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Abstract—We achieve a precise camera calibration using
circular control points by, first, separation of the lens distortion
parameters from other camera parameters and computation
of the distortion field in advance by using a calibration harp.
Second, in order to compensate for perspective bias, which is
prone to occur when using a circled pattern, we incorporate
conic affine transformation into the minimization error when
estimating the homography, and leave all the other calibration
steps as they are used in the literature. Such an error function
allows to compensate for the perspective bias. Combined with
precise keypoint detection, the approach is shown to be more
stable than current state-of-the-art global calibration method.

Keywords-camera calibration; camera intrinsics; perspective
bias; distortion bias; high precision calibration; planar homog-
raphy; conic-based affine transformation;

I. INTRODUCTION

Camera calibration is the process of finding the true
parameters of a camera given an image (or video), and it is a
first step towards computational computer vision. Although
some information concerning the measurement of scenes can
be obtained by uncalibrated cameras [1], calibration is an
essential step when metric information is required.

During the past decades a lot of work had been done
on the subject of camera calibration for different kinds of
applications – starting from photogrammetry [2], [3], and
more recently in computer vision, for example, the flexible
technique by Zhang [4]. Some free software packages are
available as well: the calibration toolbox by Bouguet [5], the
calibration software based on bundle adjustment by Pierrot-
Deseilligny and Clery [6].

Naturally, many works have focused especially on achiev-
ing high calibration accuracy and stability. These studies are
mainly based on high precision control points of either 2D
or 3D nature, and the accurate detection of their projections.
Linear and least-square techniques for calibration are built
upon Tsai [7] and Weng et al. [8], who improve the
calibration accuracy by thoroughly modelling lens distortion
and further optimizing with other parameters together.

For a real camera, an image of the calibration pattern
is subjected to two types of transformations: a projective
transformation as a result of relative 3D position, and a
nonlinear transformation due to various lens distortions. The

robustness of the control point detection under these two
transformations is based on the combination of the pattern
employed and on the detection method used. Therefore, there
are two possible sources of bias in control point recovery
which are named according to Mallon and Whealan [9]:
perspective bias and distortion bias. The main goal would
be to obtain bias free data, as this is clearly necessary for
obtaining unbiased estimates for calibration algorithms.

The most famous planar calibration techniques were pre-
sented by Sturm and Maybank [10] and Zhang [4]. They
only require the camera to observe the pattern shown at a
few (at least three) different orientations to get a unique
solution up to scale factor. Either the pattern or camera are
moved and the motion needs not be known. While trying to
eliminate distortion bias during optimization, the mentioned
works assume that the detected image points have zero
mean Gaussian error in order to correctly converge to the
optimal solution. However, it is not always the case. The bias
does not have the same magnitude for all types of patterns:
for example, Mallon and Whealan [9] show that detected
control points obtained by using centroid recovery principle
can potentially be corrupted by both perspective bias and
distortion bias, with the likelihood of larger distortion bias
magnitude in a typical camera. They also show that the
compensation of distortion bias from such circular pattern
points is not possible without knowing the distortion field.
At the same time, the most precise keypoints can be obtained
by using circular points [11], therefore we will proceed with
them by aiming at eliminating distortion and perspective
bias.

Regarding the distortion bias, most common approaches
mix distortion parameters with other camera parameters and
optimize them simultaneously. This could potentially lead to
residual error compensation [12], where some parameters
can be adjusted to compensate the errors of some other
parameters, thus decreasing the calibration stability. This
error compensation cannot be eliminated in the framework of
global methods, and, therefore, must be achieved separately,
as a preliminary step to any calibration. Additionally, lens
distortion introduces a nonlinear shape warping to the area
of the conic and so it is no longer a true conic. The recently
proposed calibration harp by Tang [12] (see Figure 1) allows



Figure 1. Calibration harp of Tang [12], used to compute the distortion
field.

to solve the distortion bias problem by separate estimation
of the lens distortion field. Its main idea is based on the
straightness measure of stretched strings, pictures of which
are taken in different orientations. Thanks to the calibration
harp, we can eliminate distortion bias from calibration
calculation before the main optimization.

