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Abstract We present a comparative study of the ability of some micromechanics estimates to predict
the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which
this task is difficult and many estimates fail. We study particularly the Interaction Direct Derivative
estimate, proposed by Zheng and Du, which is an approximation of the generalized self-consistent
scheme but has the very convenient property to be always explicit. A modified version of this estimate,
called Full Range IDD by Zheng and Du, yields good results when comparing all poromechanical
coefficients predicted by the estimate to finite element simulations of a 2d cracked material in plane
strain, up to crack density factors of 1 for aligned cracks and 0.60 for randomly oriented cracks.
The accuracy of finite element computations of the overall moduli is also commented by plotting the
convergence of the average of the properties as well as the confidence intervals on these averages.

Keywords Micromechanics · Cracked elastic solid · Interaction Direct Derivative · finite element
simulation

1 Introduction

The field of micromechanics is dedicated to the prediction of the overall properties of composites,
starting from information about the volume fraction, morphology, and mechanical properties of the
various phases. Numerous estimates for the mechanical properties have been proposed, and some of
them have become very classical, such as the dilute scheme (directly derived from Eshelby’s solution
[1]), the self-consistent scheme [2], the differential scheme [3], and the Mori-Tanaka scheme [4]. These
estimate give more or less good results depending on the volume fractions of the phases and the
morphology types considered. For example, Mory-Tanaka’s estimate is considered to be particularly
adapted for matrix/inclusion morphologies.

Part from these very classical estimates, more refined estimates exist. The general self-consistent
estimate seems the most complete [5]. It is, as the mentioned estimates, based on a simple auxiliary
problem on which the localization tensors on the inclusionary phases of the real problem are estimated.
It has the advantage of taking the distribution of the inclusions into account, in addition to their shape.
This is done through an ellipsoid containing the matrix material, embedding the inclusion, and itself
embedded into the homogenized material which is sought for. However, it has a closed-form solution in
only few cases: isotropically distributed spherical inclusions (this solution was given by Christensen and
Lo [6]) and some cases of cracked medium [7]. For other cases, it is necessary to use approximations
(such as the one proposed by Hori and Nemat-Nasser in the same article [5]), or to simplify the
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problem (as is done in the two-phase model, where the matrix material also occupies the infinite
medium embedding the matrix ellipsoid [8]). It is also possible to evaluate the general self-consistent
solution numerically, as is well known and will be illustrated in this article.

More recently, two improvements have been achieved. First, Ponte-Castañeda and Willis showed
precisely the role of the distribution of the inclusions in the framework of Hashin-Strickman principle
[9,10]. This work, which can be used to provide bounds or an estimate for the elasticity tensor, clar-
ifies the underlying microstructures more or less explicitly considered when establishing the classical
estimates. A major point is that the distribution functions of pairs of inclusion families need to be
symmetric. In most estimates which consider the distribution of the inclusions, only one distribution
is chosen for each inclusion, neglecting this point. However, when the various inclusion families have
different distributions, the estimate is not explicit and difficult to use. Second, Zheng and Du proposed
an estimate based on the generalized self-consistent model called the Interaction Direct Derivative esti-
mate, which has the advantage of being fully explicit in all cases, even with multiple inclusion families,
each having a different space distribution [11].

Concerning the accuracy of these estimates, the classical estimates give good results with simple
morphologies such as discs in 2d or spheres in 3d [12,13,14]. However, when moving to cracked mi-
crostructures, it is much more difficult to predict the overall properties of a Representative Elementary
Volume of the material. There has been a number of studies in this direction in 2d (see [15,7]), but
it seems some improvements remain possible. We won’t tackle the problem of 3d cracked structures
which requires large computational tools for a rigorous treatment, but we will attempt to assess the
efficiency of Interaction Direct Derivative estimate of Zheng and Du for cracked structures in 2d. We
will study its efficiency by comparison to finite element computations, using monodisperse cracks, to
the highest crack density factor we were able to reach using a Random Sequential Addition algorithm
[16], which was roughly 1 in the case of aligned cracks and 0.6 in the case of randomly oriented cracks.
Of course this limit could be improved by using multiple crack sizes, but we won’t discuss this point
in this article.

We believe that our article brings interesting information in addition to Shen and Li [7] where the
case of parallel and aligned cracks in 2d is also dealt with. First, since we deal with cracks, we think
that it is important to foresee the application to poromechanics of the homogenization procedure, by
computing and displaying the overall poromechanical coefficients such as the Biot coefficient and Biot
modulus [17], which we do systematically when comparing the simulations to the estimates. Second, we
use the IDD estimate which is very versatile, unlike the solutions developed in some particular cases
of aligned or randomly oriented cracks (see Shen and Li [7]), and unlike the differential scheme and
the self-consistent scheme in complicated situations. Third, we take some time to comment the error
made in the finite element simulations, so that the reader knows exactly to what extent our results
can be trusted.

The authors used the IDD estimate for the prediction of degradation of concrete submitted to
Alkali-Silica Reaction. This estimate was used to improved a linear elastic fracture mechanical model
proposed in [18]. Therefore, more details about the comparison of the IDD estimate and finite element
simulations can be found in the author’s Ph.D. thesis, as well as applications to Alkali-SIlica Reaction
[19].

