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This paper addresses the relation between the grain size distribution, the elastic stress field fluctuations and the description of incipient plasticity in 
polycrystals with local elastic anisotropy. We propose a numerical approach based on full-field computations on polycrystalline microstructures. The 
generation of microstructures with prescribed grain size distribution and grain shape is made by combining dense-sphere packing with Power diagrams. 
By using a local plastic criterion based on the stress field statistics, it is shown that the macroscopic Hall–Petch relation significantly depends on the grain 
size distribution and the stress heterogeneity. Previous results of the literature obtained with mean-field approaches are confirmed by our study.

1. Introduction

A polycrystalline material is a heterogeneous material with a

random microstructure whose heterogeneity originates from the

spatial variation of the crystalline orientation field together with

the anisotropy of the single crystal. When the characteristic size

of the grains is of the order of hundreds of lm or more, the statis-

tical information on the morphological and crystallographic tex-

tures, based on n-point correlation functions, allows to derive

bounds and estimates for effective linear (elasticity, conductivity,

etc.) and nonlinear (plastic yield stress, electric hysteresis, etc.)

properties [1,2]. These estimates depend on the shape of the corre-

lation functions but not on their characteristic lengths. However,

for polycrystals with smaller grain size, the effective properties

may exhibit a dependence with the characteristic size of the heter-

ogeneities. Consequently, the sole information on the shape of the

nth order probability density functions is inadequate. In plasticity,

a well-known relation exists between the grain size and the yield

stress: the Hall–Petch effect [3,4]. It predicts a linear increase of

the yield stress with respect to the inverse of the square root of

the grain size. The modeling of this dependence can be addressed

by using strain gradient plasticity models with higher order stres-

ses [5–7] or by introducing geometrically necessary dislocations

[8], whose density is related to the gradient of the plastic slip

[9,10]. An alternative (phenomenological) approach is to consider

a classical framework with a grain size dependence of parameters

of the constitutive behavior (namely, the critical resolved shear

stresses). This approach has been initially proposed in the context

of the self-consistent scheme with a Hall–Petch type relation for

the critical resolved shear stress on each slip system [11] for poly-

crystals with uniform grain size. The influence of a grain size distri-

bution on the yield stress has been later investigated with the

Taylor model [12] and the self-consistent scheme [13]. These mod-

els consider the average stress field within the grains to describe

the initial yield stress. This assumption is known to deliver irreal-

istic self-consistent estimates, in the case of a uniform grain size,

for cubic polycrystals exhibiting elastic anisotropy [14]. It has been

recently shown that this shortcoming only arises if the intragranu-

lar stress heterogeneity is not accounted for in the criterion

describing the inception of plasticity. The early plastic yielding,

which occurs well below the conventional macroscopic yield stress

can be indeed described by the self-consistent model which in turn

coincides with reference full-field results on polycrystalline aggre-

gates [15]. Following these results, the present study aims at inves-

tigating the effect of elastic anisotropy on the initial yield surface

of polycrystals by considering their grain size distribution. For this

goal, we adopt a numerical full-field approach allowing to perform

computations on 3D polycrystalline unit-cells with prescribed

morphological parameters. More specifically, the Fast-Fourier

Transform (FFT) method [16,17] is used since it permits efficient

calculations (for periodic boundary-value problems) based on dig-

ital images of the microstructure. This feature is particularly attrac-

tive in the case of complex microstructures presenting a large

number of grains with varying sizes.

The experimental characterization of three-dimensional poly-

crystalline microstructures has been recently made possible with

the development of X-ray diffraction contrast tomography [18].
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Consequently, the description of the effective response and local

fields of real polycrystalline samples is now conceivable [19,20].

However, such experimental data remain relatively scarce. An

alternative procedure consists in reconstructing three-dimensional

microstructures from EBSD orientation maps obtained by consecu-

tive polishing. Albeit possible (see, for instance, [21]), this proce-

dure is particularly tedious and implies the destruction of the

investigated sample. Following these remarks, it appears that a

workable full-field analysis on polycrystalline microstructures

with various grain size distributions must rely in practice on arti-

ficial microstructures which match given morphological character-

istics. Besides, this approach is relevant in view of the design of

microstructures.

