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Dynamic optimal execution in a mixed-market-impact Hawkes

price model

Aurélien Alfonsi, Pierre Blanc∗

April 2, 2014

Abstract

We study a linear price impact model including other liquidity takers, whose flow of orders either
follows a Poisson or a Hawkes process. The optimal execution problem is solved explicitly in this context,
and the closed-formula optimal strategy describes in particular how one should react to the orders of other
traders. This result enables us to discuss the viability of the market. It is shown that Poissonian arrivals
of orders lead to quite robust Price Manipulation Strategies in the sense of Huberman and Stanzl [24].
Instead, a particular set of conditions on the Hawkes model balances the self-excitation of the order flow
with the resilience of the price, excludes Price Manipulation Strategies and gives some market stability.

Keywords: Market Impact Model, Optimal Execution, Hawkes Processes, Market Microstructure,
High-frequency Trading, Price Manipulations.
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1 Introduction

When modeling the price of an asset, we typically distinguish at least three different time scales. At the
low-frequency level, the price can often be well approximated by a diffusive process. At the other end,
when dealing with very high frequencies, some key features of the Limit Order Book (LOB) dynamics have
to be modeled. In between, price impact models consider an intra-day mesoscopic time scale, somewhere
between seconds and hours. They usually ignore most of the LOB events (limit orders, cancellations, market
orders, etc.) and focus on describing the price impact of the transactions. Their goal is to be more tractable
than high-frequency models and to bring quantitative results on practical issues such as optimal execution
strategies. The pioneering price impact models of Bertsimas and Lo [11] and Almgren and Chriss [6] consider
a linear immediate and permanent impact on the price. These models ignore the transient part of the
impact which is due to the resilience of the market and cannot be neglected when trading frequently. For
that purpose, Obizhaeva and Wang [28] have considered a model that includes in addition a linear transient
impact that decays exponentially. However, empirical evidence on market data shows that the price impact
is not linear but rather concave, see e.g. Potters and Bouchaud [29], Eisler et al. [16], Mastromatteo, Tóth
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and Bouchaud [27] and Donier [15]. Extensions or alternatives to the Obizhaeva and Wang model that
include non-linear price impact have been proposed by Alfonsi, Fruth and Schied [2], Predoiu, Shaikhet and
Shreve [30], Gatheral [19] and Guéant [21] to mention a few. Similarly, the exponential decay of the transient
impact is not truly observed on market data, and one should consider more general decay kernels. Alfonsi,
Schied and Slynko [5] and Gatheral, Schied and Slynko [20] consider the extension of the Obizhaeva and
Wang model when the transient impact has a general decay kernel. Another simplification made by these
models is that they generally assume that there is only one large trader, and basically ignore the market
orders issued by other participants. However, if one wants to use these models at a higher frequency, they
would naturally wonder how these orders (at least the largest ones) can be taken into account. This is one
of the contributions of the present paper.

On the other hand, high-frequency price models aim at reproducing some statistical observations made on
market data such as the autocorrelation in the signs of trades, the volatility clustering effect, the high-
frequency resilience of the price, etc., and to obtain low-frequency asymptotics that are consistent with
continuous diffusions. At very high frequencies, one then has to describe LOB dynamics, or a part of it.
Such models have been proposed by Abergel and Jedidi [1], Huang, Lehalle and Rosenbaum [23], Cont and
de Larrard [13], Garèche et al. [18], among others. However, as stressed in [13], LOB events are much more
frequent than price moves. Thus, it may be relevant to model the price at the slightly lower frequency
of midpoint price changes. For example, Robert and Rosenbaum [31] have proposed a model based on a
diffusion with uncertainty zones that trigger the price changes. Recently, Bacry et al. [7] presented a tick-
by-tick price model based on Hawkes processes, that reproduces well some empirical facts of market data.
This model has then been enriched by Bacry and Muzy [9] to describe jointly the order flow and the price
moves. In fact, there is a very recent and active literature that focuses on the use of mutually exciting
Hawkes processes in high-frequency price models. Without being exhaustive, we mention here the works of
Da Fonseca and Zaatour [14], Zheng, Roueff and Abergel [34], Filimonov and Sornette [17] and Hardiman,
Bercot and Bouchaud [22]. Asymptotic and low-frequency behaviour of such models has been investigated
recently by Bacry et al. [8] and Jaisson and Rosenbaum [25].

The present paper is a contribution to this also mutually exciting literature. Its main goal is to make a
bridge between high-frequency price models and optimal execution frameworks. On the one hand, Hawkes
processes seem to be rich enough to describe satisfactorily the flow of market orders. On the other hand,
price impact models are tractable and well-designed to calculate trading costs. The aim of our model is to
grasp these two features. Thus, we consider an Obizhaeva and Wang framework where market buy and sell
orders issued by other traders are modeled through Hawkes processes. This enables us to make quantitative
calculations and to solve the optimal execution problem explicitly. Also, we obtain a necessary and sufficient
condition on the parameters of the Hawkes model to rule out Price Manipulation Strategies that can be seen
as high-frequency arbitrages.

The paper is organized as follows. In Section 2, we set up the model and present a general criterion to exclude
Price Manipulation Strategies. Section 3 summarizes our main results. In Section 4, we present the optimal
execution strategy when market orders are Poissonian and discuss on the robustness of Price Manipulation
Strategies in this case. Section 5 gives the main result on the optimal execution problem along with several
comments and insights on the optimal strategy. Technical proofs are gathered in the Appendix.

2 Model setup and the optimal execution problem

We start by describing the price model itself, without considering the execution problem. We consider a single
asset and denote by Pt its price at time t. We assume that we can write it as the sum of a “fundamental
price” component St and a “mesoscopic price deviation” Dt:

Pt = St
︸︷︷︸

fundamental price

+ Dt
︸︷︷︸

.

mesoscopic price deviation

(1)
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Typically, these quantities are respectively related to the permanent and the transient impact of the market
orders. We now precise this and consider the framework of Obizhaeva and Wang [28] where these impacts
are linear. Let Nt be the sum of the signed volumes of past market orders on the book between time 0
and time t. By convention, a buy order is counted positively in N while a sell order makes N decrease,
and we assume besides that N is a càdlàg (right continuous with left limits) process. We assume that an
order modifies the price proportionally to its size, which would correspond to a block-shaped limit order
book. A proportion ν ∈ [0, 1] of the price impact is permanent, while the remaining proportion 1 − ν is
transient with an exponential decay of speed ρ > 0. This mean-reversion effect can be seen as the feedback of
market markers, who affect the price using limit orders and cancellations. Namely, we consider the following
dynamics for S and D:

dSt =
ν

q
dNt
︸︷︷︸

market orders

dDt = −ρ Dt dt
︸ ︷︷ ︸

market resilience

+
1− ν

q
dNt
︸︷︷︸

,

market orders

with q > 0. As usual, we consider (Ω, (Ft),F ,P) a filtered probability space where P weights the probability of
the market events and the filtration (Ft)t≥0 describes the market information at time t ≥ 0. We assume that
the process (Nt)t≥0 is (Ft)-adapted with bounded variation and square integrable, i.e. sups∈[0,t] E[N

2
s ] <∞

for any t ≥ 0. We will specify later on which dynamics we consider for N .

We now consider a particular trader who wants to buy or sell a given quantity of assets on the time inter-
val [0, T ]. Through the paper, we will call this trader the “strategic trader” to make the distinction between
his market orders and all the other market orders, that are described by N . We will denote by Xt the quantity
of shares owned by the strategic trader at time t. We assume that the process is (Ft)-adapted, with bounded
variation and càglàd (left continuous with right limits) which means that the strategic trader observes all the
information available on the market, and that he can react instantly to the market orders issued by other
traders. Thus, a strategy that liquidates x0 assets on [0, T ] should satisfy X0 = x0 and XT+ = 0: x0 > 0
(resp. x0 < 0) corresponds to to a sell (resp. buy) program.

Definition 2.1. A liquidating strategy X for the position x0 ∈ R on [0, T ] is admissible if it is (Ft)-adapted,
càglàd, square integrable, with bounded variation and such that X0 = x0 and XT+ = 0, a.s.

One then has to specify how the strategic trader modifies the price, as well as the cost induced by his trading
strategy. Again, we will consider the Obizhaeva and Wang model [28] with the same price impact as above.
However, we let the possibility that the proportion ǫ ∈ [0, 1] of permanent impact of the strategic trader
could be different from the one of the other traders (which we note ν ∈ [0, 1]). For instance, one could justify
that 0 ≤ ǫ < ν should hold if the strategic trader does not hold any “real” economic information when he
liquidates his position. We then assume the following dynamics

dSt =
1

q
(νdNt + ǫdXt) , (2)

dDt = −ρ Dt dt+
1

q
((1− ν)dNt + (1− ǫ)dXt) . (3)

With the assumptions on N and X , the price processes P , S and D have left and right limits. More precisely,
in case of discontinuity at time t, (2) and (3) have to be read here as follows

St − St− =
ν

q
(Nt −Nt−), St+ − St =

ǫ

q
(Xt+ −Xt),

Dt −Dt− =
1− ν

q
(Nt −Nt−), Dt+ −Dt =

1− ǫ

q
(Xt+ −Xt).
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When the strategic trader places at time t an order of size v ∈ R (v > 0 for a buy order and v < 0 for a sell
order), it has the following cost

πt(v) = Pt v
︸︷︷︸

cost at the current price

+
v2

2q
︸︷︷︸

impact cost

.

Since Pt+ = Pt +
v
q , this cost amounts to trade all the shares at the price Pt+Pt+

2 and corresponds to the

cost given by a block-shaped Limit Order Book with depth 1/q, since πt(v) =
∫ v

0

[

Pt +
1
q y
]

dy, see [28]. We

stress here that if an order has just occurred, i.e. Nt − Nt− 6= 0, the value of Pt is different from Pt− and
takes into account the price impact of this order. Therefore, the cost of an admissible strategy X is given by

C(X) =

∫

[0,T )

Pu dXu +
1

2q

∑

0≤τ<T

(∆Xτ )
2 − PTXT +

1

2q
X2

T (4)

=

∫

[0,T )

Pu dXc
u +

∑

0≤τ<T

Pτ (∆Xτ ) +
1

2q

∑

0≤τ<T

(∆Xτ )
2 − PTXT +

1

2q
X2

T ,

since at time T all the remaining shares have to be sold. Here, the sum brings on the countable times of
discontinuity of X , ∆Xτ = Xτ+−Xτ , and Xc

t = Xt−
∑

0≤τ<t

(∆Xτ ) is the continuous part of X . We note that

all the terms involved in the cost function are integrable, thanks to the assumption on the square integrability
of X and N .

Remark 2.1. The cost defined by (4) in the price model (1), (2) and (3) is a deterministic function of
(Xt)t∈[0,T ], (Nt)t∈[0,T ], S0, D0 and the parameters q, ν, and ǫ. In this remark, we denote by C(X,N, S0, D0, q)
this function when ν and ǫ are given. From (2), (3) and (4), we have the straightforward property

C(X,N, S0, D0, q) = C(−X,−N,−S0,−D0, q). (5)

Observing that qC(X) =
∫

[0,T ) qPudXu + 1
2

∑

0≤τ<T

(∆Xτ )
2 − (qPT )XT + 1

2 (XT )
2, and remarking that qS and

qD satisfy (2) and (3) with q = 1, we also get

qC(X,N, S0, D0, q) = C(X,N, qS0, qD0, 1). (6)

Remark 2.2. Since X is a càglàd process and N is a càdlàg process, we will have to work with làdlàg (with
finite right-hand and left-hand limits) processes. When Z is a làdlàg process, we set ∆−Zt = Zt − Zt− and
∆+Zt = Zt+ − Zt the left and right jumps of Z, and Zc

t = Zt −
∑

0≤τ<t

∆+Zτ − ∑

0<τ≤t

∆−Zτ the continuous

part of Z. We also set ∆Zt = Zt+−Zt− and use the shorthand notation dZt = dZc
t +∆Zt. If dZt = dZ̃t for

some other làdlàg process Z̃, this means that dZc
t = dZ̃c

t and ∆Zt = ∆Z̃t. In particular, when Z is càdlàg
and Z̃ is càglàd, this means that Zt − Zt− = Z̃t+ − Z̃t at the jump times.

Then, the optimal execution problem consists in finding an admissible strategyX that minimizes the expected
cost E[C(X)] for a given initial position x0 ∈ R. This problem for x0 = 0 is directly related to the existence
of Price Manipulation Strategies as defined below.

Definition 2.2. A Price Manipulation Strategy (PMS) in the sense of Huberman and Stanzl [24] is an
admissible strategy X such that X0 = XT+ = 0 a.s. for some T > 0 and E[C(X)] < 0.

We have the following result that gives a necessary and sufficient condition to exclude PMS.
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Theorem 2.1. The model does not admit PMS if, and only if the process P is a (Ft)-martingale when
X ≡ 0. In this case, the optimal strategy X∗ is given by

∆X∗
0 = − x0

2 + ρT
, ∆X∗

T = − x0
2 + ρT

, dX∗
t = −ρ x0

2 + ρT
dt for t ∈ (0, T ), (7)

and has the expected cost E[C(X∗)] = −P0x0 +
[

1−ǫ
2+ρ(T−t) +

ǫ
2

]

x20/q.

Theorem 2.1 is proved in Appendix B. It indicates that suitable models for the order flow N should be such
that P is a martingale when the strategic trader is absent. In this case, the optimal strategy is very robust
in the sense that it does not depend on N , and is therefore the same as the one in the Obizhaeva and Wang
model [28] that corresponds to N ≡ 0 and D0 = 0. In fact, it does not depend either on ǫ and ν, and only
depends on ρ. However, this result is obtained in an idealized framework where the market can be precisely
described by the price model (1), (2) and (3) and where the strategic trader knows the model parameters.
If this model can be well fitted to market data, one may expect that the process P to be, roughly speaking,
nearly a martingale. This raises at least three questions. Which “simple” processes N can lead to a martingale
price P? Can we characterize the optimal strategy when P is not a martingale? It would be interesting to
understand how the optimal strategy (7) may be modified by other market orders. Last, when P is not a
martingale, can we find strategies that still have a negative expected cost if the strategic trader has a wrong
estimation of the parameters? In this paper, we study these questions when N follows either a Poisson or a
Hawkes process.

Remark 2.3. The model can be generalized by adding a càdlàg (Ft)-martingale S0 to the price process P ,
i.e. if we replace (1) by Pt = St+Dt+S0

t , with S0
0 = 0. This does not change the optimal execution problem

since, using an integration by parts, S0 adds the following term to the cost

∫

[0,T )

S0
t dXt − S0

TXT = S0
TXT − S0

0X0 −
∫

[0,T )

Xt dS0
t − S0

TXT

= −
∫

[0,T )

Xt dS0
t ,

which has a zero expected value from the martingale property. Let us note that there is no covariation between
the processes X and S0 since they do not jump simultaneously and X has bounded variations.

Remark 2.4. Similarly, when N is a càdlàg (Ft)-martingale and X is an admissible liquidating strategy for
X0 = x0, we have

E[C(X)] = E





∫

[0,T )

Du dXu +
1− ǫ

2q

∑

0≤τ<T

(∆Xτ )
2 − DTXT +

1− ǫ

2q
X2

T



+
ǫ

2q
x20,

since x20 =
∫

[0,T+]
d[(Xt − X0)

2] = 2
∫

[0,T )
(Xu − X0)dXu +

∑

0≤τ<T

(∆Xτ )
2 − 2(XT − X0)XT + X2

T . When

ǫ ∈ [0, 1), we set Xǫ
t = (1 − ǫ)Xt and get

E[C(X)] =
1

q(1 − ǫ)
E





∫

[0,T )

qDud(Xǫ
u) +

1

2

∑

0≤τ<T

(∆Xǫ
τ )

2 − qDTX
ǫ
T +

1

2
(Xǫ

T )
2



+
ǫ

2q
x20. (8)

Therefore, X is optimal if, and only if Xǫ is optimal in the model with no permanent impact, q = 1 and an
incoming flow of market orders equal to (1− ν)N .
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3 Main results

In this work, we consider either a Poisson or a Hawkes process for N , which leads to the two following models.

The Mixed-market-Impact Poisson (MIP) model. Poisson processes are often used to model the
arrival of the customers in queuing theory. It is therefore natural to use them to model the flow of market
orders, as it has been made for example by Bayraktar and Ludkovski [10] or Cont and de Larrard [13]
in different frameworks. To be consistent with the parametrization of Hawkes process, we distinguish the
incoming buy and sell orders. Thus, we set

Nt = N+
t −N−

t , (9)

where (N+
t )t∈[0,T ] and (N−

t )t∈[0,T ] are two independent compound Poisson processes of respective intensities

κ+0 and κ−0 . We assume that their jumps follow the same probability law µ on R+, and we define

mk =

∫

R+

vkµ(dv), k ∈ N, δ0 = κ+0 − κ−0 and Σ0 = κ+0 + κ−0 ,

and assume that m2 <∞.