The article is organized as follows. First, we give a brief explanation of the variational formulations
as well as the boundary conditions we use in the finite element code. Second, we describe the procedure
of determination of the overall properties. We then present the various microstructures that we study
in this article, and explain how we describe the error made in the finite element simulations. We then
move to the micromechanics by recalling the expressions and main features of the estimates we use,
and finally compare them to the results obtained in the simulations, showing that the IDD estimate
is well suited to compute the overall properties of cracked materials.

2 Plane strain variational formulation

All computations were done in FreeFem++ [20]. In this software the user implements its own variational
formulation, which will be shortly presented here. We decided two work in 2d, thinking that in the view
of assessing the efficiency of micromechanics estimates, we could obtain first results. Of course to be
able to test all possibilities in terms of orientation of inclusions, for example, 3d simulations would be
preferable. We will also present shortly the boundary conditions that were used for the computations.
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Our variational formulation is written starting from the virtual work principles, as done classically,
in a static case [21]. We call Ω the continuum solid of local tensor of elasticity C(x), and boundary ∂Ω.
The external boundary is split between the external boundary ∂Ωext and an internal boundary ∂Ωint

which separates the solid from pores embedded in the solid. The internal boundary is submitted to
pressure loadings, while the external boundary can be submitted to imposed tractions TD and imposed
displacements uD.

Since we are in plane strain, the displacement is assumed to be zero in direction 3 and hence, the
related components of the strain are also zero:

ε13 = ε23 = ε33 = 0 (1)

Let us quickly describe the boundary conditions we use.

2.1 Imposed average strain

The boundary conditions we call imposed strain are such that the imposed displacement on the external
boundary is uD(x) = E.x , ∀x ∈ ∂Ωext, where E is a second order, symmetric, plane strain tensor.
Calling C(uD) the space of displacements admissible with uD, and assuming a pressure p exerts on the
internal boundary, the variational formulation is (calling ε the strain tensor):

Find u ∈ C(uD) such that ∀w ∈ C(0),
∫

Ω

ε[u] : C : ε[w]dV +

∫

∂Ωint

pn.wdS = 0 (2)

2.2 Imposed average stress

The boundary conditions we call imposed stress are such that the tractions on the external boundary
are equal to TD(x) = Σ.n , ∀x ∈ ∂Ωext where Σ is a second order symmetric tensor. Let us remark
that the average stress is only partly imposed because we are still in the plane strain framework.
Therefore, only the components (Σ11, Σ12, Σ22) are imposed. Calling C the space of admissible plane
strain displacements, still considering the pressure p is applied in the pores, the variational formulation
is:

Find u ∈ C such that ∀w ∈ C,
∫

Ω

ε[u] : C : ε[w]dV +

∫

∂Ωint

pn.wdS −
∫

∂ΩT
ext

(Σ.n).wdS = 0 (3)

2.3 Periodic boundary conditions

The boundary conditions we call periodic are such that the displacement on the external boundary is
equal to u = E.x+ u′ , ∀x ∈ ∂Ωext where the field u′ is periodic and E again is a plane strain second
order symmetric tensor. Let us decompose the strain as ε[u] = E + ε[u′] and call Cper the space of
periodic place strain displacement fields. The variational formulation is:

Find u′ ∈ Cper such that ∀w ∈ Cper,
∫

Ω

ε[u′] : C : ε[w]dV +

∫

Ω

E : C : ε[w]dV +

∫

∂Ωint

pn.wdS = 0 (4)

These various types of boundary conditions in place strain allow us testing our microstructure to
determine their average properties. Let us see how we determine these properties from the numerical
results.
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3 Determination of the average properties

First, we need to be able to compute strain and stress averages. For a quantity f and a domain V , the
volume average of g over V is < g >V =

∫

V

gdV . Let us remind these quantities can be computed as

surface integral which is sometimes convenient. For example for the average strain:

< ε >Ω=
1

Ω

∫

∂Ωext

u⊗s ndS (5)

Where ⊗s is the symmetrized tensorial product. Let us also recall how the pressure appears in the
average stress, assuming the volume fraction of pores is f = Ωp/Ω:

< σ >Ω= −fp1+
1

Ω

∫

Ω\Ωp

σdV (6)

3.1 Overall constitutive law

Knowing the local elastic behaviour of the solid, and for various imposed macroscopic strains and
pressures in the pores, we want to be able to write the macroscopic constitutive law of our porous
medium. Following the presentation of Dormieux et al. [22], assuming in this work that there is only
one pore family (which does not mean that they are all identical, but that we study their volume changes
and the effect of an applied pressure in them as a whole), we can write the macroscopic constitutive
law linking the macroscopic stress Σ and the porosity variation of the porous phase (φ − f) to the
average strain E and the pressure in the pores p:

{

Σ = C
hom : E − pB

φ− f = B : E + pM
(7)

Where Chom is the homogenised stiffness tensor, B is the Biot coefficient, while we call M the Biot
compliance, inverse of the usual Biot modulus N as presented in Dormieux et al. [22]. These homog-
enized properties can all be computed using the solution under imposed strain alone, without solving
the problem with a pressure in the pores (this is specific to the case of equation 7 where all cavities are
considered together). The strain localisation tensor is a fourth order tensor with the minor symmetry
A (such that when a macroscopic strain E is imposed, the local strain writes, by virtue of the linearity
of the problem, A (x) : E). Assuming that the solid matrix is homogeneous of tensor elasticity C0

and compliance S0, the microporomechanics theory then allows writing the homogenized poroelastic
properties as:







Chom = (1− f)C0 :< A >Ω\Ωp

B = f1 :< A >Ωp

M = 1 : S0 :
(

B − f1) (8)

3.2 Precise determination of the overall properties from strain and stress averages

In this section we provide the expressions we used for the determination of the properties, in the
general case where the overall medium is orthotropic. Some of these expressions simplify if the medium
is transversely isotropic but we won’t detail this case. Let us mention that we use the Voigt notation,
with the convention that all symmetric second order tensors (particularity the stress, strain, and Biot
coefficient) are written:

Av =
(

A11 A22 A33

√
2A32

√
2A31

√
2A21

)t
(9)
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The fourth order are written accordingly:

D
v =

















D1111 D1122 D1133

√
2D1123

√
2D1113

√
2D1112

D2211 D2222 D2233

√
2D2223

√
2D2213

√
2D2212

D3311 D3322 D3333

√
2D3323

√
2D3313

√
2D3312√

2D2311

√
2D2322

√
2D2333 2D2323 2D2313 2D2312√

2D1311

√
2D1322

√
2D1333 2D1323 2D1313 2D1312√

2D1211

√
2D1222

√
2D1233 2D1223 2D1213 2D1212

















(10)

Second, let us remind that we work in plane strain to reproduce a 3d material which would be invariant
and infinitely extended in direction 3. The matrix is of Young’s modulus and Poisson’s ratio (E, ν).
This analogy to the infinite medium case is useful when coefficients relative to direction 3 are needed.
It can be shown that regardless of the shape of the voids, at volume fraction f , the Young’s modulus
and Poisson’s ratio in direction 3 write ([23], p.85):

E3 = (1− f)E (11)

ν32 = ν31 = ν (12)

While the Biot coefficient in direction 3 writes:

B33 = f [1 + ν(Av
11 +Av

12 +Av
21 +Av

22)] (13)

Let us then show, as an example, how we determine the poromechanical coefficients in the case
where the macroscopic strain is prescribed (imposed strain or periodic boundary conditions). Three
simulations are performed (we don’t use equation 8, but determine the coefficients directly from equa-
tion 7). During the first one, the following macroscopic strain is imposed:

(EI)v =
(

1 0 0 0 0 0
)t

(14)

And average stresses ΣI
11, Σ

I
22 et ΣI

12 are measured. Second, the macroscopic strain

(EII)v =
(

0 1 0 0 0 1
)t

(15)

is imposed, while average stresses ΣII
11 , ΣII

22 et ΣII
12 are measured. We can then write the following

expressions for the elastic properties:

E1 =

(

ΣI
11

ΣI
22

)2

−
(

ΣII
11

ΣII
22

)2

1
(ΣI

22
)2

[

ΣI
11 +

ν2

E3

(

(

ΣI
11

)2 −
(

ΣI
22

)2
)]

+ 1
(ΣII

22
)2

[

ΣII
22 + ν2

E3

(

(

ΣII
22

)2 −
(

ΣII
11

)2
)] (16)

E2 =

(

ΣII
22

ΣII
11

)2

−
(

ΣI
22

ΣI
11

)2

1
(ΣI

11
)2

[

ΣI
11 +

ν2

E3

(

(

ΣI
11

)2 −
(

ΣI
22

)2
)]

+ 1
(ΣII

11
)2

[

ΣII
22 + ν2

E3

(

(

ΣII
22

)2 −
(

ΣII
11

)2
)] (17)

ν12 =
E1

ΣII
22

[

ΣII
11

E1
− ν2

E3

(

ΣII
11 +ΣII

22

)

]

; µ12 =
ΣII

12

2
(18)

Concerning the Biot compliance and coefficient, they are determined imposing zero average strain
and a unit pressure in the pores. Using this solution, we then have by definition (see equation 7):

B11 = − < σ11 >Ω

B22 = − < σ22 >Ω

(19)

M = φ− f = f < tr ε >Ωp (20)

The case of imposed stresses is dealt with similarly, but the expressions are not detailed here.



6 Laurent Charpin, Alain Ehrlacher

4 Studied microstructures

Let us now describe the type of microsctructures whose overall properties we will study. Let us first
talk about the generation of the random microstructures, and then describe the periodic cells we used.

4.1 Random microstuctures built by Random Sequential Addition

This process allows creating matrix/inclusion morphologies easily [16,15,24,13]. We show an example
and monodisperse spheres on Fig. 1. Let us briefly sum up the procedure. First, a domain size, inclusion

Fig. 1 One realisation of a microstructure with isotropically distributed circular pores

size and volume fraction f are chosen. Then the coordinates of the center of the particle are randomly
generated (and, for example, its orientation if necessary). If the particle has no intersection with the
external boundary of the domain nor any previously added particle, it is kept. This operation is then
repeated until the desired volume fraction is reached, which is more accurate if there is a large number
of inclusions.