The paper is organized as follows. Firstly, we present the

numerical scheme used for the generation of polycrystalline micro-

structures. It combines a dense-sphere packing algorithm [22] with

Power diagrams [23]. Illustrative examples encompass unimodal,

bimodal as well as lognormal grain size distributions. The ability

of the method to build polycrystalline aggregates with anisotropic

grain shape is also emphasized. Secondly, the initial yield surface

of copper polycrystals with varying grain size distribution is stud-

ied based on a statistical description of the stress field. Previous

mean-field results concerning the effective Hall–Petch relation

[3,4] are confirmed and the importance of the intragranular stress

heterogeneity is further highlighted.

2. Generation of microstructures

2.1. Coupling Laguerre diagrams with dense sphere packing:

background

2.1.1. Voronoi and Laguerre diagrams

Voronoi diagrams are widely used to construct artificial poly-

crystalline microstructures since they mimic the homogeneous

crystal growth process [24]. A Voronoi diagram (Fig. 1) is a parti-

tion of space D which relies on N initial points gi 2 D, i 2 [0,N]

called germs. Each grain Gi � D is defined as the subset containing

all the points closer to one germ than any other germ. Let p 2 D a

point in space D.

p 2 Gi () 8j – i; kp� gik < kp� gjk ð1Þ

By construction, the interfaces between grains are planar and grains

are convex polyhedra. Their faces can be obtained by using the Del-

aunay triangulation which is the dual graph of the Voronoi tessella-

tion. Additional periodicity constraints have to be imposed on the

tessellation to avoid artificial boundary effects.

The control of the grain volume distribution is obviously related

to the spatial distribution of the germs. To represent equiaxed

polycrystalline microstructures, a natural choice is to adopt a Pois-

son process to generate the germs. It leads to an isotropic micro-

structure with an almost uniform grain size. Dating from the

work of Kumar et al. [25,26], this microstructural model is widely

used to study the physical properties of equiaxed polycrystalline

microstructures since it mimics the homogeneous crystal growth

process[see, for instance, [27,28]]. By definition, this process pro-

vides no control on the microstructural features (i.e. grain size dis-

tribution and shape). To gain control on the grain repartition, a

possibility is to adopt a Neyman-Scott or Gibbs process which

helps obtaining aggregates of grains with different sizes [29]. How-

ever, the shape of the grains remains uncontrolled. An alternative

approach to gain control on the grain size is to make use of La-

guerre diagrams (also known as Power diagram) [23,30]. Each

grain GL
i � D is now defined as the subset containing all the points

for which the power distance relative to the sphere with center ci
and radius wi is smaller than the power distance with any other

spheres. The grain GL
i � D is defined as:

p 2 GL
i () 8j– i; kp� cik2 �w2

i < kp� cjk2 �w2
j ð2Þ

A Voronoi diagram is a Laguerre diagram for which all weights

are equal. Interfaces between adjacent grains are planar and grains

are convex polyhedra.

Laguerre diagrams and regular triangulations are dual. The ver-

tices of the regular triangulation are the germs of the correspond-

ing Power diagram, edges correspond to faces and the vertices of

the Power diagram are the orthogonal centers of the triangulation

[31]. Weight is similar to a distance and it enables some control of

the size of grains. The larger the weight, the bigger the grain. If the

germs ci are randomly distributed, the Laguerre diagram can pres-

ent the following shortcomings:

(i) The point ci may not be within the grain GL
i .

(ii) A germ may result in an empty grain.

Such problems are overcome when points ci are taken as centers

of non-overlapping spheres of radius riP wi. In this particular case,

each grain contains the sphere it comes from. If the volume frac-

tion of the sphere packing is large enough, grains are expected to

have low aspect ratios and the grain size distribution is expected

to be similar to the diameter distribution of the spheres. Being able

to pack efficiently dense sets of non-overlapping spheres can thus

provide control on resulting grain size distribution and grain

shape.

2.1.2. The Lubachevsky–Stillinger algorithm

To represent realistic polycrystalline microstructures, a Power

diagram seeded by a random packing of spheres has been consid-

ered for this study. Many algorithms have been designed to study

random dense packing of hard spheres. Among the most success-

ful, the Lubachevsky–Stillinger (LS) algorithm [22] is able to fastly

pack a large number of polydisperse spheres. It is possible to pack

ellipsoids [32] and it has been used to generate random micro-

structures in the range of fiber-reinforced materials [33].