The Mixed-market-Impact Hawkes (MIH) model. The Hawkes model extends the previous one. It
assumes that Nt = N+

t − N−
t , where (N+

t )t∈[0,T ] and (N−
t )t∈[0,T ] are two self and mutually-exciting jump

processes, with the same common law µ for the jump amplitudes. Their respective intensities κ+t and κ−t are
now assumed to be càdlàg processes which follow the Markovian Hawkes dynamics:

dκ+t = −β (κ+t − κ∞) dt + ιs dJ+
t + ιc dJ−

t , dκ−t = −β (κ−t − κ∞) dt + ιc dJ+
t + ιs dJ−

t (10)

with ιc, ιs, β, κ∞ ≥ 0, and where J+ (resp. J−) is a càdlàg jump process that counts the number of buy market
orders (resp. sell market orders) from environment traders since time 0, and the two processes cannot jump
simultaneously. In other words, J = J+ − J− jumps of ±1 when N jumps and we have ∆Jt = sign(∆Nt).
This model boils down to the Poisson model in the case ιc = ιs = β = 0. The meaning of the parameters
is rather clear: κ+ and κ− are mean reverting processes, and the parameters ιs and ιc respectively describe
how a market buy order increases the instantaneous probability of buy (resp. sell) orders. More precisely, ιs
encodes both the splitting of meta-orders, and the fact that participants tend to follow market trends (which
is called the herding effect). Empirically, it is found by Tòth et al. [33] that the main contribution comes from
the splitting effect. The parameter ιc describes opportunistic traders that sell (resp. buy) after a sudden rise
(resp. fall) of the price.

Hawkes processes have been recently used in the literature to model the price. In particular, Bacry et al. [7]
consider this model with ν = 1, ιs = 0, and deterministic jumps (i.e. µ is a Dirac mass). More recently, Bacry
and Muzy [9] have proposed an four-dimensional Hawkes process to model the market buy and sell orders
together with the up and down events on the price. In contrast, the model that we study here determines
the price impact of an order in function of its size.

The main results are the following.

• The optimal execution problem can be solved explicitly in the MIH model and the optimal strategy has
still a quite simple form, see Theorem 5.1. Of course, this result relies on the assumptions of linear price
impact and exponential decay kernel, which are not in accordance with empirical facts, see for example
Potters and Bouchaud [29] and Bouchaud et al. [12]. We mention here that it would be possible to
keep an affine structure of the optimal strategy by considering complete monotone decay kernels as
in Alfonsi and Schied [4]. However, we believe that the optimal strategy is interesting at least from
a qualitative point of view, since it gives clear insights on how to react optimally to observed market
orders and on the role of the different parameters of the model.
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• Price Manipulation Strategies necessarily appear in the MIP model. They mainly arise from the fact
that the strategy which consists in trading instantly half of the volume of each incoming market order
in the opposite direction is profitable on average, since the price resilience of the market is modeled as
deterministic and the jump rate of N is constant.

• In the MIH model, Price Manipulation Strategies also arise. Depending on the parameters of the model
and on the size of each observed market order, one should trade instantly in the opposite direction as
in the MIP model or in the same direction to take advantage of the self-excitation property of Hawkes
processes. However, the Hawkes framework allows for a very specific equilibrium to take place, that
we call the Mixed-market-Impact Hawkes Martingale (MIHM) model, where PMS disappear. When
fitting the MIH to market data, one may then expect to get parameters close to the MIHM model.

• In the MIHM model, one has in particular ιs > ιc, ν < 1 and β = ρ, i.e. the self-excitation property of
the order flow exactly compensates the price resilience induced by market makers. The resulting price
process is a martingale even at high frequencies, and in this case we find that the optimal strategy and
cost function are those of Obizhaeva and Wang [28]. The conditions of this model imply that if ιc = 0,
the norm α/β of the Hawkes kernel that symbolizes the endogeneity ratio of the market, see Filimonov
and Sornette [17], should be equal to 1− ν, i.e. the proportion of market impact which is transient.

• The fact of reacting to the market orders of other traders with instantaneous market orders may be
seen as artificial volume that could lead to market instability. We show that in the MIH framework, the
conditions under which it is profitable for the strategic trader to react instantaneously to other trades
is quite equivalent to the existence of PMS. This makes the connection between market stability and
free profits.

4 The Mixed-market-Impact Poisson (MIP) model

We will use the following function in the sequel

L(r, λ, t) := r

∫ t

0

exp(λs)

2 + rs
ds = exp(−2λ/r)

[

E
(
λ

r
(2 + rt)

)

− E
(
2λ

r

)]

, (11)

where E(y) = −
∫ +∞
−y

e−u

u du is the exponential integral of y, in terms of Cauchy principal value if y > 0.

Since we will only consider differences E(y) − E(y′) with either y, y′ > 0 or y, y′ < 0, we will only consider
proper integrals. The function E is standard and is implemented in many packages such as the Boost C++
library. Thus, L can be evaluated as a closed formula.

4.1 The optimal strategy

The following theorem gives the optimal strategy and the value function of the problem in the Poisson model.

Theorem 4.1. Let ǫ ∈ [0, 1). The optimal admissible liquidating strategy X∗ for the position x0 in the
Poisson model for N is

(1 − ǫ)∆X∗
0 = −

(1− ǫ)x0 + [1 + ρT ]
(

qD0 − m1

ρ δ0

)

− νm1

4 ρT 2δ0

2 + ρT

(1− ǫ)∆X∗
T =

qD0 − (1− ǫ)x0
2 + ρT

− m1

ρ
×
[
1− ν

4ρ
2T 2

2 + ρT
+ (1− ν) ln

(

1 +
ρT

2

)

+
ν

2
ρT

]

δ0

+
∑

0<τ<T

(1− ν)∆Nτ

2 + ρ(T − τ)

7



and, on (0, T ),

(1 − ǫ)dX∗
t =

[

1 + ρT
(
1 + ν

4ρT
)

2 + ρT
− (1− ν) ln

(
2 + ρT

2 + ρ(T − t)

)

− ν

2
ρt − 1 + ν

2 ρ(T − t)

2 + ρ(T − t)

]

m1δ0 dt

+

[

qD0 − (1− ǫ)x0
2 + ρT

+
∑

0<τ<t

(1− ν)∆Nτ

2 + ρ(T − τ)

]

ρdt

− 1 + ρ(T − t)

2 + ρ(T − t)
× (1 − ν)dNt

The corresponding cost function is given by C(x0, D0, S0), where

q × C(x, d, z) = −q(z + d)x +

[
1− ǫ

2 + ρT
+
ǫ

2

]

x2 +
ρT

2 + ρT

[

qd− G0(T )
δ0m1

ρ

]

x (12)

− 1

1− ǫ
× ρT/2

2 + ρT

[

qd− G0(T )
δ0m1

ρ

]2

− 1

1− ǫ
× ν2

48
ρ3T 3

(
δ0m1

ρ

)2

− (1− ν)2

1− ǫ
×m2 ×

[
T

2
− 1

ρ
ln

(

1 +
ρT

2

)]

Σ0.

where G0(T ) = 1 + ν
2ρT . In particular, the model admits price manipulation strategies unless m1 = m2 = 0

(i.e. N ≡ 0) and D0 = 0.

The proof of this theorem is given in Appendix A.3.1. When m1 = m2 = 0, there is no other orders and we
get back the results in the Obizhaeva and Wang model [28]. In this case, the steady state is D0 = 0 and there
is no price manipulation strategy, see Alfonsi and Schied [3]. Otherwise, Poissonian market orders always
create possible manipulation strategies, which we discuss now in detail.

First, we observe that the most important source of gains in (12) is in O(T 3) when T is getting large. It
appears when δ0 6= 0, which means that there is a price tendency. There is a predictable imbalance in the
order flow of which the strategic trader can take advantage. The corresponding arbitrages are the δ0 terms
in the strategy given in Theorem 4.1, and the associated expected gains are the negative terms proportional
to δ20 in the value function. Also, we observe that when δ0 6= 0, the gain goes to infinity when ρ → 0. This
infinite gain can be reached by the following admissible strategy Xλ

∆Xλ
0 = λδ0 , dXλ

t = 0 for t ∈ (0, T ) , ∆Xλ
T = −λδ0,

for some λ ∈ R. From (4), we have when ρ = 0, C(Xλ) = −λδ0NT

q and therefore

E[C(Xλ)] = −λδ
2
0

q
m1T −→

λ→+∞
−∞.

We now consider the “balanced case” where δ0 = 0. This means that the flows of buy and sell orders have
the same distribution, which is a rather natural assumption. In this case, the negative cost grows in O(T )
and we have

q × C(0, d, z) = − 1

1− ǫ
× ρT/2

2 + ρT
q2d2 − (1− ν)2

1− ǫ
×m2 ×

[
T

2
− 1

ρ
ln

(

1 +
ρT

2

)]

Σ0.

The term in d2 is due to the fact that the strategic trader knows the initial temporary price shift and takes
advantage of this information. The other term comes from the dynamic part of the strategy, in which the

8



strategic trader reacts instantaneously to price jumps to take advantage of their transient part. It vanishes
when ρ→ 0+ or ν → 1− since in both cases, the price impact becomes exclusively permanent.

Last, let us give some heuristic interpretation on the optimal strategy. When the strategic trader observes
a market order at time τ , he immediately posts a market order of the opposite sign, with a proportion
1−ν
1−ǫ × 1+ρ(T−τ)

2+ρ(T−τ) of the volume. This allows him to take advantage of the deterministic resilience effect. He

then compensates this block trade by modifying his continuous trading rate of 1−ν
1−ǫ × ρ

2+ρ(T−τ)∆Nτ (with

the sign opposite to his block trade), see Figure 1 for an illustration of this strategy. If moreover δ0 6= 0,
he takes advantage of the price trend by trading continuously at a time-dependent rate, and also adapts the
initial jump of the strategy accordingly.
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Figure 1: Optimal strategy in the Poisson model for q = 100, T = 1, ρ = 50, ǫ = 0.1, ν = 0.1, D0 =
1, κ+0 = κ−0 = 60, m1 = 50, X0 = −500 and µ = Exp(1/m1), with the corresponding trajectory of (Nt).

4.2 Price manipulation strategies with model uncertainty

Theorem 4.1 shows that PMS exist when the market orders follow a compound Poisson process. However,
this result holds under the assumption that the strategic trader knows exactly what the model parameters
are. It is then natural to wonder if these PMS may disappear when he has a wrong estimation of some
parameters. In this section, we focus on the case where the buy and sell orders are balanced (δ0 = 0), which
means that there is no expected trend in the next future. A remarkable feature of the optimal strategy in
this case is that it only depends on the process N , and does not depend directly on the law of the jumps
and their intensity. Then, when applying the optimal strategy, only two quantities have to be known: qD0

and ρ. In this paragraph, we consider a trader that wants to make profit without moving their position, and
therefore uses the optimal liquidation strategy with x0 = 0 shares. We assume without loss of generality that
S0 = 0 and denote by C0(D0) the cost of the optimal strategy of Theorem 4.1 in this case:

(1− ǫ)q × C0(D0) = − ρT/2

2 + ρT
q2D2

0 − (1− ν)2 2κ0m2

[
T

2
− 1

ρ
ln

(

1 +
ρT

2

)]

(13)

First, we assume that he knows ρ but not D0. Then, we assume that he knows that D0 = 0, but does
not know the true value of ρ. In both cases, we show that the trader can still make profits on average.
In particular, he can do this by using the basic strategy that consists in trading half of the volume (times
(1−ν)/(1−ǫ) if ǫ 6= ν) of each incoming market order in the opposite direction. This indicates that modeling
the time stamps of market orders as a Poisson process is not compatible in our model with eliminating PMS.
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Uncertainty on D0

In this paragraph, we assume that D0 = d0 is deterministic and that the strategic trader applies the optimal
strategy computed with a false value d̃0. His strategy X̃ is then

(1− ǫ)∆X̃0 = −qd̃0[1 + ρT ]

2 + ρT
, (1 − ǫ)∆X̃T =

qd̃0
2 + ρT

+
∑

0<τ<T

(1− ν)∆Nτ

2 + ρ(T − τ)
(14)

(1− ǫ)dX̃t =

[

qd̃0
2 + ρT

+
∑

0<τ<t

(1− ν)∆Nτ

2 + ρ(T − τ)

]

ρdt− 1 + ρ(T − t)

2 + ρ(T − t)
× (1− ν)dNt.

Proposition 4.1. The expected cost of the strategy X̃ is given by

E

[

C(X̃)
]

= C0(d0) +
1

(1− ǫ)q
× ρT/2

2 + ρT
× q2(d̃0 − d0)

2,

and is nonpositive if, and only if |d̃0 − d0| ≤ ∆d0(T ), where

∆d0(T ) =

√

d20 +
(1− ν)2

q2
× 4κ0m2(2 + ρT )

ρT

[
T

2
− 1

ρ
ln

(

1 +
ρT

2

)]

.

The proof of this proposition is given in Appendix C.1. We obtain that PMS with deadline T disappear if
the error in the estimation of d0 exceeds ∆d0(T ). We can check that T 7→ ∆d0(T ) is nondecreasing, such
that ∆d0(0) = |d0| and ∆d0(T ) ∼

T→∞
(1 − ν)

√
2κ0m2T/q. When T is large, even if the estimation of d0 is

imprecise, it is still possible to get a PMS. More importantly, we observe that the choice d̃0 = 0 always leads
to a PMS for any deadline T and should be used if no better estimation is available.

Uncertainty on ρ

To study the uncertainty effects on the parameter ρ, we conduct a reasoning similar to the previous paragraph,
assuming now that we apply the optimal strategy with a false value of ρ̃ of ρ. To simplify the calculations,
we place ourselves in the case d0 = 0 which is the asymptotic average value of D, since N is a martingale.
The strategy X̃ of the strategic trader is then given by

∆X̃0 = 0, (1−ǫ)∆X̃T =
∑

0<τ<T

(1 − ν)∆Nτ

2 + ρ̃(T − τ)
, (1−ǫ)dX̃t =

∑

0<τ<t

(1− ν)∆Nτ

2 + ρ̃(T − τ)
ρ̃dt− 1 + ρ̃(T − t)

2 + ρ̃(T − t)
(1−ν)dNt.

(15)

This strategy X̃ would be optimal if ρ̃ = ρ, with the expected cost − (1−ν)2

(1−ǫ)q × 2κ0m2

[
T
2 − 1

ρ ln
(

1 + ρT
2

)]

.

Proposition 4.2. Let r = ρ̃
ρ > 0. The expected cost of the strategy X̃ is given by

E[C(X̃)] =
(1− ν)2

(1− ǫ)q
× 2κ0m2

ρ
× f(r),

where f(r) = − ρT
2 +ln

(

1 + ρrT
2

)

−
(
1− 1

r

)2
L(ρr,−ρ, T )−

(
1
r + r − 2

)
× exp(−ρT )

2+ρrT +
(
r − 1

r

)
× 1

2+ρrT + 1
r − 1.

The function f is negative, nonincreasing on (0, 1] and nondecreasing on [1,∞), and X̃ is thus a PMS.

The proof of Proposition 4.2 is postponed to Appendix C.2. This results shows the robustness of the PMS
obtained by the optimal execution problem with respect to the estimation of ρ. When taking ρ̃ = 0, the
strategy X̃ is the very basic one which consists in trading half of the volume times (1 − ν)/(1 − ǫ) of each
incoming market order in the opposite direction.
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To be more quantitative, in the worst-case underestimation scenario (r → 0+), we get from (55) that

E[C(X̃)] ∼
T→+∞

− (1−ν)2

(1−ǫ)q × 2κ0m2 × T/4, which is only divided by two with respect to the case where ρ

is known. Similarly, in the worst-case overestimation scenario (r → +∞), the asymptotic expected cost

E[C(X̃)] ∼
T→+∞

− (1−ν)2

(1−ǫ)q ×2κ0m2×ρT 2/12 obtained from (56) equals two thirds of the one when ρ is known.

4.3 Transaction costs

The last subsection demonstrates the robustness of the PMS in the Poisson model. However, such strategies
may be no longer relevant if there are transaction costs. We now consider the effect of proportional transaction
costs, that can arise in practice from the crossing of the bid-ask spread or from transaction fees imposed by
the market organizer, for instance. Only in this subsection, we assume that any market order of signed volume
v undergoes the additional cost γ|v|, with γ ≥ 0 a constant. We still consider the balanced model with δ0 = 0
and, for simplicity, d0 = 0. Also, we focus on the existence of PMS and assume x0 = 0. Solving explicitly the
optimal execution problem with proportional transaction costs is not obvious. However, it would be natural
for the strategic trader to consider a strategy which is a linear interpolation between the optimal one when
there is no transaction cost and the strategy that ignores the jumps of N , which is optimal when γ → +∞.
This leads to consider the strategy Xθ computed with a process Nθ = θ ×N instead of N , with θ ∈ [0, 1].
In the present context, this yields Xθ = θ ×X∗, where X∗ is given by Theorem 4.1 when x0 = d0 = δ0 = 0.
We can compute the expected value of this strategy (see Appendix C.3)

E[C(Xθ)] + γ||Xθ|| = −[2θ(1− θ) + θ2]× (1− ν)2

(1− ǫ)q
× 2κ0m2

[
T

2
− 1

ρ
ln

(

1 +
ρT

2

)]

+ γ||Xθ|| (16)

= θ ×
{

γ||X∗|| + (θ − 2)× (1− ν)2

(1− ǫ)q
× 2κ0m2

[
T

2
− 1

ρ
ln

(

1 +
ρT

2

)]}

where we define ||X || = E

[∫ T

0
|dX |t

]

. The bracket term is increasing with respect to θ and is minimal for

θ = 0. This leads to the following result.