The first difficulty of the method is that for particle shapes other than aligned ellipsoids, testing
the intersection of two particles can be difficult and can require the discretisation of the boundary
of the particle. Second, even if for discs in 2d the maximal density is roughly 0.9, this method, for
monodisperse inclusion sizes, creates empty spaces between particles that are too small to be filled
by a new particle. The density is therefore limited, for spheres, to roughly 0.5. Finally, for meshing
reasons, the particles cannot touch each other. The small exclusion distance reduced even more the
density we can reach.

4.2 Periodic microstructures

Periodic simulations are convenient and easy to implement. They are based on the choice of a periodic
pattern. In our case, for spheres, we followed the choice of Zheng and Du [11], placing the centers of
the spheres on a hexagonal pattern. This allows attaining, in 2d, optimal densities for monodisperse
spheres. In the case of aligned ellipsoids, there are two interesting possible choices. The first possibility
is to keep the ellipsoids centered on the same patterns as the spheres, representing an isotropic space
distribution of the ellipsoids, but then the volume fraction is geometrically very limited. Another idea
is to flatten the hexagonal pattern on which the ellipsoids are placed by the same factor as the aspect
ratio of the ellipsoids. An example of obtained pattern in this case is shown on Fig. 2. In this case we
can reach the same high density as in the case of spheres.
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Fig. 2 Periodic cell, inclusion and ditribution of aspect ratio 0.1

4.3 Remarks concerning the accuracy of the results

Concerning the size of the elements of the meshes used for the computation, an automatic mesh
refinement procedure based on the geometrical error in the representation of the microstructure was
used, as well as a limitation of the elongation of the elements. The results are converged with respect
to the mesh size.

Another issue is the fact that since our inclusions don’t intersect the external boundary of the
domain, the inclusion density is lower close to the boundary. However, since the convergence of the
poromechanical properties is verified with respect to the ratio between the inclusion size and domain
size, the final values which are used for the comparisons with the estimates are not affected by this
phenomenon.

5 Determination of the REV size in a simple case, with Kanit’s approach

To obtain representative values of the homogenized properties thanks to the numerical simulations,
we must use domains which are large enough compared to the inclusion sizes. The convergence of
these properties with respect to the domain size can be checked for the different types of boundary
conditions.

Let us first recall that the obtained tensors of elasticity using our simple boundary conditions
always verify the following relation for any second order symmetric tensor E:

E : Chom
Σ : E ≤ E : Chom

general : E ≤ E : Chom
E : E (21)

Where Chom
Σ is determined using the imposed stress boundary conditions, Chom

E is determined using the
imposed strain boundary conditions, while Chom

general refers to any boundary conditions. This property
of the different stiffness tensor that can be determined on the same microstructure is well known [23,
25].

As a consequence, the difference between the moduli obtained with imposed stresses or strains also
give an insight about the error which is made.

5.1 Description of the error on the estimation of the mechanical properties

Considering a domain of calculus of size L and a characteristic size of the inclusions R, we study the
convergence of the mechanical properties, for the three types of boundary conditions, when R

L
→ 0.

There has been many studies of this kind, see for example Gusev [26]. Two sources of error appear: first,
a bias due to the the lack of representativity of small domains, which cannot be suppressed even with
an infinite number of realizations, and which is more or less pronounced depending on the boundary
conditions used. Second, the insufficient number of realizations, which lead to imperfect estimation of
the average. Following [27] and [28], we compute the average and the variance of the properties we are
interested (say Ai) for N realizations, by using the classical formula for the average µN (A) = 1

N

∑N

i=1 Ai

and for the variance σN (A) = 1
N−1

∑N

i=1 (Ai − µN (A))
2. Hence we can plot, for each poroelastic

quantity, the empirical average and the confidence interval at 95 % (µN (A) ± 1,96
√

σN (A)/N ) as a
function of the ratio R

L
.
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5.2 Example: circular inclusions

We study the three types of boundary conditions, for a fixed volume fraction of circular cavities f ,
hence inducing transversely isotropic overall poromechanical properties. We plot the in-plane shear
modulus µ12, a plane strain two-dimension bulk modulus we define as:

k2ddp =
1

2

Σ11 +Σ22

E11 + E22
(22)

from the macroscopic strains and stresses, as well as the Biot compliance M and Biot coefficient B.
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Fig. 3 Evolution of the poromechanical properties with the ratio of the size of cavities to calculus domain
R/L, for a volume fraction f=0,4, Young modulus E = 1 Pa and Poisson’s ratio ν = 0,25, for a number of
N = 50 realizations for each case, as well as the 95% confidence interval

Looking at Fig. 3, we observe that the error bars, representing the uncertainty to which we know
the empirical average, get smaller with increasing R/L, at fixed number of realizations N . The imposed
strain and imposed stress solutions are biased, which means that even at large number of realizations,
we don’t get the converged value of the poromechanical properties. Finally, the periodic boundary con-
ditions show almost no bias, which is encouraging because it means it is possible to use much smaller
ratios of the domain size to heterogeneity size to obtain good estimates of the poromechanical prop-
erties than with the other boundary conditions. Therefore, from now on, only the periodic boundary
conditions will be used.