The LS algorithm is an event-driven molecular dynamic algo-

rithm. At t = 0, spheres (Fig. 2) are reduced to points. Each radius

increases proportionally to time t and each center moves with a

constant velocity. As spheres collide, the algorithm changes theirFig. 1. A Poisson–Voronoi diagram with 2000 germs.
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velocities so as to avoid overlapping. The higher volume fraction

for unimodal spheres is close to the densest possible.

Choosing constant rates of growth for the sphere radius and rec-

tilinear uniform movements for centers enables analytic calcula-

tion of the time of collision between two spheres. Finding the

next collision or the next time a sphere interacts with a planar

boundary of the domain D is possible. As nothing happens until

this event, the algorithm can jump to the time of this event with-

out time stepping. The algorithm is therefore event-driven and this

feature improves both speed and reliability.

Calculation of collision time is as follow: Let S1,S2 be two

spheres of respective radius r1, r2 and center c1, c2 at time t0. Let

a1, a2 be their growth rate and v1, v2 their velocities. Collision oc-

curs at time t if:

kc2 � c1 þ ðt � t0Þðv2 � v1Þk2 ¼ ðr1 þ r2 þ ða1 þ a2Þðt � t0ÞÞ2

This quadratic equation has three cases:

1. It has no solution: the two spheres never collide.

2. It has one solution: the two spheres touch each other but do not

overlap.

3. It has two solutions: the two spheres collide. Overlapping starts

at first solution and ends at second solution.

Collisions are treated as described in [22]. The spheres bounce

on each other almost elastically. Collisions are not elastic due to

the growth of spheres which triggers a rise in the kinetic energy.

Cells of periodic microstructures are practical to perform

homogenization studies. Combined with periodic boundary condi-

tions, the elastic response does not exhibit bias related to boundary

effet. Therefore, a periodic Power diagram was to be built and a

periodic set of germ was needed. On the other hand, the periodic

conditions on the microstructure must be taken in account while

the spheres are growing: each time a sphere starts crossing a side

of the periodic cell D, another sphere with same speed must enter

on the opposite side. The two spheres must then have the same

speed and growth ratio at every time. That is to say that if an event

happens to the first one, the second one has to react in the same

way. If a sphere gets out of D it can be deleted.

This method enables dense packing of spheres which will pro-

vide germs for a Laguerre diagram. The microstructure is expected

to have almost spherical grains whose equivalent diameters follow

a distribution similar to the one of the radius. It is worth noting

that similar approaches have been previously proposed in different

contexts [34–37].

2.2. Algorithmic details and improvements

2.2.1. Fast sphere packing

The Lubachevsky–Stillinger algorithm can be accelerated

thanks to many algorithmic improvements [22]. These improve-

ments [Algorithm 1] headed toward reducing the number of events

to calculate and avoiding calculating them many times.

The cubic periodic cell is divided into many sectors. The domain

is cut by planes and each subset created is a sector. The easiest way

of doing so is to cut each dimension regularly so as to obtain cubes.

A sphere must be added to a sector if whether some part of it may

be in it. Therefore each time a sphere touches a boundary of a sec-

tor, it must be added to the sector on the other side. Those new

event are created.

Two spheres that have no common sector cannot collide. As a re-

sult the number of events related to sphere-sphere collision is

diminished. If there are N spheres in a cubic sector, NðN�1Þ
2

events of

type sphere-sphere must be calculated and 6N events of type

sphere-boundary. If we neglect the fact that a sphere can be inmany

sectors, it is advantageous to divide the periodic cubic cell since

8a > 0; b > 0; f ðaþ bÞ > f ðaÞ þ f ðbÞ for f ðxÞ ¼ xðx� 1Þ
2

þ 6x

By lowering the number of possible events, it is possible to

stock their results with a reasonable memory usage.

Each sector keeps arraylists of the possible events and each

event is given a flag indicating whether the event must be recalcu-

lated or not. At each iteration of the algorithm, events that are not

up to date are calculated and the next event of each sector is found

if needed. All the events are compared to determine the next event

in the periodic cell. This event is executed and the events related to

the changed spheres may be set as not up to date. It should be

noted that the efficiency of this procedure decreases as the disper-

sion of grain size increases because big grains can collide with a

large number of small ones.