Proposition 4.3. Let γc

T = 2(1−ν)2

(1−ǫ)q × 2κ0m2

[
T
2 − 1

ρ ln
(

1 + ρT
2

)]

/||X∗|| > 0. If γ < γc

T , Xθ∗

T with

θ∗T = 1− γ

γc

T

∈ (0, 1]

is a PMS, and it is the optimal choice among all the strategies Xθ, θ ∈ [0, 1]. If γ ≥ γc

T , none of these
strategies lead to a PMS.

Therefore, having γ ≥ γc
T for any T > 0 is a necessary (but not sufficient) to exclude PMS. From a regulatory

perspective, requiring this condition either by fixing the tick size or by adding transaction costs would be a
way to restrict the PMS in the Poisson framework. Although γc

T cannot be determined analytically, we have
the following result.

Lemma 4.1. The critical level γc

T of transaction costs satisfies γ
T
≤ γc

T ≤ γT , with

γ
T
=

2(1− ν)× 2κ0m2

[
T
2 − 1

ρ ln
(

1 + ρT
2

)]

/q

2κ0m1

[

T − 1
ρ ln

(

1 + ρT
2

)]

+
√

2κ0m2(2+ρT )
ρ ×

{
π
2 − arccos

(√
ρT

2+ρT

)}

−
√

κ0m2T
2+ρT

γT =
2(1− ν) m2

q m1
×



1− T/2

T − 1
ρ ln

(

1 + ρT
2

)



 .

Besides, we have γ∞ = γc

∞ = γ∞ = (1−ν)m2

qm1
, thus θ∗∞ = 1− γqm1

(1−ν)m2
if γ < (1−ν)m2

qm1
.
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The proof of this Lemma is given in Appendix C.3. The limits when T → +∞ gives some quantitative
insights on the value of the critical threshold that are in line with heuristic arguments. If the liquidity level
q is high or ν is close to one, the temporary price impact of market orders from environment traders is small
and the strategic trader can make less profit by reacting to these orders. Also, the higher the ratio m2/m1,
the higher the variance of the volume of incoming orders, the larger the arbitrage opportunities when big
market orders are placed on the book. Interestingly, γc

∞ does depend on κ0 that tunes the instantaneous
traded volume.

4.4 Low-frequency asymptotics

In this section, we study the price process (Pt) in the absence of the strategic trader, and we are interested
in the behaviour of P at a large time scale when buy and sell orders are balanced, i.e. δ0 = 0. To do so, we
first analyze the process D and show that it is ergodic. To do so, we introduce the processes

dD+
t = −ρ D+

t dt +
1− ν

q
dN+

t , dD−
t = −ρ D−

t dt +
1− ν

q
dN−

t ,

with D+
0 = max(D0, 0) and D−

0 = max(−D0, 0). These processes are independent, nonnegative and such
that D = D+ −D−.

Proposition 4.4. As t goes to infinity, D+
t converges in distribution to an a.s. positive and finite random

variable D+
∞. The Laplace transform of the limit law is given by

∀u > 0, E[exp(−uD+
∞)] = exp

(

−κ0
ρ

∫ (1−ν)u/q

0

1− ψµ(θ)

θ
dθ

)

(17)

where ψµ is the Laplace transform of µ. In particular, we have E[D+
∞] = 1−ν

q × κ0m1

ρ and Var[D+
∞] =

(1−ν)2

q2 × κ0m2

2ρ .

The proof of this theorem is given in Appendix D.1. It gives immediately that Dt converges in law to a

random variable D∞ that satisfies E[D∞] = 0 and Var[D∞] = (1−ν)2

q2 × κ0m2

ρ .

To study the low-frequency asymptotics of the price process P , we have to rescale accordingly price and time.

We then consider the sequence P
(n)
t = Pnt/

√
n for n ≥ 1. We have P

(n)
t = S

(n)
t +D

(n)
t , where we also define

S
(n)
t = Snt/

√
n and D

(n)
t = Dnt/

√
n. On the one hand, the process D(n) converges to zero from the ergodic

property of D. On the other hand, the process S
(n)
t converges in law to ν

q

√
2κ0m2 W , with W a standard

Brownian motion. This can be easily obtained since the increments of S
(n)
t are independent and stationary

and S
(n)
t converges in distribution toward a centered normal variable with variance 2κ0m2t

(
ν
q

)2

.

Proposition 4.5. For any T > 0, the sequence (P
(n)
t , t ∈ [0, T ]) converges weakly to the Bachelier price

process (P̃t, t ∈ [0, T ]) as n goes to infinity, where P̃t = ν
q

√
2κ0m2 Wt.

It is interesting to notice that the MIP model is compatible with low-frequency dynamics that exclude
arbitrages, even though it allows PMS at a short time scale. Figure 2 illustrates this convergence and shows
that the relative importance of D with respect to S vanishes as the time scale increases.

12



0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4
6

t

 
Dt

St−S0

0 5 10 15 20 25

−
30

−
20

−
10

0
10

20
30

t

 

Dt

St−S0

0 100 200 300 400

−
10

0
−

50
0

50
10

0

t

 

Dt

St−S0

0.0 0.2 0.4 0.6 0.8 1.0

49
.9

4
49

.9
6

49
.9

8
50

.0
0

50
.0

2
50

.0
4

50
.0

6

t

 

Pt/100

0 5 10 15 20 25

49
.7

49
.8

49
.9

50
.0

50
.1

50
.2

50
.3

t

 
Pt/100

0 100 200 300 400

49
.0

49
.5

50
.0

50
.5

51
.0

t

 

Pt/100

Figure 2: Simulated trajectories in the Poisson model with q = 100, ρ = 50, D0 = 1, S0 = 5000, κ+0 = κ−0 =
60, m1 = 50, ν = 0.3, µ = Exp(1/m1). We plot Dt and St − S0 (above), and Pt/100 (below), over the time
scales: T2 = 1 (left), T1 = 25 (middle), T0 = 400 (right). The scaling of the graphs with respect to the time
scale is square root.

5 The Mixed-market-Impact Hawkes (MIH) model

We need to introduce some additional notations to present the main results on the optimal execution. Instead
of working with κ+t and κ−t , we will rather use the δt = κ+t − κ−t and Σt = κ+t + κ−t that satisfy from (10)

dδt = −β δt dt + α (dJ+
t − dJ−

t ) , dΣt = −β (Σt − 2κ∞) dt + (α+ 2ιc) (dJ
+
t + dJ−

t ), (18)

with α = ιs − ιc. We note (τi)i≥1 the ordered random jump times of J (i.e. those of N) and set τ0 = 0. For
t ∈ [0, T ], we also note χt = J+

t + J−
t the total number of jumps that occurred between time 0 and time t.

From (18), we have

δt = δ0 exp(−βt) + α

χt∑

l=1

exp(−β(t− τl))∆Jτl = δ0 exp(−βt) + α exp(−βt) Θχt
,

where we define Θ0 = 0 and

Θi =

i∑

l=1

exp(βτl)∆Jτl =
∑

0<τ≤τi

exp(βτ) ∆Jτ , i ≥ 1.
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For i ≥ 0 and t ∈ [τi, τi+1), we obtain that δt exp(βt) = δ0 + αΘi only depends on t through the integer
i = χt. Last, we define the differentiable function ζ : R → R

+ by

∀y 6= 0, ζ(y) =
1− exp(−y)

y
, ζ′(y) =

(1 + y) exp(−y)− 1

y2
(19)

and ζ(0) = 1, ζ′(0) = −1/2. We have ζ′ ≤ 0, ζ(y) → +∞ as y goes to −∞ and ζ(y) → 0 as y goes to +∞.
For λ ∈ R and u ≥ 0, one also has d

du [uζ(λu)] = exp(−λu) and [1− ζ(λu)]/λ→ u/2 as λ vanishes.

5.1 The optimal strategy

In this MIH model, the five state variables of the problem are Xt, Dt, St, δt and Σt. To describe the optimal
strategy and the value function, we distinguish the cases α = β and α 6= β. The general case α 6= β is stated
in Theorem 5.1 below. When α = β, some simplifications occur in the formulas. Theorem A.1 gives the
optimal execution strategy and its cost in this case. The proof of these theorems is given in Appendix A.
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Figure 3: Optimal strategy in the Hawkes model for q = 100, T = 1, ρ = 50, α = β = 20, ιc = 0, κ∞ =
10, ǫ = 0.1, ν = 0.1, D0 = 1, κ+0 = κ−0 = 60, m1 = 50, X0 = −500 and µ = Exp(1/m1), with the
corresponding trajectory of (Nt).

We introduce some notations, and define
η = β − α.

We refer to (11) and (19) for the definitions of L and ζ, and we also set for 0 ≤ s ≤ u ≤ T

φη(t) =
1

2(2 + ρ(T − t))
×
[

1 + exp(−η(T − t)) + νρ(T − t)ζ(η(T − t))

+
β

ρ
[2 + ρ(T − t)× {1 + ζ(η(T − t)) + νρ[1− ζ(η(T − t))]/η}]

]

,

14



and

Φη(s, t) =
1

2

(
1

ρ
+
ν

η

)

× [exp(−βs)− exp(−βt)]

+
exp(−βT )

2ρ
×
[

1 +
ν(ρ− 2β)

η
+
β

η

(

1− νρ

η

)]

× [L(ρ, β, T − s)− L(ρ, β, T − t)]

+
exp(−βT )

2ρ
×
[

1− νρ

η
− β

η

(

1− νρ

η

)]

× [L(ρ, α, T − s)− L(ρ, α, T − t)].

Theorem 5.1. Let ǫ ∈ [0, 1). When η = β − α 6= 0, the optimal strategy X∗ is given by

(1− ǫ)∆X∗
0 = −

(1− ǫ)x0 + [1 + ρT ]qD0 − m1

2ρ × [2 + ρT × {1 + ζ(ηT ) + νρ[1− ζ(ηT )]/η}] δ0
2 + ρT

,

(1 − ǫ)∆X∗
T =

qD0 − (1− ǫ)x0
2 + ρT

+
δ0m1

2ρ
×
[
2 + ρT × {1 + ζ(ηT ) + νρ[1− ζ(ηT )]/η}

2 + ρT
− 2ρ Φη(0, T )

]

− αm1

[

ΘχT
Φη (τχT

, T ) +

χT−1
∑

i=1

Θi Φη(τi, τi+1)

]

+
∑

0<τ≤T

(1 − ν) ∆Nτ

2 + ρ(T − τ)

+
αm1

2ρ
×

∑

0<τ≤T

2 + ρ(T − τ)× {1 + ζ(η(T − τ)) + νρ[1− ζ(η(T − τ))]/η}
2 + ρ(T − τ)

∆Jτ

− m1

ρ
(δ0 + αΘχT

) exp(−βT ),

and, on (0, T ),

(1 − ǫ)dX∗
t =

[
2 + ρT × {1 + ζ(ηT ) + νρ[1− ζ(ηT )]/η}

2 + ρT
− 2ρ Φη(0, t)

]
δ0m1

2
dt

− m1 φη(t) (δ0 + αΘχt
) exp(−βt) dt

+




qD0 − (1− ǫ)x0

2 + ρT
+

∑

0<τ≤t

(1− ν)∆Nτ

2 + ρ(T − τ)



 ρdt

+




∑

0<τ≤t

2 + ρ(T − τ) × {1 + ζ(η(T − τ)) + νρ[1− ζ(η(T − τ))]/η}
2 + ρ(T − τ)

∆Jτ




αm1

2
dt

−
[

Θχt
Φη (τχt

, t) +

χt−1
∑

i=1

Θi Φη(τi, τi+1)

]

ραm1 dt

+
1 + ρ(T − t)

2 + ρ(T − t)

{
αm1

ρ
dJt − (1− ν) dNt

}

+
αm1

2ρ
(νρ− η)× ρ(T − t)× [1− ζ(η(T − t))]/η

2 + ρ(T − t)
dJt.

The value function function of the problem is then:

q × C(t, x, d, z, δ,Σ) = −q(z + d)x +

[
1− ǫ

2 + ρ(T − t)
+
ǫ

2

]

x2 +
ρ(T − t)

2 + ρ(T − t)

[

qd− Gη(T − t)
δm1

ρ

]

x

− 1

1− ǫ
× ρ(T − t)/2

2 + ρ(T − t)

[

qd− Gη(T − t)
δm1

ρ

]2

+ ĉη(T − t)

(
δm1

ρ

)2

+ e(T − t) Σ + g(T − t),
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where for u ∈ [0, T ],

Gη(u) = ζ(ηu) + νρ[1− ζ(ηu)]/η

ĉη(u) = − 1

1− ǫ
×
(

1− νρ

η

)2

× ρuζ(ηu)

8
× [1 + exp(−ηu)− 2ζ(ηu)] .

The functions e and g are the unique solution of the differential equations (33) and (34) with e(0) = g(0) = 0.
When η = 0, the optimal strategy is given by Theorem A.1.

Let us mention here that the functions e and g admit explicit forms by the mean of the exponential integral
function, that are very cumbersome. They can be obtained by using a formal calculus software such as
Mathematica. Since they do not play any role for the optimal strategy and require several pages to be
displayed, we do not give these explicit formulas except in the case α = β, see Theorem A.1.

It is worth to notice that the optimal strategy X∗ is affine with respect to x0, D0, δ0, J and N . This is
due to the affine structure of the model and the quadratic costs. In particular, the reaction of the optimal
strategy to the other trades does not depend on x0. Also, the optimal strategy can be seen as the sum of
the strategy (7) which is optimal when D0 = δ0 = 0 and J ≡ N ≡ 0 and the optimal PMS which is given by
Theorem 5.1 when x0 = 0.

Let us make some comments on the optimal strategy and more precisely how the strategic trader reacts to the
other orders. Quite similarly to the Poisson case, the trade that follows immediately an order is compensated
by the continuous trading rate. Contrary to the Poisson model, this trade is not always contrary to the
previous market order. Namely, in the case where η = νρ, the strategic trader makes a trade in the opposite
direction if |dNt| > αm1

ρ(1−ν) , but trades in the same way otherwise. The same conclusion holds for any

parameter value when T − t → 0. We now consider the asymptotics when the trading horizon is large: in
this case, it is likely to assume that η > 0 which is required to get stationary intensities κ+ and κ−, see
Section 5.3. Then, when T − t→ +∞ the jump part of the optimal strategy can be well approximated by

αm1

2ρ

(

1 +
ρν

η

)

dJt − (1− ν) dNt.

Therefore, the strategic trader makes a trade in the opposite direction if |dNt| > αm1

2ρ(1−ν) (1 +
ρν
η ) and trades

in the same direction otherwise. Heuristically, we can understand this behavior as follows when ιc = 0. In the
MIH model, market orders all have the same excitation on the intensity. If a market buy order is relatively
small, it may be a part of a big split order, and thus be followed by other buy orders that will make the
price go up, and the strategic trader has interest to follow this trend. However, if a market buy order is
relatively big, the price resilience effect is likely to dominate and the strategic trader has interest to trade in
the opposite way, as in the Poisson model.

Last, it is interesting to notice that the optimal strategy only depends on (ιs, ιc) through α = ιs − ιc. This
key self-excitation parameter tunes the way that the strategic trader should react to other market orders.

5.2 The Mixed-Impact Hawkes Martingale (MIHM) model and manipulation
strategies

Theorem 2.1 gives a necessary and sufficient condition on N to exclude Price Manipulation Strategies. Here,
we apply this result to identify which parameters in the Hawkes model exclude PMS.

Proposition 5.1. The MIH model does not admit PMS if, and only if the following conditions hold

β = ρ, α = (1− ν)ρ, µ = Dirac(m1) (i.e. N = m1 × J), and qD0 =
m1

ρ
δ0 (20)

or µ = Dirac(0) with D0 = 0. In both these cases, the optimal execution strategy is given by (7).
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To be precise, when m1 = 0, N ≡ 0 and the MIH model does not depend any longer on the parameters α
and β, that can then be fixed arbitrarily.

Proof. From Theorem 2.1, PMS are excluded if, and only if the price P is a martingale when X ≡ 0. In this
case, we have from (1), (2), (3) and (18)

dPt = −ρDtdt+
1

q
dNt =

1

q
(dNt − δtm1dt) +

(
m1

q
δt − ρDt

)

dt.