When considering the perspective bias, the calibration
accuracy can be improved by its iterative correction, see e.g.
Heikkilä [13] and Kannala and Brandt [14], which describe
calibration techniques using circular points. Or, it can be
avoided by using the projection of the conic contour, rather
than its center [15]. As an example, variation of Zhang’s
method is represented by Yang et al. [16] where instead of
point features three or more conics are used to obtain the
homography matrix and then deduce calibration parameters.

In our work the main idea for the elimination the perspec-
tive bias is based on the fact that the projection of the center
of a circle does not correspond to the center of the resulting
ellipse in the image. We compensate the perspective bias by
taking into account circle-ellipse affine transformation and
correspondence of detected keypoints with pattern keypoints.
This is done by incorporating the conic affine transformation
into the minimization step of the homography computation.

Section II provides a brief overview of the basic equations
of the main calibration steps which are mainly based on the
method of Zhang [4], including the homography estimation.
The modelling of homography error function is given in
detail in Section III. Section IV explains the workflow of
our method, then Section V demonstrates synthetic and real
experiments; finally, Section VI concludes.

II. CAMERA CALIBRATION BASIC EQUATIONS

We denote a 2D point as m = [u, v]T and a 3D point
as M = [X,Y, Z]T . We use x̃ to indicate the homogeneous
vector by adding 1 as the last element, i.e., m̃ = [u, v, 1]T

and M̃ = [X,Y, Z, 1]T . The camera model is the usual ideal

pinhole and the relationship between a 3D point M and its
image projection m is given by

sm̃ = K
[
R t

]
M̃, (1)

where s is an arbitrary scale factor (depending on point),
(R, t) are the extrinsic parameters (rotation and translation),
which relate the world coordinate system to camera coor-
dinate system, and K is the intrinsic camera matrix given
by

K =

α γ u0
0 β v0
0 0 1

 ,
with (u0, v0) being the coordinates of the principal point, α
and β the focal lengths expressed in pixels with respect to
u and v pixel dimensions, and γ the parameter describing
the skew of the image axes.

A. Homography between model plane and its image

The ith column of the rotation matrix R is denoted by ri.
Assuming the world coordinate system is chosen so that the
model plane is located at Z = 0, we can write (1) as

s

uv
1

 = K
[
r1 r2 t

] XY
1

 .
Since Z is always equal to zero, the 3D point M

will be denoted as M = [X,Y ]T and its corresponding
M̃ = [X,Y, 1] (same holds for m and m̃). The relation
between model point M and image point m is described by
homography H:

sm̃ = HM̃, (2)

or, written in expanded form,

s

uv
1

 = H

XY
1

 , (3)

with homography H , defined up to scale factor λ,

λH = K
[
r1 r2 t

]
. (4)

Using the orthomality of r1 and r2, we get the two
equations

hT1K
−TK−1h1 = hT2K

−TK−1h2 (5)

hT2K
−TK−1h1 = 0, (6)

with h1 and h2 the first two columns of H . H being
estimated independently, this gives two homogeneous lin-
ear equations on the coefficients of the symmetric matrix
K−TK−1. From three views of the planar pattern, we can
get six equations, allowing to determing the six parameters
of K−TK−1. A Cholesly decomposition of the solution
yields K−1 and finally K by inversion.



B. Estimation of the homography between the model plane
and its image

The Direct Linear Transform (DLT) algorithm is a simple
algorithm used to solve for the homography matrix H given
sufficient number of point correspondences, namely 4 (the
steps are explained in chapter 4.1 of [17]).

In many cases more than 4 correspondences are used to
ensure a more robust solution. A single and exact solution is
possible only if all of the correspondences are exact, how-
ever, in practice there will always be some noise, so there
will be no exact solution. The estimate of the parameters is
based on maximum likelyhood criterion. If Mi and mi are
the model and image points respectively, then they should
satisfy (2), but they do not for real data because of the noise
in extracted image points. If we assume mi is corrupted by
Gaussian noise with mean 0 and covariance matrix Λmi

,
then the maximum likelihood estimation of H minimizes
the functional∑

i

(mi − m̂i)
TΛ−1

mi
(mi − m̂i),

and m̂i is

m̂i =
1

h̄3
T
Mi

[
h̄1
T
Mi

h̄2
T
Mi

]
(7)

with h̄i
T is the ith row of H . Later we will see that (7)

cannot be applied for circled pattern due to perspective bias,
and it will be replaced by applying the homography to a
conic, rather than to its center.

