We have

Duψ = ϕ′
(

|E−1
0,t

(

E0,t − Ē0,t
)

|2
)

Du

[

|E−1
0,t

(

E0,t − Ē0,t
)

|2
]

and Du

[

|E−1
0,t

(

E0,t − Ē0,t
)

|2
]

= −2Tr
[(

E−1
0,t

(

E0,t − Ē0,t
)

)∗ (

E−1
0,t DuE0,tE−1

0,t Ē0,t − E−1
0,t DuĒ0,t

)]

.

From the estimates in (5.5) and (5.6), we obtain

sup
u∈[0,t]

‖Duψ‖ρ ≤ ‖ϕ′‖∞C(ρ). (5.15)

Note that if ϕ′
(

|E−1
0,t

(

E0,t − Ē0,t
)

|2
)

6= 0 then ψ 6= 0 and, reasoning like in (5.12), we have

E

[

∣

∣Duψσ(τt, X̄τt)
∗Ē−1
s,t σ

−1
(

τs, X̄τs

)∗∣
∣

ρ
]

≤ C ‖Duψ‖ρ2ρ E
[

(∣

∣

∣
E−1
0,t

∣

∣

∣

∣

∣Ē0,η(s)
∣

∣

)2ρ
]1/2

.

Similar bounds hold for the three other terms. Note that the highest requirements on the
derivatives of b and σ will come from the terms involving DuĒ in (5.14). Gathering all the upper
bounds, we get that using (5.11) then

∥

∥ψσ(τt, X̄τt)
∗Ē−1

·,t σ
−1
(

X̄τ·

)∗∥
∥

ρ

1,ρ
≤ C(tρ/2 + tρ) ≤ Ctρ/2

since 0 ≤ t ≤ T . From (5.10), we finally obtain

∥

∥

∥

∥

∫ t

0
ψσ(τu, X̄τu)

∗Ē−1
s,t σ

−1
(

τs, X̄τs

)∗
δWs

∥

∥

∥

∥

ρ

≤ C(ρ)t1/2. (5.16)

We are now in position to conclude. Using Jensen’s inequality, the results (5.9), (5.16), (5.15), (5.7), (5.5),
and the definition of ϕ together with Chebyshev’s inequality, we have for any k > 0 that there
exists a constant C ≡ C(k) such that

E
[∣

∣E
[

Wt −Wτt | X̄t

]∣

∣

ρ]

≤ C

(

t−ρ(t− τt)
ρ

∥

∥

∥

∥

∫ t

0
ψσ(τt, X̄τt)

∗Ē−1
s,t σ

−1
(

τs, X̄τs

)∗
δWs

∥

∥

∥

∥

ρ

ρ

+ (t− τt)
ρ−1

∫ t

τt

‖Duψ‖ρρ du

+
√

E(|Wt −Wτt |2ρ)
(

E(|E0,t − Ē0,t|2k)E(|E−1
0,t |2k)

)1/4
)

≤ C

(

t−ρ/2(t− τt)
ρ + (t− τt)

ρ +

(

1

N

)(2ρ+k(1∧2γ))/4
)

≤ C

(

(t− τt)
ρ

tρ/2
+

1

Nρ
+

1

N
ρ
2
+

k(1∧2γ)
4

)

.

Taking k big enough, the conclusion follows.

Proof of Lemma 5.6. The finiteness of sup0≤s≤t≤T E [|Es,t|ρ]+sup0≤s≤t≤T E
[

|Ēs,t|ρ
]

is obvious
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since ∇b and σ′ are bounded. The upper bound for sup0≤s≤t≤T E
[

|E−1
s,t |ρ

]

is obtained using the
same method of proof as in Theorem 48, Section V.9, p320 in [14], together with Gronwall’s
lemma.

The estimate (5.6) on DuE is given, for example, by Theorem 2.2.1 in [13] for time independent
coefficients. The same method of proof works for our case. In fact, let us remark that E satisfies
(5.4) and that Ē satisfies

Ēηu,t = I +

∫ t

ηu

Ēηu,τsσ′(τs, X̄τs)dWs +

∫ t

ηu

Ēηu,τs∇b(τs, X̄τs)ds.

On the other hand, we have for η(s) ≤ u ≤ t

Dl
uĒηs,t = Ēηs,τuσ′l(τu, X̄τu) +

∫ t

ηu

[

Ēηs,τrDl
uσ

′(τr, X̄τr ) +Dl
uĒηs,τrσ′(τr, X̄τr)

]

dWr

+

∫ t

ηu

[

Ēηs,τrDl
u∇b(τr, X̄τr ) +Dl

uĒηs,τr∇b(τr, X̄τr )
]

dr. (5.17)

In order to obtain (5.6), we use (5.5), b ∈ Cγ,2b (Rd), σ ∈ Cγ,2b (Md(R)) and Gronwall’s lemma.
In fact, for example, one applies the Lρ(Ω)-norm to (5.17), then using Hölder’s inequality one
obtains (5.6) if one uses the chain rule for stochastic derivatives, (5.3) and (5.5). Finally using
Ēu,t = Ēη(u),t, one obtains (5.6) for Ē .

Furthermore, (5.7) can be easily obtained by noticing that (X̄t, Ē0,t) is the Euler scheme for the
SDE (Xt, E0,t) which has coefficients Lipschitz continuous in space and γ-Hölder continuous in
time, and by using the strong convergence order of 1

2 ∧ γ (see e.g. Proposition 14 [7]).
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