Therefore, P is a martingale if, and only if m1

ρ δt = qDt P-a.s., dt a.e. This condition is equivalent to

qD0 = m1

ρ δ0 and qdDt =
m1

ρ dδt. From (3) and (18), the latter condition is equivalent to

ρqDt =
m1

ρ
βδt and (1 − ν)dNt = α

m1

ρ
dJt,

which leads to (20). Conversely, (20) implies m1

ρ δt = qDt, and P is then a martingale.

Remark 5.1. When β = ρ, α = (1 − ν)ρ, µ = Dirac(m1), we get from the previous calculations that
d(m1

q δt−ρDt) = −ρ(m1

q δt−ρDt)dt, and therefore m1

q δt−ρDt converges exponentially to zero. The condition
qD0 = m1

ρ δ0 simply means that the model starts from this steady state.

One can also check directly that the optimal strategy and its cost given by Theorem 5.1 coincide with those
of Theorem 2.1 when (20) holds. For clear reasons, we call Mixed-Impact Hawkes Martingale (MIHM)
model the MIH model when (20) holds. Proposition 5.1 is very interesting since it gives what should be the
parameters of the MIH model in a perfect market without PMS, and makes connection between the different
model parameters. First, the condition β = ρ means that the mean-reverting action of liquidity providers
compensates the autocorrelation in the signs of the trades of liquidity takers ; we thus reach a conclusion
similar to Bouchaud et al. [12]. The condition α = (1− ν)β gives a link between the Hawkes kernel and the
proportion 1− ν of transient price impact. When ιc = 0, α/β represents the average number of child orders
coming from one market order, and is thus equal to the proportion of endogenous orders (i.e. triggered by
other orders) in the market. What we obtain here is that this ratio should be equal to 1 − ν, which is a a
priori different measure of endogeneity, since it gives the proportion of market impact that does not influence
the low-frequency price (see Section 5.3). The positivity of α reflects the fact that the parameter ιc tuning
opportunistic trading should be small to avoid market instability. Last, it is interesting to notice that µ
should be a Dirac mass, which means that market orders should be in principle all of the same size. This is
a consequence of the modeling that assumes that any market order has the same excitation on the intensity,
regardless of its size. However, if we admit that orders that have roughly the same size have a similar impact,
the size of market orders should cluster around some values. Typically, the most common size should be the
average size that moves the price of one tick.

Of course, in practice, it would be miraculous if the estimation of the MIH model to market data led to
parameters satisfying exactly (20). Market frictions such as transaction costs (and the crossing of the bid-ask
spread) or the latency to execute an order increase the execution costs (see Stoikov and Waeber [32]) and
then limit possible PMS. Therefore, one may expect that an estimation of the MIH to market data gives
parameters that are not too far away but different from the condition (20). Then, the optimal strategy
given by Theorem 5.1 is useful and should give better perform than the one given by (7). The practical
implementation of the MIH model on market data is left for future research.

The framework of the MIH model also gives some interesting insights for the characterization of the existence
of short-time arbitrages. Let us introduce the following definition.

Definition 5.1. We say that a market admits weak Price Manipulation Strategies (wPMS) if the cost of a
liquidation strategy can be reduced by trading immediately after other market orders.
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Corollary 5.1. In the MIH model, the market does not admit wPMS if, and only if,

β = ρ, α = (1− ν)ρ and µ = Dirac(m1) (21)

or µ = Dirac(0).

Proof. The proof is quite straightforward from Theorem 5.1. The jump term

1 + ρ(T − t)

2 + ρ(T − t)

{
αm1

ρ
dJt − (1− ν) dNt

}

+
αm1

2ρ
(νρ− η)× ρ(T − t)× [1− ζ(η(T − t))]/η

2 + ρ(T − t)
dJt

cannot be almost surely equal to zero if µ is not a Dirac mass, and we necessarily have µ = Dirac(m1). When
m1 > 0, this leads to

∀t ≥ 0, (1 + ρt)

(
α

ρ
− (1 − ν)

)

+
α

2ρ
(νρ− η)ρt

1− ζ(ηt)

η
= 0,

which precisely gives (21). The converse implication is obvious.

By Remark 5.1, the condition qD0 = m1

ρ δ0 means that the model has reached its equilibrium, which is
basically the case after some time. Therefore, the conditions that exclude wPMS and PMS in the MIH model
are quite the same. This is an interesting link between two different point of views. The condition “no PMS”
means that there is no free source of income. The condition “no wPMS” rather brings on market stability,
since it excludes artificial trading volume coming from the response to other trades.

5.3 Law of the price process and low-frequency asymptotics

In this section, we are interested in price asymptotics when the strategic trader is absent, i.e. X ≡ 0. We
first focus on the intensities κ+ and κ−. From (10), we have

κ+t = κ+0 exp(−βt) + κ∞(1− exp(−βt)) +
∫ t

0

ιs exp(−β(t− s))dJ+
s +

∫ t

0

ιc exp(−β(t− s))dJ−
s

κ−t = κ−0 exp(−βt) + κ∞(1− exp(−βt)) +
∫ t

0

ιc exp(−β(t− s))dJ+
s +

∫ t

0

ιs exp(−β(t− s))dJ−
s .

We know that this process converges to a stationary law if ιs + ιc = α + 2ιc < β, see e.g. equation (6) of

Bacry et al. [7]. Since δt = δ0 exp(−βt) + α
∫ t

0 exp(−β(t − s))dJs and Jt −
∫ t

0 δsds is a martingale, one has
d
dt {exp(βt)E[δt]} = α exp(βt)E[δt], thus

E[δt] = δ0 exp(−(β − α)t).

Similarly, Σt = 2κ∞(1 − exp(−βt)) + Σ0 exp(−βt) + (α + 2ιc)
∫ t

0 exp(−β(t − s))(dJ+
s + dJ−

s ), which yields
d
dt {exp(βt)E[Σt]} = (α + 2ιc) exp(βt)E[Σt] + 2βκ∞ exp(βt). The resolution of this ODE gives E[Σt] =
Σ0 + 2βκ∞t if α+ 2ιc = β, and

E[Σt] = Σ0 exp(−(β − α− 2ιc)t) + 2κ[1− exp(−(β − α− 2ιc)t)]

where
κ :=

κ∞
1− (α+ 2ιc)/β

otherwise. We then have the following result.

Proposition 5.2. The process (κ+t , κ
−
t ) converges to a stationary law if, and only if α+ 2ιc < β.
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Remark 5.2. In is interesting to look at the stationarity condition when the conditions α = (1− ν)β, β = ρ
required for the MIHM model hold. In this case, the stationarity condition becomes ρ > (1 − ν)ρ+ 2ιc, i.e.

ιc < νρ/2.

The quantity of ν × ρ can be seen as a stationarity margin left for cross-excitation in market orders. If this
condition is violated, the price process is still a martingale but the mutual excitation between buy and sell
orders makes the volatility increase exponentially.

We now study the low-frequency asymptotics of the price process P . As in the Poisson case, we consider

the sequence P
(n)
t = Pnt/

√
n for n ≥ 1. We have P

(n)
t = S

(n)
t + D

(n)
t , where we also set S

(n)
t = Snt/

√
n

and D
(n)
t = Dnt/

√
n. To study the behaviour of D(n), we need the following lemma that is proved in

Appendix D.2.

Lemma 5.1. When α+ 2ιc < β, the expectation E[D2
t ] converges when t→ +∞.

Thanks to this lemma, (D
(n)
t1 , . . . , D

(n)
tk

) converges to zero for the L2 norm for any 0 ≤ t1 ≤ · · · ≤ tk. This

gives that the process D(n) converges to zero. We now focus on the convergence of S
(n)
t = ν

q
N+

nt−N−

nt√
n

. To do

so, we apply Corollary 1 of Bacry et al. [8]. It gives the convergence in law of

(√
n

(
1

n

(
J+
nt

J−
nt

)

− t
κ∞

1− α/β

(
1
1

))

, t ∈ [0, T ]

)

to

(
√

κ∞

1−α/β
β

(β−α)(β−(α+2ιc))

(
(β − ιs)B

1
t − ιcB

2
t

−ιcB1
t + (β − ιs)B

2
t

)

, t ∈ [0, T ]

)

, where B is a two dimensional standard

Brownian motion. Therefore,
(

J+
nt−J−

nt√
n

, t ∈ [0, T ]
)

converges in law to

(√

2κ∞
1− α/β

1

1− α+2ιc
β

Wt, t ∈ [0, T ]

)

,

where W is a standard Brownian motion. Let us now assume that the jumps are bounded, i.e.

∃K > 0, µ([0,K]) = 1. (22)

Then, it is not difficult to adapt the proof of Bacry et al. [8] and in particular Lemma 7 of [8] to get that

(√
n

(
1

n

(
N+

nt

N−
nt

)

− t
κ∞m1

1− α/β

(
1
1

))

, t ∈ [0, T ]

)

converges in law to

(
√

κ∞m2

1−α/β
β

(β−α)(β−(α+2ιc))

(
(β − ιs)B

1
t − ιcB

2
t

−ιcB1
t + (β − ιs)B

2
t

)

, t ∈ [0, T ]

)

. This leads to the fol-

lowing result.

Proposition 5.3. When α + 2ιc < β and (22) holds, (P
(n)
t , t ∈ [0, T ]) converges in law to (P̃t, t ∈ [0, T ])

with P̃t =
ν
q

√
2κ∞m2√

1−α
β (1−

α+2ιc
β )

Wt =
ν
q

√
2κm2

(1−α
β )(1−

α+2ιc
β )

Wt.

We get back the result of Proposition 4.5 in the MIP model when ιc = ιs = 0 and κ0 = κ∞, and get again a
Bachelier model at a low frequency. Figure 4 illustrates the convergence. It is interesting to notice that we
have

P̃t =
1

q

√
2νκ∞m2

ν − 2 ιc
ρ

Wt
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in the MIHM model, and we get that the volatility explodes when ιc → νρ
2 , which is in line with Remark 5.2.

The volatility of P̃ is greater than 1
q

√
2κ∞m2

ν and goes to +∞ when the permanent impact ν goes to 0, which

is different from the Poisson case.
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Figure 4: Simulated trajectories in the MIHM model with q = 100, ρ = 50, D0 = −0.05, S0 = 5000, α =
35, β = 50, κ∞ = 6, κ+0 = 25, κ−0 = 30, ιc = 1.5, m1 = 50, ν = 0.3, µ = Dirac(m1). We plot Dt and
St − S0 (above), and Pt/100 (below), over the time scales: T2 = 4 (left), T1 = 100 (middle), T0 = 4900
(right). The scaling of the graphs with respect to the time scale is square root.

A Proof for the optimal control problem (Theorems 4.1, A.1 and
5.1)

A.1 Notations and methodology

In the general Hawkes model, the jump intensity of the process (Nt) is characterized by the càdlàg Markovian
process (δt,Σt) defined by (18), taking values in R × R

+, which is constant and equal to its initial value in
the Poisson model. The state variable of the problem is then (Xt, Dt, St, δt,Σt), and the control is Xt − x0,
i.e. the variation of the position of the strategic trader, (Xt)t∈[0,T ] being an admissible strategy as described
in Definition 2.1. The control program is thus to minimize E [C(0, X)] over all admissible strategies, where
the cost C(t,X) of the strategy X between t and T is given by

C(t,X) =

∫

[t,T )

Pu dXu +
1

2q

∑

t≤τ<T

(∆Xτ )
2 − PTXT +

1

2q
X2

T .
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The final value at time t = T is the cost of a market order of signed volume ∆XT = −XT (so that
XT+ = XT +∆XT = 0). At time t, the price Pt depends on Dt and St which in turn depend on (Xu)u∈[0,t].
The value function of the problem is

C(t, x, d, z, δ,Σ) = inf
(Xu)u∈[t,T ] adm.

E [C(t,X)]

with Xt = x, Dt = d, St = z, δt = δ and Σt = Σ. In order to determine analytically the value function
and the optimal control of the problem, we use the probabilistic formulation of the verification theorem. We
determine a priori a continuously differentiable function C(t, x, d, z, δ,Σ) and an admissible strategy X∗ and
we verify that

Πt(X) :=

∫ t

0

Pu dXu +
1

2q

∑

0≤τ<t

(∆Xτ )
2 + C(t,Xt, Dt, St, δt,Σt) (23)

is a submartingale for any admissible strategy X , and that Πt(X
∗) is a martingale. We proceed in three

steps:

1. We define a suitable function C, and derive a set of ODEs on its coefficients which is a necessary
condition for C to be the value function of the problem. This step is common to the Poisson model
(α = β = 0, δt ≡ δ0, Σt ≡ Σ0), and the cases (0 < α = β) and (α 6= β) for the Hawkes model.

2. We solve the set of ODEs by distinguishing the cases α = β and α 6= β.

3. Using the results of the previous steps, we derive the strategy X∗ such that Πt(X
∗) is a martingale.

Here, we must distinguish the cases α = β = 0, 0 < α = β and α 6= β.

The verification argument then yields that C(t, x, d, z, δ,Σ) is the value function and that X∗ is optimal.
Without loss of generality, we can assume that q = 1 by using Remark 2.1.

A.2 Necessary conditions on the value function

We search a cost function C as a generic quadratic form of the variables x, d, z, δ,Σ with time-dependent
coefficient (the variable z symbolizes the current value of the fundamental price St). As we see further, we
need C to verify ∂xC + (1 − ǫ)∂dC + ǫ ∂zC + d + z = 0 : it is thus necessary that C is a quadratic form of
(d− (1− ǫ)x), (z − ǫx), δ and Σ, plus a term −(d+ z)2/2. We define

C(t, x, d, z, δ,Σ) = a(T − t)(d− (1 − ǫ)x)2 +
1

2
(z − ǫx)2 + (d− (1− ǫ)x)(z − ǫx) − (d+ z)2

2

+ b(T − t) δ (d− (1− ǫ)x) + c(T − t) δ2 + e(T − t) Σ + g(T − t), (24)

with a, b, c, e, g : R+ → R continuously differentiable functions. We choose the limit condition C(T, x, d, z, δ,Σ) =
−(d+ z)x + x2/2 = 1

2 (d + z − x)2 − (d+ z)2/2, which is the cost of a trade of signed volume −x. We thus
have

a(0) =
1

2
, b(0) = c(0) = e(0) = g(0) = 0.

Let us note that other terms should be added in equation (24) for C to be a generic quadratic form. The five
terms

h1(T − t) (d− (1 − ǫ)x) + h2(T − t) Σ(d− (1− ǫ)x) + h3(T − t) δΣ + h4(T − t) δ + h5(T − t)(z − ǫx)

have to be equal to zero since C(t, x, d, z, δ,Σ) = C(t,−x,−d,−z,−δ,Σ) by using Remark 2.1 and the fact
that the buy and sell orders play a symmetric role. For the term in Σ2, we checked in prior calculations that
it is necessarily associated to a zero coefficient. For ∆x ∈ R, we have

C(t, x+∆x, d+ (1 − ǫ)∆x, z + ǫ∆x, δ,Σ)− C(t, x, d, z, δ,Σ) = −(d+ z)×∆x − (∆x)2

2
. (25)
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The process C(t,Xt, Dt, St, δt,Σt) is làdlàg, and with the notations of Remark 2.2, we have by using (25)

dC(t,Xt, Dt, St, δt,Σt) = ∂tC(t,Xt, Dt, St, δt,Σt)dt + ∂xC(t,Xt, Dt, St, δt,Σt)dX
c
t

+ ∂dC(t,Xt, Dt, St, δt,Σt)
(

− ρDtdt+ (1 − ǫ)dXc
t

)

+ ∂zC(t,Xt, Dt, St, δt,Σt) ǫdX
c
t

− β δt ∂δC(t,Xt, Dt, St, δt,Σt) dt− β(Σt − 2κ∞) ∂ΣC(t,Xt, Dt, St, δt,Σt) dt

+
[

C(t,Xt, Dt− + (1 − ν)∆Nt, St− + ν∆Nt, δt− + α(∆J+
t −∆J−

t ),Σt− + (α+ 2ιc)(∆J
+
t +∆J−

t ))

− C(t,Xt, Dt− , St− , δt− ,Σt−)
]

− (Dt + St) ∆Xt − (∆Xt)
2

2
.