Let us recall the expressions of the micromechanics estimates we will compare to these finite element
results.
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6 Micromechanics estimates

For each estimate, we give the expression of the strain localization tensor on the inclusionary phase,
as well as the homogenized stiffness tensor, except for the general self-consistent estimate that is not
analytical. The classical micromechanics results from Dormieux et al. [22] reminded in equation 8 allow
writing the Biot modulus and coefficient easily once the localization tensor is known.

Dilute scheme (dil) The dilute scheme is not shown in the comparisons but is used to build other
estimates. Considering N families of ellipsoidal heterogeneities, embedded in a matrix of stiffness
tensor C0, each caracterized by their stiffness tensor Ci, Hill tensor P0

i and volume fraction f i, the
dilute localization tensor of family i writes:

A
dil
i =

[

I+ P
0
i :

(

C
i − C

0
)]−1

(23)

It is the direct application of Eshelby’s result [1] and it is used in the construction of all analyti-
cal micromechanics estimates. The stiffness tensor is then simply obtained by the following general
expression for the stiffness tensor:

C
dil = C

0 +

N
∑

i=1

f i(Ci − C
0) : Adil

i (24)

Two-phase estimate (2ph) The two phase estimate, when there is only one heterogeneity family, is
built by embedding the heterogeneity ω of stiffness tensor Ci in an infinite elastic medium of same
stiffness tensor as the matrix of the composite C0 [8]. Then an ellipsoid D embedding the inclusion
ω is defined to represent the spatial distribution of the inclusion rather than its shape, and so that
the volume fraction of the inclusions in the real composite f is equal to ω/D. Both ellipsoids are
characterized by their Hill tensor. This defines a new localization tensor, linking the average strain on
ω to the average strain on D when a strain is applied at infinity:

A
2ph
ω = A

dil
ω :

[

I− fP0
D :

(

C
i − C

0
)

: Adil
ω

]−1
(25)

Mori-Tanaka estimate (MT) We then build the famous Mori-Tanaka estimate from the two-phase
estimate, by assuming that the atmosphere D is similar to the inclusion ω, which means we use
the same Hill tensor, and use equation 25 [29,4,30]. The moduli of cracked materials were originally
computed by Zhao et al. [31].

Self-consistent estimate (SC) The self-consistent estimate assumes that the inclusion is embedded
in the homogenized material rather than the matrix material [2,32]. Therefore, the self-consistent
localization tensor is similar to the dilute localization tensor except for this difference:

A
SC
i =

[

I+ P
SC
i :

(

C
i − C

SC
)]−1

(26)

Where CSC is unknown, but can be expressed as a function of the localization tensor using equation 24:

C
SC = C

0 + f(Ci − C
0) : ASC

i (27)

Which yields an implicit expression for C
SC , which can be difficult to solve when the homogenized

medium is not isotropic due to much more complicated expressions of the Hill tensor appearing in
the equation. We will only use this estimate in a simple case where we have a closed form solution to
this equation. If there is one family of spherical holes in an homogeneous material characterized by a
shear modulus and Poisson’s ratio (µ0, ν0), then the evolution of the in-plane shear modulus and plane
strain two-dimensional bulk modulus as defined in equation 22 write (see Nemat-Nasser and Hori [23],
p. 103):

µAC
12

µ0
=

1− 3f

1 + f(1− 4ν0)
;
kAC
2ddp

k2ddp0

= 2
(3− 4ν0)(1 − ν0)(1 − 3f)

3− 4ν01− f(1− 4ν0)
(28)
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Interaction Direct Derivative estimate (IDD) This estimate is built on the ideas of the generalized
self-consistent problem [5], which is recognized to be very good for matrix/inclusion morphologies, but
has no closed-form solution except in some simple cases. The auxiliary mechanical problem which is
considered to determine the localization tensor for inclusion family i is the the following: inclusion i
is embedded in its atmosphere of ellipsoidal shape Di so as to respect the volume fraction fi = ωi/Di

and of stiffness tensor that of the matrix. The atmosphere is itself embedded into an infinite medium
which has the mechanical properties we are looking for, as in the self-consistent model. While in Hori
and Nemat-Nasser [5], the meaning of the shape of the atmosphere was not clear, later developments
such as in Ponte-Castañeda and Willis [9] made it clear that it is related to the spatial distribution
of the inclusions, independently from their shape. From this generalized self-consistent set-up, several
assumptions are made, which lead to the IDD estimate, as characterized by the localization tensor of
inclusion i:

A
IDD
i = A

dil
i :

[

I−
∑

k

fk
P
0
Dk : Adil

k

]−1

(29)

This estimate is identical to the two-phase estimate 2ph when there is only one heterogeneity family,
and both these estimates also become identical to the Mori-Tanaka MT when the atmosphere is taken
similar to the inclusion itself.

It is also identical to the Ponte-Castañeda and Willis estimate in the case where the distribution of
the various phases is identical [9]. Therefore, the properties of the PCW estimate explained in [33] can
be extended to the IDD estimate when all atmospheres are identical, such as the dynamical basis of the
estimate in some simple situations of aligned and randomly oriented cracks. Also, the drawbacks of the
PCW estimate underlined in [34,35,33], such as the fact that flat ellipsoids cannot keep an isotropic
spatial distribution at high volume fraction, because it leads to a violation of Hashin-Strickman bounds
[10], apply to the IDD estimate.