In practice it is assumed Λmi
= σ2I for all i. This is

reasonable if points are extracted independently with the
same procedure. In this case the problem becomes a non
linear least square problem:

H = arg min
H

∑
i

‖mi − m̂i‖2 . (8)

The nonlinear minimization is conducted by using the
Levenberg-Marquardt algorithm [18]. It requires an initial-
ization, which is estimated by DLT algorithm as mentioned
previously.

III. INCORPORATION OF CONIC-BASED TRANSFORM
INTO HOMOGRAPHY ESTIMATION AS PERSPECTIVE BIAS

COMPENSATION

When we take a photo of a planar circle in 3D, it becomes
an ellipse in the projection plane. Both circle and ellipse
shapes are instances of conics. In 2D projective geometry all
non-degenerate conics are equivalent under projective trans-
formations. The equation of conics in Cartesian coordinates
is

s1x
2 + s2xy + s3y

2 + s4x+ s5y + s6 = 0,

that is, a polynomial of degree 2. When using homogeneous
coordinates and replacing x → x1

x3
, y → x2

x3
, we obtain the

quadratic form

s1x
2
1 + s2x1x2 + s3x

2
2 + s4x1x3 + s5x2x3 + s6x

2
3 = 0.

Using the notations for homogeneous coordinates M̃ =
[X,Y, 1]T and setting X = x1 and Y = x2, the matrix
form of conics is

M̃TSM̃ = 0, (9)

where the conic coefficient matrix S is given by

S =

 s1 s2/2 s4/2
s2/2 s3 s5/2
s4/2 s5/2 s6

 .
The conic coefficient matrix is always symmetric and matrix
S is its homogeneous representation.

Transformation of conics: Under the point transforma-
tion (2), (9) becomes

m̃TH−TSH−1m̃ = 0

so the transformed conic or image of conic S is the conic

H(S) := H−TSH−1. (10)

A. Center of conic’s image vs. image of conic’s center

Given the equation (9) of a conic in homogeneous co-
ordinates with S a 3 × 3 symmetric matrix, its center of
symmetry is obtained by

C(S) := −S−1
2×2S3,

with S2×2 the top left 2 × 2 block of S and S3 the 2 × 1
top part of its last column:

S =

(
S2×2 S3

ST3 λ

)
.

For a conic S we can compute its image H(S) as in (10)
and now we wish to compare image of conic center HC(S)
and center of image conic CH(S), as shown in Figure 2.
We will see it will not be the same point and the difference
will be quantified.

1) Affine transformation: Consider a specific case when
we deal with a large focal length, and so H is close to an
affine transformation (h31 = h32 = 0 and h33 = 1); we will
have HC(S) coincide with CH(S). Indeed, we may write

H =

(
H2×2 H3

0T2 1

)
and H−1 =

(
H−1

2×2 −H−1
2×2H3

0T2 1

)
.

We then get

H(S) =

(
H−T

2×2S2×2H
−1
2×2 −H−T

2×2S2×2H
−1
2×2H3 +H−T

2×2S3

. . . . . .

)



Figure 2. Difference between image of conic center and center of conic
image.
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Figure 3. View of pattern plane along an angle θ.

and therefore

CH(S)

= −(H−T
2×2S2×2H

−1
2×2)−1(−H−T

2×2S2×2H
−1
2×2H3 +H−T

2×2S3)

= H3 −H2×2S
−1
2×2S3,

which equals HC(S).
At first order, the homography can be approximated by an

affine transform, so the difference we get is second order,
which still needs to be quantified.