The definition of Π(X) given by (23) yields dΠt(X) = (Dt + St)dX
c
t + (Dt + St)∆Xt + (∆Xt)

2/2 +
dC(t,Xt, Dt, St, δt,Σt). We define the continuous finite variation process (AX

t )t∈(0,T ) such that AX
0+ =

C(0, X0+ , D0+ , S0+ , δ0,Σ0) and for t ∈ (0, T )

dAX
t = (Dt + St) dXc

t + Z(t,Xt, Dt, St, δt,Σt)dt

+ ∂tC(t,Xt, Dt, St, δt,Σt)dt + ∂xC(t,Xt, Dt, St, δt,Σt)dX
c
t

+ ∂dC(t,Xt, Dt, St, δt,Σt)
(

− ρDtdt+ (1− ǫ)dXc
t

)

+ ∂zC(t,Xt, Dt, St, δt,Σt) ǫdX
c
t

− β δt ∂δC(t,Xt, Dt, St, δt,Σt) dt − β (Σt − 2κ∞) ∂ΣC(t,Xt, Dt, St, δt,Σt) dt,

where, for V ∼ µ,

Z(t, x, d, z, δ,Σ) :=
Σ + δ

2
× E

[
C(t, x, d+ (1− ν)V, z + νV, δ + α,Σ + α+ 2ιc)− C(t, x, d, z, δ,Σ)

]

+
Σ− δ

2
× E

[
C(t, x, d− (1− ν)V, z − νV, δ − α,Σ + α+ 2ιc)− C(t, x, d, z, δ,Σ)

]
.

Then, Π(X)−AX is a martingale (let us note that almost surely, dt -a.e. on (0, T ), Z(t,Xt, Dt− , St− , δt− ,Σt−) =
Z(t,Xt, Dt, St, δt,Σt)). This yields that Π(X) is a submartingale (resp. a martingale) iff AX is increasing
(resp. constant). From (25), we obtain ∂xC(t, x, d, z, δ,Σ)+ (1− ǫ)∂dC(t, x, d, z, δ,Σ)+ ǫ ∂zC(t, x, d, z, δ,Σ)+
d+ z = 0, and then

dAX
t =

{

∂tC(t,Xt, Dt, St, δt,Σt)− ρ Dt ∂dC(t,Xt, Dt, St, δt,Σt) + Z(t,Xt, Dt, St, δt,Σt)

−β δt ∂δC(t,Xt, Dt, St, δt,Σt) − β (Σt − 2κ∞) ∂ΣC(t,Xt, Dt, St, δt,Σt)
}

dt. (26)

Given the quadratic nature of the problem, we search a process AX of the form

dAX
t =

ρ

1− ǫ
dt×

[

j(T − t)(Dt − (1− ǫ)Xt) − Dt + k(T − t) δt

]2

, (27)

with j, k : R+ → R continuously differentiable functions, in order to obtain an non-decreasing process AX that
can be constant for a specific strategy X∗. Let us note Yt := Dt−(1−ǫ)Xt, Ξt := St−ǫXt, y := d−(1−ǫ)x,
ξ := z − ǫx. Since d+ z = y + ξ + x = ξ + d−ǫy

1−ǫ , we have

∂tC(t, x, d, z, δ,Σ) = −ȧ y2 − ḃ δy − ċ δ2 − ė Σ − ġ,

−ρd ∂dC(t, x, d, z, δ,Σ) = −
(

2ρa+
ρǫ

1− ǫ

)

dy +
ρ

1− ǫ
d2 − ρb δd,

−βδ ∂δC(t, x, d, z, δ,Σ) = −βb δy − 2βc δ2,

−β(Σ− 2κ∞) ∂ΣC(t, x, d, z, δ,Σ) = −βe Σ + 2βκ∞e,
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E
[
C(t, x, d+ (1− ν)V, z + νV, δ + α,Σ+ α)− C(t, x, d, z, δ,Σ)

]

= a [(1− ν)2m2 + 2(1− ν)m1 y] +
ν2

2
m2 + νm1 ξ

+ ν(1− ν)m2 + νm1y + (1− ν)m1ξ − 1

2

(

m2 + 2 m1 ξ +
2m1

1− ǫ
d− 2ǫm1

1− ǫ
y

)

+ b [(1− ν)m1 δ + α y + α(1 − ν)m1] + c [α2 + 2α δ] + (α+ 2ιc)e,

and thus

Z(t, x, d, z, δ,Σ) =

(

m1 ×
[

2(1− ν)a+ ν +
ǫ

1− ǫ

]

+ αb

)

δy − m1

1− ǫ
δd

+ [(1− ν)m1b + 2αc] δ2

+

(

m2 ×
[

(1− ν)2a+ ν(1− ν/2)− 1

2

]

+ α(1 − ν)m1b + α2c+ (α+ 2ιc)e

)

Σ,

where we consider C as a function of the variables t, x, d, z, δ,Σ as in equation (26), and substitute d− (1− ǫ)x
by y and z − ǫx by ξ in the results. We then make the change of variables (x, d, z, δ,Σ) → (y, d, ξ, δ,Σ), and
we identify each term of equations (26) and (27):

(Eq. dy): −
(

2ρa+ ρǫ
1−ǫ

)

= − 2ρ
1−ǫ j.

(Eq. y2): −ȧ = ρ
1−ǫj

2.

(Eq. dy) yields j = (1 − ǫ)a+ ǫ
2 . We input this relation in (Eq. y2) and we have j̇ = (1 − ǫ)ȧ = −ρj2 thus

j(u) = 1
2+ρu since j(0) = (1− ǫ)a(0) + ǫ

2 = 1
2 . This yields a(u) = 1

1−ǫ

(
1

2+ρu − ǫ
2

)

with (Eq. dy).

(Eq. δy): − ḃ − βb + αb + m1 ×
[

2(1− ν)a+ ν + ǫ
1−ǫ

]

= 2ρ
1−ǫ jk.

(Eq. δd): − ρb − m1

1−ǫ = − 2ρ
1−ǫk,

which yields k(u) = 1−ǫ
2 b(u) + m1

2ρ . Plugging equation (29) in (Eq. δy), we have ḃ = −(β − α)b −
2ρ
1−ǫj

(
1−ǫ
2 b+ m1

2ρ

)

+m1

[

2(1− ν)a+ ν + ǫ
1−ǫ

]

, and since j/(1− ǫ) = a+ ǫ/[2(1− ǫ)], we have

ḃ(u) =
[

−(β − α)− ρ
2+ρu

]

b(u) + m1

1−ǫ ×
1+νρu
2+ρu .

(Eq. δ2): − ċ − 2βc + 2αc + (1− ν)m1b = ρ
1−ǫ k

2.

(Eq. Σ): − ė − βe + (α+ 2ιc)e + m2 ×
[
(1 − ν)2a+ ν(1− ν/2)− 1

2

]
+ α(1 − ν)m1b + α2c = 0.

We have 2(1− ǫ)×
[
(1− ν)2a+ ν(1− ν/2)− 1

2

]
= 2(1− ν)2/(2 + ρu)− (1− ν)2ǫ+ ν(2− ν)(1− ǫ)− (1− ǫ),

thus

ė(u) = −(β − α− 2ιc)e(u) + α(1 − ν)m1b(u) + α2c(u) + (1−ν)2 m2

1−ǫ ×
[

1
2+ρu − 1

2

]

(Eq. constant): − ġ + 2βκ∞e = 0.

We obtain two conditions on the coefficients of the process AX

j(u) =
1

2 + ρu
, (28)

k(u) =
1− ǫ

2
b(u) +

m1

2ρ
, (29)
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and the following set of necessary conditions on the coefficients of C

a(u) =
1

1− ǫ

(
1

2 + ρu
− ǫ

2

)

, (30)

ḃ(u) =

[

−(β − α)− ρ

2 + ρu

]

b(u) +
m1

1− ǫ
× 1 + νρu

2 + ρu
, (31)

ċ(u) = −2(β − α) c(u) + (1− ν)m1 b(u) − ρ

1− ǫ
k(u)2, (32)

ė(u) = −(β − α− 2ιc)e(u) + α(1− ν)m1b(u) + α2c(u) +
(1− ν)2 m2

1− ǫ
×
[

1

2 + ρu
− 1

2

]

, (33)

ġ(u) = 2βκ∞ e(u), (34)

b(0) = c(0) = e(0) = g(0) = 0.

The resolution of this set of equations determines entirely the function C(t, x, d, z, δ,Σ) defined in (24). This
is the purpose of the next step of this proof. Let us note that at this stage, we already know that the system
given by Equations (28) to (34) admits a unique solution, and that the function C which solves the system is
the value function of the problem by using the verification argument.

A.3 Resolution of the system of ODEs

First of all, we use Equation (30) to simplify the function C. The constant term (w.r.t. the time variable t)

in equation (24) is 1
2 (z − ǫx)2 + (d − (1 − ǫ)x)(z − ǫx) − (d+z)2

2 = −zx− d2

2 − ǫdx +
[
ǫ
2 + ǫ

2 (1− ǫ)
]
x2,

thus the sum of a(T − t)(d− (1− ǫ)x)2 and this constant term can be rewritten as

−(z + d)x +

[
1− ǫ

2 + ρ(T − t)
+
ǫ

2

]

x2 − 1

1− ǫ
× ρ(T − t)/2

2 + ρ(T − t)
d2 +

ρ(T − t)

2 + ρ(T − t)
dx. (35)

A.3.1 Case α = β (Theorems 4.1 and A.1)

In the case α = β, equation (31) becomes ḃ(u) = − ρ
2+ρub(u) + m1

1−ǫ ×
1+νρu
2+ρu . We thus search a solution of

the form b(u) = b̃(u)
2+ρu , which yields

˙̃
b(u) = m1

1−ǫ × (1 + νρu) and we obtain

b(u) =
m1u

1− ǫ
× 1 + ν

2ρu

2 + ρu
,

with the initial condition b(0) = 0. Equation (29) gives k(u) = m1

2ρ ×
(

ρu+ ν
2 ρ

2u2

2+ρu + 1
)

and

k(u) =
m1

ρ
× 1 + ρu+ ν

4ρ
2u2

2 + ρu
. (36)

Equation (32) can be rewritten as

ċ(u) =
m2

1

1− ǫ
×
[

(1− ν)
(
u+ ν

2ρu
2
)

2 + ρu
− 1

ρ

(
1 + ρu+ ν

4ρ
2u2

2 + ρu

)2
]

.

We have u+ ν
2ρu

2 = ν
2u(2 + ρu) + (1− ν)u, thus

u+ ν
2 ρu

2

2+ρu = ν
2u+ 1−ν

ρ ×
(

1− 2
2+ρu

)

. Moreover,

ρ2u2

4
=

1

4
(2 + ρu)2 − (2 + ρu) + 1,

1 + ρu+
ν

4
ρ2u2 =

ν

4
(2 + ρu)2 + (1− ν)(2 + ρu)− (1− ν),
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which yields (1+ρu+ ν
4ρ

2u2)2 = (1−ν)2[(2+ρu)2−2(2+ρu)+1]+
[
ν
2

(
1− ν

2

)
(1 + ρu) + ν2

16ρ
2u2
]

(2+ρu)2

by isolating the terms in (1 − ν)2. We obtain

ċ(u) = − m2
1

1− ǫ

[
(1− ν)2

ρ
× 1

(2 + ρu)2
+

ν

ρ
×
(
1

2
− ν

4
+
ν

4
ρu+

ν

16
ρ2u2

)]

.

Using the final condition c(0) = 0, we have

c(u) = − (1 − ν)2

1− ǫ
× m2

1

ρ2
×
[
1

2
− 1

2 + ρu

]

− νm2
1

ρ2(1− ǫ)
×
[(

1

2
− ν

4

)

ρu+
ν

8
ρ2u2 +

ν

48
ρ3u3

]

.

Equation (33) with α = β gives ė(u) = 2ιce(u) + β(1 − ν)m1b(u) + β2c(u) + (1−ν)2 m2

1−ǫ ×
[

1
2+ρu − 1

2

]

.

One has

β(1 − ν)m1b(u) =
1− ν

1− ǫ
× βm2

1

ρ
× ρu+ ν

2 ρ
2u2

2 + ρu

=
(1− ν)2

1− ǫ
× 2βm2

1

ρ
×
[
1

2
− 1

2 + ρu

]

+
βνm2

1

ρ(1− ǫ)
×
(
1

2
− ν

2

)

× ρu,

β2c(u) = − (1− ν)2

1− ǫ
× β2m2

1

ρ2
×
[
1

2
− 1

2 + ρu

]

− β2νm2
1

ρ2(1− ǫ)
×
(
1

2
− ν

2

)

× ρu

− β2νm2
1

ρ2(1− ǫ)
×
[ν

4
ρu+

ν

8
ρ2u2 +

ν

48
ρ3u3

]

.

We set e(u) = ẽ(u) exp(2ιcu) and we have

˙̃e(u) =
(1− ν)2

1− ǫ
×
(
βm2

1(2ρ− β)

ρ2
−m2

)

×
[
exp(−2ιcu)

2
− exp(−2ιcu)

2 + ρu

]

+
βν(1 − ν)m2

1

2ρ(1− ǫ)
×
(

1− β

ρ

)

× ρu exp(−2ιcu) − β2ν2m2
1

4ρ2(1− ǫ)
×
[

ρu+
1

2
ρ2u2 +

1

12
ρ3u3

]

exp(−2ιcu).

For k ∈ N and u ≥ 0, we define Ik(u) = exp(2ιcu)
∫ u

0
sk exp(−2ιcs)ds. We first assume ιc > 0. An integration

by parts yields Ik(u) =
k
2ιc
Ik−1(u)− uk

2ιc
for k ≥ 1, and since I0(u) =

exp(2ιcu)−1
2ιc

, one has

∀k ∈ N, ∀u ≥ 0, Ik(u) =
k!

(2ιc)k+1
×



exp(2ιcu)−
k∑

j=0

(2ιc)
j

j!
uj



 ,

and we obtain

e(u) = − (1− ν)2

1− ǫ
×
(

m2 −
βm2

1(2ρ− β)

ρ2

)

×
[
I0(u)

2
− exp(2ιcu)

ρ
L(ρ,−2ιc, u)

]

(37)

+
βν(1 − ν)m2

1

2ρ2(1− ǫ)
×
(

1− β

ρ

)

× ρ2I1(u) − β2ν2m2
1

4ρ3(1− ǫ)
×
[

ρ2I1(u) +
1

2
ρ3I2(u) +

1

12
ρ4I3(u)

]

.

We verify that for k ∈ N and u ≥ 0,
∫ u

0 Ik(s)ds =
Ik+1(u)
k+1 . Besides, an integration by parts yields

1
ρ

∫ u

0 exp(2ιcs)L(ρ,−2ιc, s)ds =
1

2ιcρ
×
[
exp(2ιcu)L(ρ,−2ιc, u)− ln

(
1 + ρu

2

)]
. We plug these results in equa-

tion (34) to get

g(u) = −2βκ∞ × (1− ν)2

1− ǫ
×
(

m2 −
βm2

1(2ρ− β)

ρ2

){
I1(u)

2
− 1

2ιcρ
×
[

exp(2ιcu)L(ρ,−2ιc, u)− ln
(

1 +
ρu

2

)]}

+
β2κ∞ν(1 − ν)m2

1

2ρ3(1 − ǫ)
×
(

1− β

ρ

)

× ρ3I2(u)−
β3κ∞ν

2m2
1

4ρ4(1− ǫ)
×
[

ρ3I2(u) +
1

3
ρ4I3(u) +

1

24
ρ5I4(u)

]

.

(38)
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In the case ιc = 0, one simply has Ik(u) =
uk+1

k+1 and 1
ρ

∫ u

0
exp(2ιcs)L(ρ,−2ιc, s)ds =

(

u+ 2
ρ

)

× 1
ρ ln

(
1 + ρu

2

)
−

u
ρ , and the functions e and g can be deduced easily from (37) and (38).

To determine the value functions C of Theorems 4.1 (β = 0) and A.1 (β > 0), we recall equation (35) and we
observe that

b(u) =
1

1− ǫ
× ρu

2 + ρu
× m1

ρ
G0(u), (39)

c(u) = − m2
1

ρ2(1− ǫ)
× ρu/2

2 + ρu
×
[

(1 − ν)2 + ν
(

1− ν

2

)

(2 + ρu) +
ν2

4
ρu(2 + ρu)

]

− ν2m2
1

48ρ2(1− ǫ)
× ρ3u3

= − 1

1− ǫ
× ρu/2

2 + ρu
× m2

1

ρ2
G0(u)

2 − ν2m2
1

48ρ2(1− ǫ)
× ρ3u3, (40)

with
G0(u) := 1 +

ν

2
ρu.

Thus,

− 1

1− ǫ
× ρu/2

2 + ρu
d2 +

ρu

2 + ρu
dx + b(u) δ(d− (1 − ǫ)x) + c(u) δ2

is equal to

ρu

2 + ρu

[

d− G0(u)
δm1

ρ

]

x − 1

1− ǫ
× ρu/2

2 + ρu

[

d− G0(u)
δm1

ρ

]2

− 1

1− ǫ
× ν2

48
ρ3(u)3

(
δm1

ρ

)2

.

This yields the expressions of the value function in Theorems 4.1 and A.1.

A.3.2 Case α 6= β (Theorem 5.1)

We note η = β − α so that η 6= 0 in this section. To solve equation (31), we search a solution of the form

b(u) = b̃(u)× exp(−ηu)/(2 + ρu). This yields
˙̃
b(u) = m1

1−ǫ × (1 + νρu)× exp(ηu), and since b̃(0) = 2b(0) = 0,

b̃(u) =
m1

1− ǫ
×
[
exp(ηu)− 1

η
+ νρ

∫ u

0

s exp(ηs) ds

]

.