Algorithm 1. Pack spheres

for All ns spheres do

Set rate of growth according to grain size distribution

Pick random center and place in right sector

Pick random velocity

end for

while time < time_of_max_volume_fraction do

for All sectors do

if sector is not up to date then

for All possible event in the sector do

Update the event, update next event in sector

end for

end if

Get the next event in the sector

if next event in sector earlier that current global next

event then

change current global next event

end if

end for

if time of next global event < time_of_max_volume_fraction

then

Execute global next event (collision or sphere changing of

sector)

Declare involved spheres and sectors as not up to date:

events need to be computed

end if

time = time of next global event

end while

time = time_of_max_volume_fraction

Compute positions and radius of all spheres at time

2.2.2. Discretization of microstructures

The use of the generated microstructures for FFT full-field com-

putations [16] requires their discretization on a structured grid. As

the grid may be large to obtain accurate results, the efficiency of

this step is crucial. As linear search implies prohibitive computa-

tion times when the number of germs is large, an algorithmic

Fig. 2. A sphere in the Lubachevsky–Stillinger algorithm. Its center is ci and its

radius is ri at time t0. Its velocity is vi and its growth rate is ai.
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improvement has been used. As for the Lubachevsky–Stillinger

algorithm, the space has been partitioned into sectors (Fig. 3).

The search begins in the sector in witch the point p is. The closer

germ is selected. The algorithm explores the sectors from the near-

est to the further. It stops when unexplored sectors are further

than the current selected germ. Therefore a smaller part of the

periodic cell D is explored. Partitioning the cube D into cubic sec-

tors makes it easier to find adjacent sectors and few tests are

needed so as to check that further sectors are too far away. The

periodicity of the microstructure is respected thanks to a modifica-

tion of the distance calculation. Sectors of corresponding boundary

of the microstructure must be connected. Some changes are done

so as to discretize a Laguerre diagram. The weights of the germs

have to be taken into account. The search remains the same except

that the algorithm has to know howmuch the larger weight is so as

to stop the search. The search stops when unexplored sectors are

far enough. That is to say that if the heaviest germwas in those sec-

tors, it could not be close enough to point p so as to have a lower

power than current selected germ. This algorithmic improvement

remains useful in case of various weights although the grain size

Fig. 3. Method for getting the nearest germ to point p. Further sectors are explored until finding a closer germ becomes impossible. This method is repeated for every voxel in

the 3D image.

Table 1

Comparison of the dispersion parameter imposed on the growth rate of packed

spheres and the one of the Laguerre–Voronoi cells

Sphere distribution Expected r Observed r Number of grains used

Unimodal 0 0.02 5000

Lognormal r = 0.1 0.10 0.082 5000

Lognormal r = 0.5 0.5 0.35 20,000

Lognormal r = 1.0 1.0 0.49 30,000
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dispersion hinders the search for the germ the point belongs to.

The algorithm has to explore sectors far away so as to discover

whether the point p is in a big grain of not.

2.3. Results for various grain size distribution

2.3.1. Description of the generated microstructure

Various grain size distribution functions were investigated to

assess the flexibility of the proposed method. Let n be the number

of grains of the generated microstructure. Grain size distribution

function has been estimated and statistical datas were calculated,

namely:

� The average grain diameter: D ¼ 1
n

Pn
i¼1Di.

� The standard deviation of grain diameter: SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðDi � DÞ2

q
.

The dispersion parameter is defined as r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log SD2

D2 � 1
� �r

. In

the case of a lognormal grain size distribution, it represents the

standard deviation of the variable log (D). For each kind of distribu-

tion, many (between 10 and 60 (Table 1)) sets of 500 grains have

been generated to estimate the dispersion parameter.

2.3.2. Unimodal distribution

To produce an unimodal distribution function, we chose a uni-

form rate of growth for the spheres. Since all the seeds of the Power

diagram have the same weight, the algorithm does produce a

Poisson–Voronoi tessellation (Fig. 4). The volumic fraction of the

sphere packing is set to 60% to avoid the appearance of regular sets

of spheres. This volume fraction is similar to the parameter d intro-

duced in [24] to control the morphology of a Poisson–Voronoi

tessellation.