However, the PCW estimate is not explicit when these distributions are different for each inclu-
sionary phase. The PCW estimate is rigorous in the sense that imposing the symmetry of pair-wise
distribution functions is required by the Hashin-Strickman framework they use. In the IDD estimate,
independent distribution functions can be chosen, which might violate this requirement, but makes the
use of the estimate much simpler (as also stated in [14], even if in the cases presented in this paper,
these estimates coincide). This estimate won’t be used directly here, but we acknowledge that it is of
great importance to mention it because it allows understanding the drawbacks of other estimates, for
example concerning the symmetry of distribution functions of pairs of families of different inclusions,
which can be violated using the MT or IDD estimate [36].

Generalized self-consistent estimate (GSC) This estimate is not in closed form. The GSC set-up ex-
plained when presenting the IDD estimate can be dealt with numerically, instead of using approxi-
mations such as those of Zheng and Du which yields the IDD estimate or Hori and Nemat-Nasser’s
[5]. It is solved iteratively: at each step of calculus we have the inclusion material in ω, the matrix in
D\ω, and an approximation of the homogenized stiffness tensor outside D. A new approximation of
the stiffness tensor is determined by imposing a strain at infinity and finding the fourth order tensor
that relates the average strains and stress on D. At next step, this new stiffness tensor is used for the
infinite medium. It has been shown that this algorithm converges, and the limit stiffness tensor is the
GSC estimate [37].

7 Comparisons between the estimates and the finite element simulations

We now have all elements to test the validity of the estimates in different cases. We will begin with
discs, then aligned and randomly oriented ellipses.

7.1 Discs

It is the simplest situation, in which the homogenized medium is isotropic, and the distribution of the
voids is similar to their shape (see Fig. 1). The study of that type of morphology is classical, whether
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experimentally [12] (in this study the differential scheme performs better than the MT scheme) or
numerically [13], where Torquato’s third order estimate [38] is preferred to the GSC estimate, while
the MT estimate is considered the poorest. Note that we use monodisperse discs, which limits the
volume fraction of voids, but was shown for example by Ma (in the case of cracks) not to have a big
influence on the mechanical properties [39] and by Kurukuri for spheres [40].

We plot four types of results (see Fig. 4). First, simulation results obtained on the microstructures
generated by Random Sequential Addition that we label alea. The periodic boundary conditions were
used, and convergence of the properties was checked (see § 4.1). Second, simulations on the periodic
cell (see § 4.2), labelled per. Third, two classical estimates: self-consistent SC and Mori-Tanaka MT,
which is in this case identical to the 2ph and IDD estimates since there is only one void family and its
distribution is similar to its shape. Finally, the GSC which was obtained numerically.

The SC scheme, when compared to the alea, as well as per results, performs poorly. It overestimates
the decrease of the mechanical properties. This confirms the general opinion that this estimate is not
suitable for matrix/inclusion morphologies, but for percolating morphologies, of the kind we could have
obtained by using microstructures generated by an algorithm which allows for the interpenetration of
the generated voids. The MT=IDD=2ph estimate gives good results, as well as the GSC numerical
estimate. Interestingly, except for the shear modulus, the estimates are closer to the periodic simulation
than to the random simulation.
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Fig. 4 Evolution of the poromechanical properties as a function of the volume fraction of inclusions of voids
shaped as discs, with E = 1 Pa and ν = 0.25, for N = 50 realizations for each volume fraction for alea.
Comparison with classical estimates (SC and MT=IDD=2ph), computations on a periodic cell per, and the
GSC numerical estimate.

7.2 Flat aligned pores

In this case the material is no more transversely isotropic as in the case of discs. Its overall properties
are described by four coefficients in the plane. We choose two Young’s moduli E1 and E2, the in-plane
shear modulus µ12 and the Poisson’s ratio ν12. In addition to that, we have two Biot coefficients and the
Biot compliance (b11, b22, M). As was mentioned, the cracks do not intersect with the outer boundary
of the domain, as in simulations found in Huang et al. [15]. Huang has concluded in his work that for
crack densities up to 0.6, the GSC estimate is the best, which they only prove it in the case of randomly
oriented cracks. However, it seems the computations domains he used were too small compared to the
inclusion sizes [7]. It is however encouraging for us, because the IDD estimate is built to approach



12 Laurent Charpin, Alain Ehrlacher

the GSC estimate. In Shen and Li [7], the differential scheme is considered satisfactory up to a crack
density of 0.6, while in Yin and Ehrlacher [41] it is shown efficient up to 0.3, but it is not tested above
this values.

Fig. 5 Flat pores of aspect ratio X=1/10. The domain has the same aspect ratio as the pores, so that the
error on the estimation of the poromechanical properties is similar in both in-plane directions.

We plot three sorts of curves. First, the results on the microstructures generated by Random
Sequential Addition alea. Second, two sorts of simulations on periodic cells, as explained in § 4.2. perEE
denotes the simulations in which the distribution of the ellipses is similar to their shape (see Fig. 2),
while perEC denotes the simulation in which the ellipses remain distributed isotropically. Finally, two
classical estimates: the 2ph estimate, in this case giving the same result as the IDD estimate, in which
the distribution of the pores has been chosen as isotropic, and the MT estimate.