We obtain

b(u) =
m1u

1− ǫ
× ζ(ηu) + νρ[1− ζ(ηu)]/η

2 + ρu
=

1

1− ǫ
× ρu

2 + ρu
× m1

ρ
Gη(u), (41)

where ζ is defined in (19) and
Gη(u) := ζ(ηu) + νρ[1− ζ(ηu)]/η.

Equation (29) then gives

k(u) =
m1

2ρ
× 2 + ρu× {1 + ζ(ηu) + νρ[1− ζ(ηu)]/η}

2 + ρu
. (42)

In order to avoid cumbersome calculations, we use a prior determination of the function c, and we check that
it satisfies c(0) = 0 and that it is a solution of the ODE (32). We define

c(u) := − 1

1− ǫ
× ρu/2

2 + ρu
×m2

1

ρ2
Gη(u)

2 − m2
1

8(1− ǫ)ρ
×
(

1− νρ

η

)2

×uζ(ηu)× [1 + exp(−ηu)− 2ζ(ηu)] . (43)
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We have indeed c(0) = 0. Since

d

du
[uGη(u)] = exp(−ηu) + νρ× uζ(ηu) = 1 + νρu− ηuGη(u),

d

du

[
uGη(u)

2

2 + ρu

]

= − 2(1 + ρu)Gη(u)
2

(2 + ρu)2
+

2 Gη(u)[1 + νρu]

2 + ρu
− 2η × uGη(u)

2

2 + ρu
,

and

d

du

[

uζ(ηu)× [1 + exp(−ηu)− 2ζ(ηu)]
]

= 2 [ζ(ηu)− exp(−ηu)]2 = 2 [(1 + ηu)ζ(ηu)− 1]2 ,
(

1− νρ

η

)

× [(1 + ηu)ζ(ηu) − 1] = (1 + ηu)Gη(u)− (1 + νρu),

we obtain

ċ(u) =
2η

1− ǫ
× ρu/2

2 + ρu
× m2

1

ρ2
Gη(u)

2 − m2
1

(1− ǫ)ρ
×
[
1 + νρu

2 + ρu
Gη(u) − 1 + ρu

(2 + ρu)2
Gη(u)

2

]

− m2
1

4(1− ǫ)ρ
×
[

(1 + ηu)Gη(u)− (1 + νρu)
]2

=
2η

1− ǫ
× ρu/2

2 + ρu
× m2

1

ρ2
Gη(u)

2 − νm1 ×
1

1− ǫ
× ρu

2 + ρu
× m1

ρ
Gη(u)

− m2
1

4(1− ǫ)ρ
× (2 + ρu)2 − 4− 4ρu

(2 + ρu)2
Gη(u)

2 − m2
1

4(1− ǫ)ρ
×
[
2ηu+ η2u2

]
Gη(u)

2

− m2
1

4(1− ǫ)ρ
×
[

4

2 + ρu
− 2(1 + ηu)(1 + νρu)

]

Gη(u) − m2
1

4(1− ǫ)ρ
× [1 + νρu]2

=
2η

1− ǫ
× ρu/2

2 + ρu
× m2

1

ρ2
Gη(u)

2 +

(
1

2
− ν

)

m1b(u) − ρ(1− ǫ)

4
b2(u) − m2

1

4(1− ǫ)ρ

+
ηm2

1

4(1− ǫ)ρ
×
{[

2u(1 + νρu) + 2
νρ

η
u

]

Gη(u)− (2u+ ηu2)Gη(u)
2 − 2

νρ

η
u− ν2ρ2

η
u2
}

.

The term
[

2u(1 + νρu) + 2 νρ
η u
]

Gη(u)− (2u+ ηu2)Gη(u)
2 − 2 νρ

η u− ν2ρ2

η u2 is equal to

uζ(ηu)×
{

2

(

1− νρ

η

)[

1− νρ

η
+
νρ

η
(1 + ηu− 1− ηu)

]

−
(

1− νρ

η

)2

(2 + ηu)ζ(ηu)

}

+
νρ

η

[

2u(1 + νρu) + 2
νρ

η
u

]

− ν2ρ2

η2
(2u+ ηu2)− 2

νρ

η
u− ν2ρ2

η
u2

=

(

1− νρ

η

)2

× uζ(ηu)× [1 + exp(−ηu)− 2ζ(ηu)] .

This yields using Equations (29) and (43)

ċ(u) = −2ηc(u) +

(
1

2
− ν

)

m1b(u) − ρ(1− ǫ)

4
b2(u) − m2

1

4(1− ǫ)ρ

= −2ηc(u) + (1− ν)m1b(u) − ρ

1− ǫ
k(u)2,

and we eventually obtain that the function c defined in (43) is the unique solution of (32) that satisfies
c(0) = 0. For the functions e and g, we recall here that they admit explicit but very cumbersome formulas
that can be obtained by using a formal calculus software.
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A.4 Determination of the optimal strategy

The final step of the proof is to determine the strategy X∗ such that Π(X∗) is a martingale, or equivalently
such that AX∗

is constant. Equations (27) and (28) yield

dAX
t =

ρ

1− ǫ
dt×

[
Dt − (1− ǫ)Xt

2 + ρ(T − t)
− Dt + k(T − t) δt

]2

=
ρ/(1− ǫ)

[2 + ρ(T − t)]2
dt×

[

(1− ǫ)Xt + [1 + ρ(T − t)] Dt − [2 + ρ(T − t)] k(T − t) δt

]2

.

Thus, AX∗

is constant on (0, T ) if, and only if

a.s. , dt -a.e. on (0, T ) , (1− ǫ)X∗
t = − [1 + ρ(T − t)] D∗

t + [2 + ρ(T − t)] k(T − t) δt, (44)

where D = D∗ when the strategy X∗ is used by the strategic trader. Then, we characterize the strategy X∗

on [0, T ] with the three following steps:

• The initial jump ∆X∗
0 of the strategy is such that (X∗, D∗) satisfies equation (44) at time t = 0+.

• The strategy X∗ on (0, T ) is obtained by differentiating equation (44).

• The final jump ∆X∗
T = −X∗

T closes the position of the strategic trader at time T .

We now use this resolution protocol separately in the Poisson model α = β = 0, and in the Hawkes model
max(|α|, β) > 0 where we distinguish the two sub-cases α = β > 0 and α 6= β.

A.4.1 Case of the Poisson model (Theorem 4.1)

Equations (36) and (44) give the following condition on the strategy X∗

a.s., dt -a.e. on (0, T ), (1− ǫ)X∗
t = − [1 + ρ(T − t)] D∗

t +
m1

ρ
×
[

1 + ρ(T − t) +
ν

4
ρ2(T − t)2

]

δt (45)

The initial jump of X∗ at t = 0 is such that (45) is verified for t = 0+:

(1− ǫ)(x0 +∆X∗
0 ) = − [1 + ρT ] (D0 + (1− ǫ)∆X∗

0 ) +
m1

ρ
×
[

1 + ρT +
ν

4
ρ2T 2

]

δ0

⇔ (1 − ǫ)∆X∗
0 = −

(1− ǫ)x0 + [1 + ρT ]
(

D0 − m1

ρ δ0

)

− νm1

4ρ ρ2T 2δ0

2 + ρT
. (46)

In this case, δt ≡ δ0 is constant and we obtain by differentiating (45)

(1 − ǫ)dX∗
t = ρD∗

t dt − [1 + ρ(T − t)] dD∗
t − m1 ×

[

1 +
ν

2
ρ(T − t)

]

δ0 dt

⇔ (1 − ǫ)dX∗
t = ρD∗

t dt − m1

[
1 + ν

2ρ(T − t)
]

2 + ρ(T − t)
δ0 dt − 1 + ρ(T − t)

2 + ρ(T − t)
× (1 − ν)dNt.

This yields dD∗
t = − m1[1+ ν

2 ρ(T−t)]
2+ρ(T−t) δ0 dt + (1−ν)dNt

2+ρ(T−t) , and we determine D∗
t explicitly on (0, T ):

D∗
0+ = D0 + (1− ǫ)∆X∗

0 =
D0 − (1− ǫ)x0

2 + ρT
+

m1

ρ
× 1 + ρT

(
1 + ν

4ρT
)

2 + ρT
δ0, (47)
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which gives

D∗
t =

D0 − (1− ǫ)x0
2 + ρT

+
m1

ρ
×
[

1 + ρT
(
1 + ν

4ρT
)

2 + ρT
− (1− ν) ln

(
2 + ρT

2 + ρ(T − t)

)

− ν

2
ρt

]

δ0

+
∑

0<τ≤t

(1− ν)∆Nτ

2 + ρ(T − τ)
.

We obtain for t ∈ (0, T )

(1 − ǫ)dX∗
t =

[

1 + ρT
(
1 + ν

4ρT
)

2 + ρT
− (1− ν) ln

(
2 + ρT

2 + ρ(T − t)

)

− ν

2
ρt − 1 + ν

2 ρ(T − t)

2 + ρ(T − t)

]

m1δ0 dt

+




D0 − (1− ǫ)x0

2 + ρT
+

∑

0<τ≤t

(1− ν)∆Nτ

2 + ρ(T − τ)



 ρdt

− 1 + ρ(T − t)

2 + ρ(T − t)
× (1− ν)dNt.

Equation (45) finally yields

(1− ǫ)∆X∗
T = −(1− ǫ)X∗

T

= D∗
T− − m1

ρ
δ0

=
D0 − (1 − ǫ)x0

2 + ρT
− m1

ρ
×
[
1− ν

4ρ
2T 2

2 + ρT
+ (1− ν) ln

(

1 +
ρT

2

)

+
ν

2
ρT

]

δ0

+
∑

0<τ<T

(1 − ν)∆Nτ

2 + ρ(T − τ)
.

A.4.2 Case of the Hawkes model (Theorems A.1 and 5.1)

Lemma A.1. Let φ : [0, T ] → R be a measurable function, and for 0 ≤ s ≤ t ≤ T , Φ(s, t) :=
∫ t

s
φ(u) exp(−βu) du.

We then have for all t ∈ [0, T ]

∫ t

0

φ(u) δu du = δ0 Φ(0, t) + α Θχt
Φ (τχt

, t) + α

χt−1
∑

i=1

Θi Φ(τi, τi+1)

Proof. The proof is straightforward since for u ∈ [χt, t], δu = δ0 exp(−βu) + α exp(−βu) Θχt
and for

i ∈ {0, · · · , χt − 1} and u ∈ [τi, τi+1), δu = δ0 exp(−βu) + α exp(−βu) Θi.

Case α = β > 0 (Theorem A.1)

In this sub-case, we have α = β as in the Poisson model and Equation (45) still holds. Moreover, Equation
(46) also holds since the process (δt)t≥0 and the constant process equal to δ0 coincide at time t = 0. This
yields the initial jump ∆X∗

0 of the strategy X∗. Now, in the case α = β > 0, (δt) is a càdlàg process of
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dynamics dδt = −β δt dt+ β dJt. We thus obtain by differentiating (45)

(1− ǫ)dX∗
t = ρD∗

t dt − [1 + ρ(T − t)] dD∗
t − m1 ×

[

1 +
ν

2
ρ(T − t)

]

δt dt

+
m1

ρ
×
[

1 + ρ(T − t) +
ν

4
ρ2(T − t)2

]

dδt

⇔ (1− ǫ)dX∗
t = ρD∗

t dt − m1 φ0(t) δt dt

+
1 + ρ(T − t)

2 + ρ(T − t)

{
βm1

ρ
dJt − (1− ν) dNt

}

+
βνm1

4ρ
× ρ2(T − t)2

2 + ρ(T − t)
dJt,

where the explicit value of δt is given by δt = δ0 exp(−βt) + β
∑

0<τ≤t

exp(−β(t − τ)) ∆Jτ , and we define for

0 ≤ t ≤ T ,

φ0(t) :=
1 + ν

2ρ(T − t) + β
ρ

[
1 + ρ(T − t) + ν

4ρ
2(T − t)2

]

2 + ρ(T − t)
.

We now determine D∗
t : for t ∈ (0, T ),

dD∗
t = −ρD∗

t dt + (1− ǫ)dX∗
t + (1− ν)dNt

= − m1 φ0(t) δt dt +
(1− ν) dNt

2 + ρ(T − t)
+

βm1

ρ
× 1 + ρ(T − t) + ν

4ρ
2(T − t)2

2 + ρ(T − t)
dJt.

We have

D∗
0+ = D0 + (1 − ǫ)∆X∗

0 =
D0 − (1− ǫ)x0

2 + ρT
+

m1

ρ
× 1 + ρT

(
1 + ν

4ρT
)

2 + ρT
δ0

∫

(0,t]

dD∗
u = − m1

∫

(0,t]

φ0(u) δu du +
∑

0<τ≤t

(1− ν) ∆Nτ

2 + ρ(T − τ)

+
βm1

ρ
×
∑

0<τ≤t

1 + ρ(T − τ) + ν
4 ρ

2(T − τ)2

2 + ρ(T − τ)
∆Jτ .

Let us focus on the calculation of
∫ t

0
φ0(u) δu du. We define Φ0(s, t) =

∫ t

s
φ0(u) exp(−βu) du for 0 ≤ s ≤

t ≤ T . Lemma A.1 yields for t ∈ [0, T ]

∫ t

0

φ0(u) δu du = δ0 Φ0(0, t) + β Θχt
Φ0 (τχt

, t) + β

χt−1
∑

i=1

Θi Φ0(τi, τi+1)

The function Φ0 must then be determined. For t ∈ [0, T ], we have

β

ρ

[

1 + ρ(T − t) +
ν

4
ρ2(T − t)2

]

=
βν

4ρ
ρ(T − t) [2 + ρ(T − t)] +

β

ρ

(

1− ν

2

)

[2 + ρ(T − t)]− (1− ν)
β

ρ
,

which gives

φ0(t) =

[
β

ρ
+
ν

2

(

1− β

ρ

)]

+
(1 − ν)

(

1− β
ρ

)

2 + ρ(T − t)
+

βν

4ρ
× ρ(T − t).

Since
∫ t

s
exp(−βu)
2+ρ(T−u)du = exp(−βT )

∫ T−s

T−t
exp(βu)
2+ρu du, this yields (see (11) for the definition of L)

Φ0(s, t) =

[
β

ρ
+
ν

2

(
1

2
− β

ρ

)]

× exp(−βs)− exp(−βt)
β

+ (1− ν)

(

1− β

ρ

)

× exp(−βT )
ρ

× [L(ρ, β, T − s)− L(ρ, β, T − t)]

+
ν

4
[(T − s) exp(−βs)− (T − t) exp(−βt)] .
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We thus have for t ∈ (0, T )

D∗
t =

D0 − (1− ǫ)x0
2 + ρT

+
δ0m1

ρ
×
[

1 + ρT
(
1 + ν

4ρT
)

2 + ρT
− ρ Φ0(0, t)

]

− βm1

[

Θχt
Φ0 (τχt

, t) +

χt−1
∑

i=1

Θi Φ0(τi, τi+1)

]

+
∑

0<τ≤t

(1− ν) ∆Nτ

2 + ρ(T − τ)
+

βm1

ρ
×
∑

0<τ≤t

1 + ρ(T − τ) + ν
4ρ

2(T − τ)2

2 + ρ(T − τ)
∆Jτ ,

and we eventually obtain the strategy X∗ on (0, T )

(1− ǫ)dX∗
t =

[

1 + ρT
(
1 + ν

4ρT
)

2 + ρT
− ρ Φ0(0, t)

]

m1δ0 dt − m1 φ0(t) (δ0 + βΘχt
) exp(−βt) dt

+




D0 − (1− ǫ)x0

2 + ρT
+

∑

0<τ≤t

(1− ν)∆Nτ

2 + ρ(T − τ)



 ρdt

+




∑

0<τ≤t

1 + ρ(T − τ) + ν
4ρ

2(T − τ)2

2 + ρ(T − τ)
∆Jτ − ρΘχt

Φ0 (τχt
, t)− ρ

χt−1
∑

i=1

Θi Φ0(τi, τi+1)



βm1dt

+
1 + ρ(T − t)

2 + ρ(T − t)

{
βm1

ρ
dJt − (1− ν) dNt

}

+
βνm1

4ρ
× ρ2(T − t)2

2 + ρ(T − t)
dJt, (48)

and the final jump at time T (using equation (45))

(1− ǫ)∆X∗
T = −(1− ǫ)X∗

T

= D∗
T− − m1

ρ
δT

=
D0 − (1 − ǫ)x0

2 + ρT
+

δ0m1

ρ
×
[

1 + ρT
(
1 + ν

4ρT
)

2 + ρT
− ρ Φ0(0, T )

]

− βm1

[

ΘχT
Φ0 (τχT

, T ) +

χT−1
∑

i=1

Θi Φ0(τi, τi+1)

]

+
∑

0<τ≤T

(1− ν) ∆Nτ

2 + ρ(T − τ)
+

βm1

ρ
×

∑

0<τ≤T

1 + ρ(T − τ) + ν
4ρ

2(T − τ)2

2 + ρ(T − τ)
∆Jτ

− m1

ρ
(δ0 + βΘχT

) exp(−βT ). (49)

Theorem A.1. Let ǫ ∈ [0, 1). For 0 ≤ s ≤ t ≤ T , we define

φ0(t) =

[
β

ρ
+
ν

2

(

1− β

ρ

)]

+
(1− ν)

(

1− β
ρ

)

2 + ρ(T − t)
+

βν

4ρ
× ρ(T − t)

Φ0(s, t) =

[
β

ρ
+
ν

2

(
1

2
− β

ρ

)]

× exp(−βs)− exp(−βu)
β

+ (1 − ν)

(

1− β

ρ

)

× exp(−βT )
ρ

× [L(ρ, β, T − s)− L(ρ, β, T − u)]

+
ν

4
[(T − s) exp(−βs)− (T − u) exp(−βu)]
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In the case α = β, the optimal strategy X∗ in the MIH model is given by (46), (48) and (49). The value
function function of the problem is then

q × C(t, x, d, z, δ,Σ) = −q(z + d)x +

[
1− ǫ

2 + ρ(T − t)
+
ǫ

2

]

x2 +
ρ(T − t)

2 + ρ(T − t)

[

qd− G0(T − t)
δm1

ρ

]

x

− 1

1− ǫ
× ρ(T − t)/2

2 + ρ(T − t)

[

qd− G0(T − t)
δm1

ρ

]2

− 1

1− ǫ
× ν2

48
ρ3(T − t)3

(
δm1

ρ

)2

+ e(T − t) Σ + g(T − t),

where for u ∈ [0, T ], G0(u) = 1 + ν
2ρu and e and g are given by (37) and (38).