2.3.3. Bimodal distribution

A bimodal microstructure has been considered with one value

of grain diameter being twice the other. Ideally, each population

of grains should fill half the volume of the cube. As shown in

Fig. 5, the result is close to a bimodal microstructure with different

parameters. The lower group of sizes represent 60% of the volume

and the higher group is made of grains roughly 1.6 times larger in

diameter instead of twice has big. These differences between the

sphere’s radius distribution and the grain size distribution can be

attributed to the limit imposed on the total volume ratio (60%).

The gap between the spheres has been captured by the smaller

grains and the grain size dispersion is thus lower than the ideal

(targeted) one.

2.3.4. Lognormal distribution

Lognormal distributions have been produced with various dis-

persion parameters: r = 0.1, 0.5 or 1.0. A microstructure corre-

sponding to r = 0.5 is represented on Fig. 6. This distribution is

imposed on the growth rate of the colliding spheres. The expected

(ideal) and observed r parameters have been compared (Table 1).
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The observed r is lower than what was expected due to the fact

that void between spheres has been captured by the smaller grains.

2.3.5. Experimentally measured distribution

When experimental data are available on the grain size distri-

bution, it is obviously possible to build artificial microstructures

matching this experimental information. As an illustration, a zirco-

nium grain map obtained by electron-back scattered diffraction

(EBSD) has been used as input for our microstructure builder.

Based on the two-dimensional grain size distribution, the three-

dimensional grain size repartition has been first determined by

using standard stereological technics (Appendix A). Then, an artifi-

cial microstructure was generated based on this experimental

information (Fig. 7).

2.4. Toward complex microstructures

The previous examples have shown the ability of the procedure

to produce microstructures with equiaxed grains and prescribed

diameter size distributions. This method has been extended to con-

sider microstructures with anisotropic grains shape. Anisotropic

microstructures with flat or thin grains are representative of
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laminated or extruded polycrystalline materials. Laguerre diagram

are still used to keep planar interfaces but new grains are defined

as union of former polyedra created by a set of germs close to one

another. The grains remain connex if the position and weight of

germs are appropriately chosen. The Lubachevsky–Stillinger algo-

rithm has thus been modified to pack sets of spheres.

The modified procedure goes as follows: a cluster of spheres is

reduced to its center Cn at starting time t = 0. Each sphere is defined

at any time by its radius and its relative position to the center of

the cluster. The center of the cluster is allowed to translate. At time

t > 0, growing spheres are moving away from the center of the clus-

ter along given directions so that the cluster is homothetic across

time (Fig. 8). Rate of growth of spheres and branches are chosen

constant and the center of the cluster has a constant velocity. These

choices are motivated by the analytical computation of collision

times.

The grain shape is expected to be close to the shape of the clus-

ter of spheres if final volume ratio is high. Finally, it is worth men-

tioning that this packing method is particularly efficient in the case

of elongated grains (Fig. 9) or flat grains with the same normal

(Fig. 10).

3. Effect of grain size distribution on plastic inception

The microstructure builder has been used to address the ques-

tion of the inception of plasticity in elastoplastic polycrystals

whose grains are elastically anisotropic. This problem has been

Fig. 8. Motion of a cluster of spheres. At time t = 0, the cluster is reduced to its

center ci and its velocity vi. As time goes by, the spheres are growing at their rates asj
and they move away from the center of the cluster at velocity vsj/i.

Fig. 9. Dense packing of sets of spheres and corresponding Laguerre diagram: case of elongated grains.

Fig. 10. Dense packing of sets of spheres and corresponding Laguerre diagram: case of flat grains.
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previously studied in [15] for polycrystals with an uniform grain

size. In the sequel, it is extended to the case of polycrystals with

a given grain size distribution. We adopt an explicit grain size

dependence of the critical resolved shear stresses on each slip sys-

tem and use is made of a yield criterion at the grain scale which de-

pends on the intragranular stress field statistics.