2) Change of viewpoint transformation: Suppose the cal-
ibration pattern is planar and the camera points at it from
an angle θ ∈ [0, π/2) as on Fig. 3. Take as origin of the
world coordinate system the intersection O of the principal
ray of the camera with the pattern plane. Suppose also the
camera has square pixels. Take the v-axis of the image in
the plane determined by the principal ray and the normal
vector to the pattern plane. We also take as origin in the
image the principal point. Let us write d the distance of the
optical center to the pattern plane along the principal ray.

In the front view at the same distance, we can write the
projection matrix

P0 =

f f
1

1
1

1 d



and in the oblique view

P =

f f
1

1
cos θ − sin θ
sin θ cos θ d

 .

Since the plane has equation z = 0, the homography
between front view and oblique view is

H = K

1
cos θ 0
sin θ d

1
1

1/d

K−1

∼

1
cos θ
sin θ
f 1

 .

(11)

Given a circle with center M = (X Y )T and radius r in
the front view, its matrix representation is

S =

 1 0 −X
0 1 −Y
−X −Y ‖M‖2 − r2

 .

After computations, we get

CH(S) =
1

(1 + Y sin θ
f )2 − r2 sin2 θ

f2

×

(
X(1 + Y sin θ

f )

Y cos θ(1 + Y sin θ
f )− r2 cos θ sin θ

f

)
,

whereas

HC(S) =
1

1 + Y sin θ
f

(
X

Y cos θ

)
.

Notice that the term 1+Y sin θ
f vanishes for points in front

view that map to the line at infinity of the plane (horizon).
Numerical results: for small r, the distance is propor-

tional to r2. If r = 0 (point), we get coinciding points, as
for θ = 0. Distance in pixels between HC(S) and CH(S)
for different values of θ are displayed on Fig. 4. Note that
even though the distance remains moderates, it increases
significantly with the view angle.

B. Recovering homography by conic transform cost function

Considering (7), we can re-write it in the context of conic
transformation, therefore we get

[û, v̂, ŵ]T = HM̃i = HC(Si)

m̂i =
[
û
ŵ

v̂
ŵ

]T
for the pattern point Mi which is a center of circle Si. The
detected 2D keypoint mi which corresponds to the center of
projected circle is

mi = CH0(Si),
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Figure 4. Difference in pixels between HC(S) and CH(S) for f =
4000, x = 0, r = 20 as a function of y for different angles θ (in degrees).

where H0 is the ground truth homography. Therefore, (8)
becomes

Hpoint = arg min
H

∑
i

‖CH0(Si)−HC(Si)‖2 . (12)

In order to compensate for the perspective bias, we have
to take into account conic transform, that is to minimize with
respect to the center of projected circle, not to projection of
the circle center:

Hconic = arg min
H

∑
i

‖CH0(Si)− CH(Si)‖2 . (13)

As it can be seen, Hconic does not require conic contour
extraction, but only the operator which allows to extract
conic center. In case of synthetic data, the performance can
be evaluated by error function

E = ‖H0C(Si)−HC(Si)‖2 . (14)

The Levenberg-Marquardt algorithm is used to calculate
the homography matrices. For simplicity of code, our im-
plementation calculates each new estimate of the Jacobian
using finite-difference. The error function for conic based
transform method is

ei =

√
‖mi − CH(Si)‖2.

IV. CALIBRATION WORKFLOW

Since the distortion correction is performed separately
from calculation of other camera parameters, the sequence
of main steps is as follows:

I Lens distortion correction
a. Take pictures of the calibration harp under different

orientations
b. Take pictures of the calibration pattern
c. Obtain the lens correction model based on pictures

of calibration harp (use method of Tang [12])
d. Apply lens correction model to pictures of calibra-

tion pattern
II Intrinsics calculation
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Figure 5. Comparison of two methods for homography estimation for
different levels of noise and view angles. Blue color stands for Hpoint,
the red color graph is for Hconic. Note the increasing difference of final
RMSE due to perspective bias for point method when the angle increases.