Case α 6= β (Theorem 5.1)

We use Equations (42) and (44) to obtain the following characterization of the strategy X∗: a.s., dt-a.e. on
(0, T ),

(1− ǫ)X∗
t = − [1 + ρ(T − t)] D∗

t +
m1

2ρ
× [2 + ρ(T − t)× {1 + ζ(η(T − t)) + νρ[1− ζ(η(T − t))]/η}] δt. (50)

The initial jump of X∗ at t = 0 is such that (50) is verified for t = 0+:

(1− ǫ)(x0 +∆X∗
0 ) = − [1 + ρT ] (D0 + (1− ǫ)∆X∗

0 ) +
m1

2ρ
× [2 + ρT × {1 + ζ(ηT ) + νρ[1− ζ(ηT )]/η}] δ0

⇔ (1 − ǫ)∆X∗
0 = −

(1− ǫ)x0 + [1 + ρT ]D0 − m1

2ρ × [2 + ρT × {1 + ζ(ηT ) + νρ[1− ζ(ηT )]/η}] δ0
2 + ρT

.

In the case α 6= β, we have dδt = −β δt dt+ α dJt. We differentiate Equation (50)

(1− ǫ)dX∗
t = ρD∗

t dt − [1 + ρ(T − t)] dD∗
t − m1

2
× [1 + exp(−η(T − t)) + νρ(T − t)ζ(η(T − t))] δt dt

+
m1

2ρ
× [2 + ρ(T − t)× {1 + ζ(η(T − t)) + νρ[1− ζ(η(T − t))]/η}] dδt,

which yields

(1− ǫ)dX∗
t = ρD∗

t dt − m1 φη(t) δt dt +
1+ ρ(T − t)

2 + ρ(T − t)

{
αm1

ρ
dJt − (1− ν) dNt

}

+
αm1

2ρ
× ρ(T − t)× {ζ(η(T − t))− 1 + νρ[1− ζ(η(T − t))]/η}

2 + ρ(T − t)
dJt,

where for t ∈ [0, T ]

φη(t) :=
1

2
×
1 + exp(−η(T − t)) + νρ(T − t)ζ(η(T − t)) + β

ρ
[2 + ρ(T − t)× {1 + ζ(η(T − t)) + νρ[1− ζ(η(T − t))]/η}]

2 + ρ(T − t)

and δt = δ0 exp(−βt) + α
∑

0<τ≤t

exp(−β(t− τ)) ∆Jτ . For t ∈ (0, T ),

dD∗
t = −ρD∗

t dt + (1− ǫ)dX∗
t + (1 − ν)dNt

= − m1 φη(t) δt dt

+
(1− ν) dNt

2 + ρ(T − t)
+

αm1

2ρ
× 2 + ρ(T − t)× {1 + ζ(η(T − t)) + νρ[1− ζ(η(T − t))]/η}

2 + ρ(T − t)
dJt,
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and we have

D∗
0+ = D0 + (1− ǫ)∆X∗

0 =
D0 − (1 − ǫ)x0

2 + ρT
+

m1

2ρ
× 2 + ρT × {1 + ζ(ηT ) + νρ[1 − ζ(ηT )]/η}

2 + ρT
δ0

∫

(0,t]

dD∗
u = − m1

∫

(0,t]

φη(u) δu du +
∑

0<τ≤t

(1− ν) ∆Nτ

2 + ρ(T − τ)

+
αm1

2ρ
×
∑

0<τ≤t

2 + ρ(T − τ)× {1 + ζ(η(T − τ)) + νρ[1− ζ(η(T − τ))]/η}
2 + ρ(T − τ)

∆Jτ .

We define Φη(s, t) :=
∫ t

s φη(u) exp(−βu) du for 0 ≤ s ≤ t ≤ T . Lemma A.1 yields for t ∈ [0, T ]

∫ t

0

φη(u) δu du = δ0 Φη(0, t) + α Θχt
Φη (τχt

, t) + α

χt−1
∑

i=1

Θi Φη(τi, τi+1).

To determine the function Φη, we write

exp(−η(T − t))× exp(−βt) = exp(−βT )× exp(α(T − t)),

(T − t)ζ(η(T − t))× exp(−βt) =
exp(−βT )

η
× [exp(β(T − t))− exp(α(T − t))].

Thus, φη(t)× exp(β(T − t)) is equal to

β

2

(

1

ρ
+

ν

η

)

×exp(β(T−t)) +

[

1

2
+

ν(ρ− 2β)

2η
+

β

2η

(

1−
νρ

η

)]

exp(β(T − t))

2 + ρ(T − t)
+

[

1

2
−

νρ

2η
−

β

2η

(

1−
νρ

η

)]

exp(α(T − t))

2 + ρ(T − t)
,

which yields for 0 ≤ s ≤ t ≤ T ,

Φη(s, t) =
1

2

(
1

ρ
+
ν

η

)

× [exp(−βs)− exp(−βt)]

+
exp(−βT )

2ρ
×
[

1 +
ν(ρ− 2β)

η
+
β

η

(

1− νρ

η

)]

× [L(ρ, β, T − s)− L(ρ, β, T − t)]

+
exp(−βT )

2ρ
×
[

1− νρ

η
− β

η

(

1− νρ

η

)]

× [L(ρ, α, T − s)− L(ρ, α, T − t)].

We obtain the expression of D∗
t for t ∈ (0, T )

D∗
t =

D0 − (1− ǫ)x0
2 + ρT

+
δ0m1

2ρ
×
[
2 + ρT × {1 + ζ(ηT ) + νρ[1− ζ(ηT )]/η}

2 + ρT
− 2ρ Φη(0, t)

]

− αm1

[

Θχt
Φη (τχt

, t) +

χt−1
∑

i=1

Θi Φη(τi, τi+1)

]

+
∑

0<τ≤t

(1− ν) ∆Nτ

2 + ρ(T − τ)

+
αm1

2ρ
×
∑

0<τ≤t

2 + ρ(T − τ)× {1 + ζ(η(T − τ)) + νρ[1− ζ(η(T − τ))]/η}
2 + ρ(T − τ)

∆Jτ .
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The strategy X∗ on (0, T ) is given by

(1 − ǫ)dX∗
t =

[
2 + ρT × {1 + ζ(ηT ) + νρ[1 − ζ(ηT )]/η}

2 + ρT
− 2ρ Φη(0, t)

]
δ0m1

2
dt

− m1 φη(t) (δ0 + αΘχt
) exp(−βt) dt

+




D0 − (1− ǫ)x0

2 + ρT
+

∑

0<τ≤t

(1− ν)∆Nτ

2 + ρ(T − τ)



 ρdt

+




∑

0<τ≤t

2 + ρ(T − τ) × {1 + ζ(η(T − τ)) + νρ[1− ζ(η(T − τ))]/η}
2 + ρ(T − τ)

∆Jτ




αm1

2
dt

−
[

Θχt
Φη (τχt

, t) +

χt−1
∑

i=1

Θi Φη(τi, τi+1)

]

ραm1 dt

+
1 + ρ(T − t)

2 + ρ(T − t)

{
αm1

ρ
dJt − (1− ν) dNt

}

+
αm1

2ρ
× ρ(T − t)× {ζ(η(T − t))− 1 + νρ[1− ζ(η(T − t))]/η}

2 + ρ(T − t)
dJt,

and the final jump at time T (using equation (50))

(1 − ǫ)∆X∗
T = −(1− ǫ)X∗

T

= D∗
T− − m1

ρ
δT

=
D0 − (1− ǫ)x0

2 + ρT
+

δ0m1

2ρ
×
[
2 + ρT × {1 + ζ(ηT ) + νρ[1− ζ(ηT )]/η}

2 + ρT
− 2ρ Φη(0, T )

]

− αm1

[

ΘχT
Φη (τχT

, T ) +

χT−1
∑

i=1

Θi Φη(τi, τi+1)

]

+
∑

0<τ≤T

(1 − ν) ∆Nτ

2 + ρ(T − τ)

+
αm1

2ρ
×

∑

0<τ≤T

2 + ρ(T − τ)× {1 + ζ(η(T − τ)) + νρ[1− ζ(η(T − τ))]/η}
2 + ρ(T − τ)

∆Jτ

− m1

ρ
(δ0 + αΘχT

) exp(−βT ).

B Proof of Theorem 2.1

Let X be an admissible strategy. We introduce the following processes: SN
t = S0 + ν

q (Nt − N0), S
X
t =

ǫ
q (Xt −X0),

dDN
t = −ρDN

t dt+
1− ν

q
dNt and dDX

t = −ρDX
t dt+

1− ǫ

q
dXt,

with DN
0 = D0 and DX

0 = 0. Thus, we have S = SN + SX , D = DN +DX and thus P = PN + PX , where
PN = SN +DN and PX = SX +DX . From (4), we have

C(X) =

∫

[0,T )

PN
u dXu − PN

T XT + COW(X),

where

COW(X) =

∫

[0,T )

PX
u dXu +

1

2q

∑

0≤τ<T

(∆Xτ )
2 − PX

T XT +
1

2q
X2

T
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is a deterministic function of X that corresponds to the cost when N ≡ 0, which is the Obizhaeva and Wang
model. We now make an integration by parts as in Remark 2.3 and get that

∫

[0,T )

PN
u dXu − PN

T XT = −
∫

[0,T )

Xu dPN
u .

When PN is a martingale, this term has a null expectation. Therefore, the optimal execution strategy is the
same as in the Obizhaeva and Wang model, see Gatheral, Schied and Slynko [20], Example 2.12, and there
is no PMS. Otherwise, we can find 0 ≤ s < t ≤ T such that E[PN

t |Fs] and PN
s are not almost surely equal.

In this case, we consider the strategy Xu = E[PN
t − PN

s |Fs]1u∈(s,t] that is a round-trip, i.e. X0 = XT+ = 0.
We then get

E

[

−
∫

[0,T )

Xu dPN
u

]

= −E[(PN
t − PN

s )E[PN
t − PN

s |Fs]] = −E[E[PN
t − PN

s |Fs]
2] < 0.

Since COW(cX) = c2COW(X), we can find c small enough such that E[C(cX)] = −cE[E[PN
t − PN

s |Fs]
2] +

c2COW(X) < 0, and therefore cX is a PMS.

C Proofs for results on PMS in the Poisson model

The first three subsections of this appendix contain the proofs of the results given in Section 4.2. In the first
two subsections, N is a martingale since δ0 = 0. To clarify the calculations, we use Remark 2.4 and assume
without loss of generality that

ǫ = ν = 0 and q = 1. (51)

C.1 Proof of Proposition 4.1 (uncertainty on D0)

Let D̃t = d̃0 exp(−ρt) + 1
q

∫ t

0
exp(−ρ(t − s))dNs +

1
q

∫ t

0
exp(−ρ(t − s))dX̃s = Dt + (d0 − d̃0) exp(−ρt). We

compute the expected value of the cost C(X̃) and get from Remark 2.4 and (51)

E

[

C(X̃)
]

= E

[
∫ T+

0

D̃t dX̃t

]

+ (d0 − d̃0) E

[
∫ T+

0

exp(−ρt) dX̃t

]

= − d̃0
2 ρT/2

2 + ρT
− 2κ0m2

[
T

2
− 1

ρ
ln

(

1 +
ρT

2

)]

+ (d0 − d̃0) E

[
∫ T+

0

exp(−ρt) dX̃t

]

,

since the first expectation is the optimal cost in the model starting from d̃0. The integration up to T+ means
that it takes into account the last trade at time T . We then have to calculate the last expectation. Since N
is a martingale, we get from (14)

E

[
∫ T+

0

exp(−ρt) dX̃t

]

= −d̃0
1 + ρT

2 + ρT
+

ρd̃0
2 + ρT

∫

(0,T )

exp(−ρt) dt+ exp(−ρT ) 1

2 + ρT
d̃0

= −d̃0
ρT

2 + ρT
,

which eventually gives E

[

C(X̃)
]

= ρT/2
2+ρT [d̃0

2 − 2d0d̃0] − 2κ0m2

[
T
2 − 1

ρ ln
(

1 + ρT
2

)]

.
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C.2 Proof of Proposition 4.2 (uncertainty on ρ)

Let X̃ be as (15) and (51) hold. By Remark 2.4, the expected value of this strategy is

E

[

C(X̃)
]

= E

[
∫

[0,T )

{
∫

[0,t]

exp(−ρ(t− s))dNs +

∫

[0,t]

exp(−ρ(t− s)) dX̃s

}

dX̃t

]

+
1

2
E




∑

0≤τ<T

(∆X̃τ )
2





+E

[{
∫

[0,T ]

exp(−ρ(T − t)) dNt +

∫

[0,T ]

exp(−ρ(T − t)) dX̃t

}

×∆X̃T

]

+
1

2
E

[

∆X̃2
T

]

.

For the definitions of the functions L and E , we refer to (11). In the balanced model δ0 = 0, N is a martingale.