The poromechanical properties of this orthotropic medium are plotted on Figs. 6 and 7. Note that
the results are displayed as a function of the volume fraction of pores f , but when the ellipsoids are of
aspect ratio X , a link can be made with the classically used crack density factor ǫ = f/(4π3 X), as in
Budiansky and O’Connell [32].
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Fig. 6 Evolution of the overall elastic properties as a function of the volume fraction of inclusions of flat pores
of aspect ratio X=1/10, with E = 1 Pa and ν = 0.25, for N = 50 realizations for each volume fraction for
alea. Comparison with classical estimates MT and IDD=2ph), computations on a periodic cell with isotropic
distribution perEC and flat distribution perEE. Note that f=0.4 corresponds to a crack density of ǫ = 0.95.

First, the 2ph=IDD estimate does not perform well at all. The Young’s modulus in direction 2
is estimated as zero at a low volume fraction of 0.13, which does not match the simulation results.
Similarly, the Biot coefficient b2 becomes greater than 1, which is also thermodynamically impossible.
The Poisson’s ratio is not well estimated either. This failure is related to the fact that when putting the
inclusion ω in the atmosphere D and respecting volume fractions, the first needs to fit in the second,
which when the inclusion is flat and the atmosphere is not becomes impossible when increasing the
volume fraction, exactly when we reach f = X . To solve this problem, we need to work on the choice
of the shape of the atmosphere. Compared to this failure of the 2ph=IDD estimates, MT performs
better, but the estimate is still poor.
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Fig. 7 Evolution of the overall poroelastic properties as a function of the volume fraction of inclusions of flat
pores of aspect ratio X=1/10, with E = 1 Pa and ν = 0.25, for N = 50 realizations for each volume fraction for
alea. Comparison with classical estimates MT and IDD=2ph), computations on a periodic cell with isotropic
distribution perEC and flat distribution perEE. Note that f=0.4 corresponds to a crack density of ǫ = 0.95.

Concerning the simulations on the periodic cells, the two simulations yield very different results. We
see that alea is close to perEC at low volume fractions, while getting closer to perEE at large ones. This
is related to the process of construction of the microstructure. While generating the inclusions randomly
in the domain, no anisotropy is created. However, the rejection of a new void when it intersects with
a previously placed void creates anisotropy by making the distribution of the voids in space closer
and closer to their shape. This can be measured [24], and tells us what to improve in the 2ph=IDD
estimate to avoid the failure occurring when the distribution of flat voids becomes anisotropic at high
volume fractions.

As the volume fraction increases, the assumption of isotropic distribution of the inclusions which
was made using the 2ph estimate becomes less realistic than the one which is embedded in the MT
estimate, in which the distribution of inclusions is similar to their shape. We need to imagine a transition
from one regime to the other, inspiring ourselves of the case where the inclusions are placed on the
periodic grid (see [11,9,42]).

Let us come back to the auxiliary problem of the inclusion ω in the atmosphere D, and try to bring
a solution to this problem in 2d. The inclusion is of aspect ratio X, the atmosphere is of aspect ratio
Xd, and the volume fraction of inclusion is respected f = ω/D. At low f , we start with Xd = 1. When
we reach f = X , the inclusion does not fit in the atmosphere anymore. Notice that the total volume
fraction is used, not partial volume fractions according to the orientations. One way of modifying the
atmosphere is to choose Xd = X/f , so that the volume is respected thanks to a flattening of the
atmosphere. The atmosphere is then, for each crack, flatten according to this rule and coaxial with
the crack. This concept was already proposed by Ponte-Castañeda and Willis [9] in the case of aligned
cracks, and Zheng and Du [11] in the case of randomly oriented cracks, under the name Full-Range
IDD (FRIDD), and yields an estimate which lies in between the IDD and MT estimates. It is used
for example in [43].

Let us see how this estimates performs with flatter ellipses, we will call cracks.

7.3 Aligned cracks

A similar analysis is made with flat ellipses of aspect ratio 1/100, which we use to represent cracks in the
medium. We represent on Figs. 8 and 9 the results obtained with the MT, IDD, and FRIDD estimates.
The results obtained with the two first estimates have the same defaults as when we compared them to
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results with 1/10 aspect ratio ellipses. The FRIDD gives an intermediary solution, which is not perfect
but preferable to the other estimates since it is thermodynamically correct (for example, the Young’s
moduli remain positive) and performs better than the MT estimate which generally overestimates the
stiffnesses. However, even using this FRIDD estimate, the estimation of the Poisson’s ratio is still not
satisfactory.
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Fig. 8 Cracks of aspect ratio 1/100. Simulations, IDD estimate with circular atmosphere, MT estimate,
FRIDD estimate with evolving atmosphere. Elastic properties. Note that f=0.04 corresponds to a crack density
of ǫ = 0.95.
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Fig. 9 Cracks of aspect ratio 1/100. Simulations, IDD estimate with circular atmosphere, MT estimate,
FRIDD estimate with evolving atmosphere. Poroelastic properties. Note that f=0.04 corresponds to a crack
density of ǫ = 0.95.
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7.4 Flat pores of random orientation, or in two orthogonal families

In this section we test two possibilities. First, the orientation of the cracks is random, as one can see
on Fig. 10. Second, there is two families of orthogonal cracks as on Fig. 11.