a. Use as input the distortion-compensated pictures
of calibration pattern

b. Obtain the homographies using conic transforma-
tion function

c. Extract calibration matrix

V. EXPERIMENTS

A. Homography estimation precision

We aim to compare the performance of Hpoint (12) with
Hconic (13) against factors such as noise and view angle.
To generate synthetic data, we use ground truth homography
obtained by (11) with f = 4000. The model plane is
represented by circle pattern and it consists of 10 × 14
circles, each of radius 20 pixels, and that gives us 140
keypoints in total. The pattern is always rotated over axis
y on a given angle view [0, · · · , 45]◦. No physical image is
generated, we only deal with keypoint coordinates which are
obtained based on camera settings, for example, for circle Si
of the pattern, its projected image is H(Si), therefore, the
extracted keypoint has coordinates CH(Si). Gaussian noise
with 0 mean and standard deviation [0, 0.5] pixels is added
to the projected image keypoints CH(Si). For each noise
level, 25 independent trials are performed and the results are
displayed as an average.

Fig. 5 shows a 3D comparison graph, where the error
measure is a root mean square of distance described by (14).
From now on, we denote conic based minimization as ’conic
method’ and standard minimization as ’point method’. As it
can be seen from the graph, the conic method is invariant
with respect to the change of view angle, which indicates
that it does not suffer from perspective bias; on the contrary,
the point method is prone to perpective bias.



Figure 6. One view of the calibration pattern

B. Calibration matrix stability for synthetic data

Pattern and camera views synthesis: The image reso-
lution is set to 1296 × 864 pixels. The number of circles
is 10 × 14, each of radius 1cm, and consecutive circles
have 3cm separation between each other. The pattern, see
Figure 6, has resolution 42cm×30cm. The synthetic camera
has following parameters: α = 1250, β = 1250, γ = 1.1,
u0 = 648, v0 = 432. For the high quality images, we first
generate high resolution pattern image and then subject it
to the geometric displacement (all distortion is eliminated),
Gaussian blurring and then down-sampling to the image
resolution. Geometric image re-sampling is carried out by
mapping from the transformed image to the original pattern.
This involves calculating for every pixel in the transformed
image, the corresponding pixel coordinate in the original
image, which requires an inverse mapping. The transformed
image intensity is then calculated based on the standard
linear interpolation around the corresponding coordinate of
the original pattern.

Pattern positioning: In order to test calibration matrix
stability, we generated 5 sets of images, each set included 5
images (different views of the pattern). This allows to extract
5 calibration matrices so as to see stability of its parameters
along the sets. The generated image views are simulated by
using pseudo-randomly generated homographies which con-
sist of 3D rotation and translation whose values are drawn
randomly from a specific range. This range limit ensures
that the transformed image lies roughly within an image
window. Meanwhile, there is always variance of rotations
and translation along the sets. The rotation angles always
lie within the range [15◦, 45◦]. The keypoint detection is
held the same way as in [19] which allows to achieve the
detection precision of less than 0.05 pixels.

K matrix stability: To compare our method with a
state-of-the-art method, we chose Software Package for
Precise Camera Calibration [20] which is built upon Matlab
Calibration Toolbox [5] with the difference that circle pattern
can be used for the calibration, plus some improvements of
the original software. The generated images are treated as

Table I
STANDARD DEVIATIONS OF CAMERA CALIBRATION PARAMETERS FOR

FIVE IMAGE SETS – COMPARISON OF THE STATE-OF-ART METHOD WITH
OURS. ANY NOISE AND DISTORTION ARE ELIMINATED. THANKS TO
IMPROVED PRECISION OF HOMOGRAPHY CALCULATION, WE NOTICE

LESS DEVIATION FOR OUR METHOD.

Parameter SoA ours

dev(α) 0.10 0.008
dev(β) 0.11 0.008
dev(u0) 0.02 0.006
dev(v0) 0.14 0.014
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Figure 7. Euclidean distance from the ground truth optical center, in
cm, to the obtained center for our (red) and state-of-art (blue) methods:
experiments are displayed against different noise level introduced in the
synthetic images.

distortion free for both software. Table I provides the stan-
dard deviation results for both methods (we denote state-of-
art method as ’SoA’). As we had set both noise and distortion
to zero, we can clearly see the improvement in calibration
stability based on having more precise homography matrices
for our method.