We also recall that E[∆Nτ∆Nτ ′] = 0 for τ 6= τ ′ and E[
∫ T

0 g(s)dNs

∫ T

0 h(s)dNs] = 2κ0m2

∫ T

0 g(s)h(s)ds] for
g, h : [0, T ] → R piecewise continuous. Using this, we get

E




∑

0≤τ<T

(∆X̃τ )
2



 = 2κ0m2

∫ T

0

(
1 + ρ̃(T − t)

2 + ρ̃(T − t)

)2

dt = 2κ0m2

∫ T

0

(

1− 2

2 + ρ̃t
+

1

[2 + ρ̃t]2

)

dt

=
2κ0m2

ρ
×
{

ρT +
ρ

ρ̃
×
[
1

2
− 1

2 + ρ̃T
− 2 ln

(

1 +
ρ̃T

2

)]}

,

E

[
∫

[0,T )

(
∫

[0,t]

exp(−ρ(t− s)) dNs

)

dX̃t

]

= ρ̃ E

[
∫

[0,T )

(
∫

[0,t]

exp(−ρ(t− s)) dNs

) (
∫

[0,t]

dNs

2 + ρ̃(T − s)

)

dt

]

− E




∑

0≤τ<T

1 + ρ̃(T − τ)

2 + ρ̃(T − τ)
(∆Nτ )

2





= 2κ0m2

{

ρ̃

∫ T

0

(∫ t

0

exp(−ρ(t− s))

2 + ρ̃(T − s)
ds

)

dt − T +

∫ T

0

dt

2 + ρ̃t

}

= 2κ0m2

{

ρ̃

∫ T

0

(

exp(ρ(T − t))

∫ T

T−t

exp(−ρs)
2 + ρ̃s

ds

)

dt − T +
1

ρ̃
ln

(

1 +
ρ̃T

2

)}

=
2κ0m2

ρ

{(

1 +
ρ

ρ̃

)

ln

(

1 +
ρ̃T

2

)

− L(ρ̃,−ρ, T ) − ρT

}

, (52)

E

[

(∆X̃T )
2
]

= E





(
∫ T

0

dNt

2 + ρ̃(T − t)

)2


 = 2κ0m2

∫ T

0

dt

[2 + ρ̃(T − t)]2
=

2κ0m2

ρ
× ρ

ρ̃
×
{
1

2
− 1

2 + ρ̃T

}

,

E

[(
∫

[0,T ]

exp(−ρ(T − t)) dNt

)

∆X̃T

]

= E

[(
∫

[0,T ]

exp(−ρ(T − t)) dNt

)(
∫

[0,T ]

dNt

2 + ρ̃(T − t)

)]

= 2κ0m2

∫ T

0

exp(−ρt)
2 + ρ̃t

dt =
2κ0m2

ρ
× ρ

ρ̃
× L(ρ̃,−ρ, T ). (53)

To calculate the other expectations, we need the following identity

∫ T

0

exp(−ρt) 1

[2 + ρ̃t]2
dt =

1

ρ̃

(
1

2
− exp(−ρT )

2 + ρ̃T
− ρ

ρ̃
L(ρ̃,−ρ, T )

)

,
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that comes from a straightforward integration by parts. We then get

E

[
∫

[0,T )

(
∫

[0,t]

exp(−ρ(t− s)) dX̃s

)

dX̃t

]

= ρ̃ E

[
∫

[0,T )

(
∫

[0,t]

exp(−ρ(t− s)) dX̃s

) (
∫

[0,t]

dNs

2 + ρ̃(T − s)

)

dt

]

= −ρ̃ E

[
∫

[0,T )

(
∫

[0,t]

exp(−ρ(t− s))
1 + ρ̃(T − s)

2 + ρ̃(T − s)
dNs

) (
∫

[0,t]

dNs

2 + ρ̃(T − s)

)

dt

]

+ ρ̃2 E

[
∫

[0,T )

(
∫

[0,t]

exp(−ρ(t− s))

(
∫

[0,s]

dNr

2 + ρ̃(T − r)

)

ds

) (
∫

[0,t]

dNs

2 + ρ̃(T − s)

)

dt

]

= 2κ0m2ρ̃

∫ T

0

(∫ t

0

exp(−ρ(t− s))

{∫ s

0

ρ̃dr

[2 + ρ̃(T − r)]2
− 1 + ρ̃(T − s)

[2 + ρ̃(T − s)]2

}

ds

)

dt

=
2κ0m2

ρ
ρ̃

∫ T

0

[1− exp(−ρ(T − s))]

{
1

[2 + ρ̃(T − s)]2
− 1

2 + ρ̃T

}

ds

=
2κ0m2

ρ

{
ρ

ρ̃
× L(ρ̃,−ρ, T ) +

(
ρ̃

ρ
− 1

)

× 1− exp(−ρT )
2 + ρ̃T

− ρ̃T

2 + ρ̃T

}

,

E

[(
∫

[0,T ]

exp(−ρ(T − t)) dX̃t

)

∆X̃T

]

= ρ̃ E

[(
∫

[0,T ]

exp(−ρ(T − t))

(
∫

[0,t]

dNs

2 + ρ̃(T − s)

)

dt

)(
∫

[0,T ]

dNt

2 + ρ̃(T − t)

)]

− E

[(
∫

[0,T ]

exp(−ρ(T − t))
1 + ρ̃(T − t)

2 + ρ̃(T − t)
dNt

)(
∫

[0,T ]

dNt

2 + ρ̃(T − t)

)]

= 2κ0m2 ρ̃

∫ T

0

exp(−ρ(T − t))

(∫ t

0

ds

[2 + ρ̃(T − s)]2

)

dt− 2κ0m2

∫ T

0

exp(−ρt) 1 + ρ̃t

[2 + ρ̃t]2
dt

= 2κ0m2

∫ T

0

exp(−ρt)
{

1

[2 + ρ̃t]2
− 1

2 + ρ̃T

}

dt

= 2κ0m2

{
1

ρ̃

(
1

2
− exp(−ρT )

2 + ρ̃T

)

− ρ

ρ̃2
× L(ρ̃,−ρ, T ) − 1

ρ
× 1− exp(−ρT )

2 + ρ̃T

}

=
2κ0m2

ρ

{

ρ

2ρ̃
+

(

1− ρ

ρ̃

)

× exp(−ρT )
2 + ρ̃T

− 1

2 + ρ̃T
−
(
ρ

ρ̃

)2

× L(ρ̃,−ρ, T )
}

.

Gathering all the terms, we eventually get E[C(X̃)] = 2κ0m2

ρ × f(ρ̃/ρ).

We now differentiate the function f of Proposition 4.2. By differentiating under the integral symbol and
integrating by parts, we can check that

d

dr
L(ρr,−ρ, T ) = 1

r
− 2

exp(−ρT )
r(2 + rρT )

− 2

r2
L(ρr,−ρ, T ).

We write

f ′(r) =
ρT

2 + rρT
+ 2L(ρr,−ρ, T )

[
(r − 1)2

r3
− r − 1

r2

]

− (r − 1)2

r2
× d

dr
L(ρr,−ρ, T )−

(
r − 1

r
+
r − 1

r2

)
exp(−ρT )
2 + rρT

+

(

r − 1− r − 1

r

)
ρT exp(−ρT )
[2 + rρT ]2

+

(

1 +
1

r
− r − 1

r2

)
1

2 + rρT
−
(

r − 1 +
r − 1

r

)
ρT

[2 + rρT ]2
− 1

r
+
r − 1

r2
,
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and then

f ′(r) =
exp(−ρT )(r − 1)

r4(2 + rρT )2
A(r), with (54)

A(r) = −2 exp(ρT )(2 + rρT )2L(ρr,−ρ, T )

+ r
[

4(exp(ρT )− 1) + [2− 2ρT + exp(ρT )(4ρT − 2)]r + [exp(ρT )(1 + (1 − ρT )2)− 2]r2
]

.

To check the monotonicity property of f , it is sufficient to check that A is nonnegative for r > 0. To do so,
we use that

L(ρr,−ρ, T ) = ρr

2

∫ T

0

exp(−ρs)ds− (ρr)2

2

∫ T

0

s exp(−ρs)
2 + ρrs

ds

=
r

2
(1− exp(−ρT ))− (ρr)2

2(2 + ρrT )

∫ T

0

s exp(−ρs)ds− (ρr)3

2(2 + ρrT )

∫ T

0

s(T − s)
exp(−ρs)
2 + ρrs

ds

≤ r

2
(1− exp(−ρT ))− r2

2(2 + ρrT )
[1− (1 + ρT ) exp(−ρT )]− r3

2(2 + ρrT )2
[(2 + ρT ) exp(−ρT ) + ρT − 2],

since −1
2+ρrs ≤ −1

2+ρrT for s ∈ [0, T ]. This gives − 2
r exp(ρT )(2 + rρT )2L(ρr,−ρ, T )

≥ −(exp(ρT )− 1)[4 + 4ρT r+ (ρT )2r2] + (exp(ρT )− (1 + ρT ))r(2 + ρrT ) + r2[2 + ρT + exp(ρT )(ρT − 2)],

which precisely gives

A(r)

r
≥ 0.

Let us now study the limits of f as r → 0+ and r → +∞. We have the following expansion L(ρr,−ρ, T ) =
r→0+

r
2 [1− exp(−ρT )]− r2

4 [1− (1 + ρT ) exp(−ρT )] +O(r3) that gives

f(r) −→
r→0+

− ρT

4
+

1− exp(−ρT )
4

=: f0(ρT ). (55)

When r → +∞, we use that E
(
− 2

r

)
=

r→+∞
γ+ln

(
2
r

)
+o(1) where γ is the Euler constant to get ln

(

1 + ρrT
2

)

−
(
1− 1

r

)2
L(ρr,−ρ, T ) = ln (ρT ) + γ − E(−ρT ) + o(1), and thus

f(r) −→
r→+∞

− ρT

2
+ ln (ρT ) − E(−ρT ) + γ +

1− exp(−ρT )
ρT

− 1 =: f∞(ρT ). (56)

We now study the limits f0 and f∞ as functions of ρT . We have f0(0
+) = 0, f ′

0(y) = − 1−exp(−y)
4 < 0 for

y > 0, thus f0 is negative and decreasing. Since

d

dy
[E(−y)] =

exp(−y)
y

, E(−y) = γ + ln(y)− y +
y2

4
+ O

y→0+
(y3),

we get y2f ′
∞(y) = exp(−y)− 1 + y − y2/2 < 0 for y > 0, and f∞(0+) = 0. Therefore, f∞ is negative and

decreasing as well, and we have the results of Proposition 4.2.
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C.3 Transaction costs (proof of Lemma 4.1)

We first show (16). We recall that Xθ is the optimal strategy when N = Nθ. We then define D̃ as the
solution of dD̃t = −ρD̃tdt+

1−ν
q dNθ

t + 1−ǫ
q dXt with D̃0 = D0 = 0 We then have

Dt = D̃t +
(1− ν)(1 − θ)

q

∫ t

0

exp(−ρ(t− s))dNs.

We set X̃ = 1−ǫ
(1−ν)θX

θ. From Remark (2.4), we get

E[C(Xθ)] =
(1− ν)2

(1− ǫ)q
θ(1− θ)E

[
∫

[0,T )

∫ t

0

exp(−ρ(t− s))dNsdX̃t −
∫ T

0

exp(−ρ(T − s))dNsX̃T

]

− (1− ν)2

(1− ǫ)q
× 2κ0(θ

2m2)

[
T

2
− 1

ρ
ln

(

1 +
ρT

2

)]

.

By using (52) and (53) with ρ̃ = ρ, we get that the expectation above is equal to

2κ0m2

{
2

ρ
ln

(

1 +
ρ̃T

2

)

− T

}

,

which gives (16).

Proof of Lemma 4.1. We recall that X∗ is the optimal strategy given by Theorem 4.1 when d0 = x0 =
δ0 = 0. We will show the following bounds:

2κ0m1

[

T − 1

ρ
ln

(

1 +
ρT

2

)]

≤ 1− ǫ

1− ν
× ||X∗||

1− ǫ

1− ν
× ||X∗|| ≤ 2κ0m1

[

T − 1

ρ
ln

(

1 +
ρT

2

)]

+

√

2κ0m2(2 + ρT )

ρ
×
{

π

2
− arccos

(√

ρT

2 + ρT

)}

−
√

κ0m2T

2 + ρT

(57)

We have

1− ǫ

1− ν
× ||X∗|| = 2 E

[
∫ T

0

1 + ρ(T − t)

2 + ρ(T − t)
dN+

t

]

+ ρ E

[
∫ T

0

∣
∣
∣
∣

∫ t

0

dNs

2 + ρ(T − s)

∣
∣
∣
∣
dt

]

+ E

[∣
∣
∣
∣
∣

∫ T

0

dNt

2 + ρ(T − t)

∣
∣
∣
∣
∣

]

= 2κ0m1

∫ T

0

1 + ρt

2 + ρt
dt + ρ

∫ T

0

h(t) dt + h(T )

= 2κ0m1

[

T − 1

ρ
ln

(

1 +
ρT

2

)]

+ ρ

∫ T

0

h(t) dt + h(T ),

where we set h(t) = E

[∣
∣
∣

∫ t

0
dNs

2+ρ(T−s)

∣
∣
∣

]

, for t ∈ [0, T ]. By Jensen’s inequality, we have

h(t) ≤

√
√
√
√E

[(∫ t

0

dNs

2 + ρ(T − s)

)2
]

=
√
2κ0m2 ×

√
∫ T

T−t

ds

[2 + ρs]2
=

√

2κ0m2

ρ(2 + ρT )
×
√

ρt

2 + ρ(T − t)
.

This yields to (57) by using that
∫ y

0

√
x

1−x dx = π
2 − arccos(

√
y)−

√

y(1− y) for y ∈ [0, 1) and

ρ

∫ T

0

h(t) dt ≤ ρ

√

2κ0m2

ρ(2 + ρT )
×
∫ T

0

√
ρt

2 + ρT − ρt
dt =

√

2κ0m2(2 + ρT )

ρ
×
∫ ρT/(2+ρT )

0

√
x

1− x
dx.
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D Proofs for low-frequency asymptotics

D.1 Proof of Proposition 4.4

From D+
t = D+

0 exp(−ρt) + 1−ν
q

∫ t

0
exp(−ρ(t− s)) dN+

s and Campbell’s formula, see e.g. formula (3.8) in

Kingman [26], we get for u > 0,

E

[

e−uD+
t

]

= e−uD+
0 exp(−ρt) exp

(

−
∫ t

0

∫

R

[

1− exp

(

−1− ν

q
uy exp(−ρ(t− s))

)]

µ(dy) κ0 ds

)

= e−uD+
0 exp(−ρt) exp

(

−κ0
∫ t

0

[

1− ψµ

(
1− ν

q
u exp(−ρs)

)]

ds

)

,

by Fubini’s theorem, where ψµ(w) =
∫∞
0

exp(−wy)µ(dy) is the Laplace transform of the law of the jump

amplitudes. Now, we observe that 1− ψµ

(
1−ν
q u exp(−ρs)

)

=
s→+∞

1−ν
q um1 exp(−ρs) + o(e−ρs) is integrable,

which gives

lim
t→∞

[

e−uD+
t

]

= exp

(

−κ0
∫ ∞

0

[

1− ψµ

(
1− ν

q
u exp(−ρt)

)]

dt

)

.

The change of variables θ = 1−ν
q u exp(−ρt) leads to (17), and the integral is well defined since 1 − ψµ(θ) =

m1θ+ o
θ→0+

(θ). The right hand side of (17) is clearly continuous at zero, which gives the convergence in law

by Lévy’s continuity theorem.

D.2 Proof of Lemma 5.1

To calculate E[D2
t ], we first have to determine first E[δ2t ] and E[Dtδt]. We have dδ2t = −2βδ2t dt + 2αdJt +

α2(dJt)
2 and thus d

dtE[δ
2
t ] = −2βE[δ2t ] + 2αE[δt] + α2

E[Σt], which gives

E[δ2t ] = δ20 exp(−2βt) +

∫ t

0

(2αE[δs] + α2
E[Σs]) exp(2β(s− t))ds.

Similarly, we have d(δtDt) = −(ρ+ β)δtDtdt+
1−ν
q dNtδt + αDtdJt +

1−ν
q α|dNt|, thus

E[δtDt] = δ0D0 exp(−(ρ+ β − α)t) +

∫ t

0

[
1− ν

q
m1E[δ

2
s ] +

1− ν

q
αE[Σs]

]

exp((β + ρ− α)(s− t))ds.

Last, we have dD2
t = −2ρD2

t dt+ 2 1−ν
q DtdNt +

(
1−ν
q

)2

(dNt)
2, and

E[D2
t ] = D2

0 exp(−2ρt) +

∫ t

0

(

2
1− ν

q
m1E[Dsδs] +

(
1− ν

q

)2

m2E[Σs]

)

exp(2ρ(s− t))ds.

When α+2ιc < β, we know that E[δt] and E[Σt] converge when t→ +∞. It is clear from the above formulas
that E[δ2t ], E[δtDt] and then E[D2

t ] also converge when t→ +∞.

E Numerical tests

In this appendix, we test the results of Theorems 4.1, A.1 and Proposition 5.1 by comparing the closed formu-
las that we obtained for the expected cost of the optimal strategy to the corresponding values given by Monte
Carlo simulations, for several sets of parameters. This validates both the formulas and our implementation
of the optimal strategy.
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Model Poisson Hawkes α = β MIHM
ν 0 0.1 0 0.1 0 0.1
β 0 0 40 55 50 50
κ∞ 0 0 1 1 0.2 2
ιc 0 0 0.2 0 0.03 0.3

Expected cost:
Monte Carlo −1185± 5 −1001± 5 −1228± 39 −20505± 2015 146± 11 140± 10

Closed formula −1184 −1001 −1224 −21220 143 143

Table 1: First set of Monte Carlo tests with: q = 100, T = 1, ρ = 50, S0 = 0, κ+0 = 25, κ−0 = 30,m1 = 50, ǫ =
0.1, X0 = −500 for the three models and µ = Exp(1/m1), D0 = 0.1 except for MIHM. For the Monte Carlo
simulations, we take n = 40000 paths and a discretization step ∆t = 0.0001. The confidence intervals given
in the table are the asymptotic Gaussian intervals of level 95%.

Model Poisson Hawkes α = β MIHM
ν 0 0.3 0 0.3 0 0.3
β 0 0 1 0.6 0.8 0.8
κ∞ 0 0 0.01 0.005 0.005 0.2
ιc 0 0 0 0.08 0.002 0.06

Expected cost:
Monte Carlo −1983± 11 −2292± 24 −885± 64 −3324± 147 1213± 21 1209± 20

Closed formula −1988 −2284 −896 −3215 1221 1221

Table 2: Second set of Monte Carlo tests with: q = 80, T = 10, ρ = 0.8, S0 = 0, κ+0 = 1.5, κ−0 = 1.1,m1 =
85, ǫ = 0.4, X0 = 700 for the three models and µ({k × q}) = (1 − q/m1)

k−1q/m1 for k ∈ N\{0} , D0 = 0.1
except for MIHM. For the Monte Carlo simulations, we take n = 40000 paths and a discretization step
∆t = 0.001. The confidence intervals given in the table are the asymptotic Gaussian intervals of level 95%.
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