Fig. 10 Microstructure with isotropically oriented
cracks

Fig. 11 Microstructure with two orthogonal crack
families

When the microstructure contains isotropically oriented cracks, the overall material is transversely
isotropic. The accessible volume fractions with the RSA algorithm are smaller than in the case of aligned
cracks because some spaces are too small to contain a crack of any orientation but still represent large
volume fractions (see Fig. 10). The overall properties of such a microstructure are compared to the
three estimates MT , IDD, and FRIDD. When the cracks have two orthogonal orientations (Fig. 11),
the results are very similar, as can be seen on Fig. 12.
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Fig. 12 Cracks of aspect ratio 1/10, split in two families of orientations 0 and π/2, or isotropically oriented.

In this situation, the results obtained with the FRIDD estimate are very good for all the porome-
chanical coefficients, as we can see on Figs. 13 and 14, except for the Poisson’s ratio. The difficulty of
estimating the Poisson’s ratio is also illustrated by Segurado and Llorca [13]. However, one can argue
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that the precise value of a Poisson’s ratio is of little importance when the stiffness is close to zero, as
it is the case at large volume fractions of cracks.
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Fig. 13 Cracks of aspect ratio 1/10, of isotropically distributed orientations, or in two families at 0 and π/2.
Simulations, IDD estimate with circular atmosphere, MT estimate, FRIDD estimate with evolving atmosphere.
Elastic properties. Note that f=0.25 corresponds to a crack density of ǫ = 0.60.
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Fig. 14 Cracks of aspect ratio 1/10, of isotropically distributed orientations, or in two families at 0 and π/2.
Simulations, IDD estimate with circular atmosphere, MT estimate, FRIDD estimate with evolving atmosphere.
Poroelastic properties. Elastic properties. Note that f=0.25 corresponds to a crack density of ǫ = 0.60.

Let us comment the error made on the empirical averages of these quantities. We have plot, for 3
different sizes of voids A (which is the great semi axis of an ellipse of aspect ratio 0.1) compared to
domain of size L = 1, and a constant volume fraction of voids f = 0.25, the evolution of the empirical
average and the standard deviation, as explained in § 5.1. We only plot the case of periodic boundary
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conditions. As can be seen on Fig. 15, the poromechanical properties are not fully converged when the
domain size is 80 times larger than the larger dimension of the void. The rate of convergence seems
similar for all quantities. However, the error made on the estimation of the empirical average, given
by the error bars, is not the same for all quantities. It seems that very large domains are necessary
to obtain converged values of the overall properties. It might be a drawback of the fact that there is
always a zone close to the external boundary where the void density is lower, due to a wall effect.
Even if the size of this zone decreases with decreasing particle size, its presence might affect the rate
of convergence of the homogenized properties.
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Fig. 15 Cracks of aspect ratio 1/10, of isotropically distributed orientations, volume fraction f = 0.25. Study
of the convergence of the poromechanical properties determined by finite element simulations.

7.5 Discussion on the comparison of the estimates to the simulations

Our main conclusion is that the modified version of the IDD estimate, which was originally proposed
by the authors under the name Full Range IDD, provide a good estimate of the overall poromechanical
properties, when compared to simulations of 2d microstructures generated by an algorithm of Random
Sequential Addition, that is in the case of matrix/inclusion morphologies. The estimate is very good
in the case of randomly oriented cracks (Figs. 13 and 14) for all poromechanical coefficients except for
the Poisson’s ratio. It also performs well in the case of aligned cracks (Figs. 8 and 9), but it is less
accurate, particularly concerning the Young’s modulus and Biot coefficient in the direction normal to
the cracks.

A side conclusion of our work is the very close results obtained when estimating the mechani-
cal properties of cracked media containing isotropically oriented cracks on the one hand, and cracks
distributed in two orthogonal families on the other hand.



18 Laurent Charpin, Alain Ehrlacher

8 Conclusion

We have built a finite element model in 2d which allows computing the overall properties of porous
solids with various sorts of voids, shaped as discs, or flat ellipses. Our objective was to compare the
results of these computations to classical micromechanics estimates, mainly Mori-Tanaka’s and the
Interaction Direct Derivative estimate of Zheng and Du, but also in some cases the Self-Consistent
estimate and Generalized Self Consistent estimate. We have shown that the modified version of the
IDD estimate, called Full Range IDD estimate, gives very good results in all the tested cases. This
conclusion is of course restricted to the case of microstructures generated with a Random Sequential
Addition Algorithm which, by forbidding the interpenetration of inclusion, creates structures which
clearly have matrix-inclusion morphologies. The estimates where tested up to volume fractions as large
as was available using the RSA algorithm with monodisperse voids (1 in the case of aligned cracks and
0.60 in the case of isotropically oriented cracks). Of course, to extend the validity of the estimates,
one should test larger volume fractions by mixing various sizes of inclusions, as well as various sorts.
Nevertheless, we think that our simple computations clearly demonstrate the efficiency of the Full
Range IDD estimate for cracked media in 2d.

Therefore, we see our results as complementary to Shen and Li [7], since even if on some situations
the estimates they uses might be more precise, the IDD estimate from Zheng and Du we chose to use
here is very versatile. In our opinion it is an important property that makes it easier to use.
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