Deviation from camera center: Calculated homography
and camera matrix allow to obtain 3D coordinates of the
camera center. If the ground truth is known, then it is
possible to get an error measure in centimeters (the pattern
unit for our synthetic tests). For this, we need to extract
rotation and translation parameters using homography matrix
(steps are described by Zhang [4]). Given ground truth
rotation R0 and translation T0, we deduce ground truth
camera center C0 by inverting them as

C0 = −R−1
0 T0. (15)

For each method, we extract the R and T parameters from
the homography, and then we use eq (15) to calculate camera
centers for the two methods, so as to compare the magnitude
of the deviation from the ground truth. The average of
Euclidean distances from C0 to the obtained centers for each
camera view is displayed on Fig. 7. As expected, the graphs
show that our method has lower magnitude residual than for
the state-of-art global calibration method.



Table II
STANDARD DEVIATIONS OF THE CAMERA CANON EOS5D

PARAMETERS FOR REAL DATA – COMPARISON BETWEEEN A
STATE-OF-THE-ART METHOD WITH OURS.

Parameter f18mm f27mm f55mm

SoA ours SoA ours SoA ours
dev(α) 0.583 0.245 2.394 1.727 8.810 2.668
dev(β) 0.547 0.175 2.360 1.721 7.644 2.641
dev(u0) 0.494 0.135 1.732 0.840 3.565 1.297
dev(v0) 0.787 0.332 1.273 0.935 2.845 1.314

C. Calibration matrix stability for real data

The experiments for real data were performed for the
Camera Canon EOS40D with lens Canon EF 18-55mm.
Several tests were performed for different focal lengths.
For comparison we use same state-of-the-art software as in
synthetic tests. In order to treat the distortion for our method,
it was necessary to use two different patterns – calibration
harp and circled pattern under the same camera settings.
Distortion-compensated images for our method were ob-
tained based on the method of [12]. The input images for
state-of-the-art method remained the same as input images
for our method for the extraction of calibration matrix, but
not distortion-compensated. For each focal lengths we took
6 datasets, each contained 5 images of circled pattern under
different camera orientation. K matrix was extracted for
each set and then standard deviation of each parameter was
taken so as to measure the result stability. The comparison of
both methods is shown in Table II. As it can be observed,
our method was able to achieve more stable results since
deviation is smaller than for the state-of-the-art method.
More precise results are achieved by elimination of perspec-
tive bias when calculating the homography and distortion
bias before the main optimization. They also validate an
assumption that separation of distortion from other camera
parameters helps avoiding residual error compensation by
leading to more precise camera calibration.

VI. CONCLUSIONS AND FUTURE WORK

Two main contributions were made in order to improve
the precision of camera calibration. First, we evaluate suc-
cessively the lens distortion and the other camera parameters
by using the recently developed calibration harp, instead
of incorporating them all in a global evaluation. As an
advantage, it helps to avoid the residual error compensation
inherent for global calibration methods. The drawback is
that it requires building and using an additional calibration
instrument - namely, the calibration harp. However, after the
distortion is calculated for the fixed camera settings, we can
treat the processed images as distortion-compensated, and
this allows to calculate other camera parameters separately
from distortion.

The second addressed aspect was a correction of the
perspective bias for the circled pattern, which was achieved

by the incorporation of the conic affine transformation into
homography estimation. The function serves as a compen-
sator and at the same time it allows avoiding the use of
conic contour detection; the main feature still remains a
conic centroid. Of course, this would not be possible with-
out advance distortion compensation, since distortion bias
has much higher magnitude than the perspective bias, and
elimination is only possible if the distortion field is known
in advance, which becomes feasible using the calibration
harp. The numerical results for both undistorted synthetic
and distorted real data demonstrated that our method allows
to get more stable results for camera calibration parameters,
meaning lesser magnitude of parameters variance.

The possible directions for future work include using more
broad dataset, which could be obtained with different DSLR
cameras. Also, the camera calibration is only the first step in
precise 3D reconstruction chain, therefore, the comparison
of precision of retrieved 3D data could be done with state-of-
art methods and against the groundtruth, which would help
to evaluate the final precision gain when using our method
in context of 3D reconstruction.
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