3.1. Yield criterion incorporating stress field fluctuations

Let N g the set of grains with different crystalline orientations

and K the set of slip systems within each grain. The inception of

plasticity within the polycrystal is defined by the following Schmid

criterion.

max
r2N g

max
k2K

ŝrk ¼ sr0 ð3Þ

where the reference resolved shear stress ŝrk reads

ŝrk ¼ jhskirj þ p SDrðskÞ with p 2 Rþ ð4Þ
hskir is the intragranular average of the resolved shear stress on slip

system k within grain r and SDr(sk) is its standard deviation

SDrðskÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2k
� �

� ðhskirÞ2
q

: ð5Þ

These two quantities can be obtained by projection on the slip sys-

tem k of the first and second moments of the intragranular stress

field:

hskir ¼ lr
k : rh ir and s2k

� �
r
¼ lr

k : hr� rir : lr
k ð6Þ

with lr
k the Schmid tensor of slip system k within grain r. In the

present study, we have used a simple phenomenological Hall–Petch

type relation at the slip system scale. The critical resolved shear

stress within grain r is defined by

sr0 ¼ s0 þ
k0ffiffiffiffiffi
Dr

p ð7Þ

where Dr is the grain size (equivalent diameter).

3.2. Full-field computations

The FFT full-field numerical scheme is used to compute the dis-

tribution of the elastic stress field arising from the elastic anisot-

ropy of the single crystal. The fluctuation of the stress field

within the polycrystal is illustrated in Fig. 11. From this spatial dis-

tribution of the stress field, the first and second moments within

each grain are computed to apply the proposed local yield crite-

rion. Many microstructural realizations are considered to obtain

ensemble averages and yield inception is defined as the stress

loading such that a given volume fraction (� = 1%) of all the grains

reached the local criteria [Algorithm 2]. The convergence of the cri-

teria and the effect of � is studied in Figs. 12 and 13. The macroc-

opic yield criteria depends on the critical volume fraction of grain

above the local criteria �.

Algorithm 2. Computation of the initial yield surface

for i = 0;i < nb_required_microstructure;i ++do

Build a new microstructure of nb_grain

for All basic loadings do

Compute the elastic response with FFT

end for

for All wanted loadings do

Compute the elastic response as a linear combination of

basic loadings

for Every point p of the image do

Update volume estimate of the grain r

for Every slip system k of the grain r do

Update hski
Update s2k

� �

end for

end for

for Every grain r do

for Every slip system k of the grain r do

Compute and store hskir
Compute and store SDr(sk)

end for

end for

end for

end for

for All wanted loadings do

for Every grain r do

Compute and store the critical stress

end for

end for

for All wanted loadings do

Return the level of loading such that grains over their

critical stress represent �% of the total volume.

end for

Fig. 11. Stress field fluctuations rxx in a polycrystal made of elastically anisotropic

grains subjected to uniaxial tension along the x axis. The grid discretization is

144 � 144 � 144.
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3.3. Self-consistent estimates

An alternative approach to estimate (partially) the statistical

distribution of the local fields is to use the self-consistent model

[40,41]. Indeed, in the framework of the mean-field estimates,

the first and second moments of the stress field are given by

hrir ¼ ðSr þ S�Þ�1
: ðeS þ S�Þ : �r ð8Þ

and

hr� ririjkl ¼
1

cr
�r :

@eS
@Srijkl

: �r ð9Þ

hrir is the average stress in grain r and �r is the macroscopic stress.

Sr is the inverse of the stiffness tensor of grain r. eS is the effective

compliance tensor and S⁄ is the inverse of the Hill constraint tensor.

The reader is referred to [42,15] for further details on the computa-

tion of the statistics of the mechanical fields within polycrystals.

3.4. Results

3.4.1. Full-field computations for unimodal distribution

We have considered a single crystal elastic behavior similar to

copper (Elastic coefficients: C11 = 170 GPa, C12 = 124 GPa and

C44 = 64 GPa with Voigt notation). It corresponds to an anisotropy

value (Zener parameter) of 2.8. Polycrystalline microstructures

have been built with an unimodal grain size distribution and ran-

dom crystalline orientation has been assigned to each grain. A de-

tailed study on the influence of the discretization grid has been

performed: the number of voxels per grain required to get an accu-

rate estimate of the critical slip system (i.e. convergence of the first

and second moments of the intragranular stress field) within the

polycrystal has been determined (Table 2). Following this study,

each microstructure made of 500 grains has been discretized on

a grid of 144 � 144 � 144 voxels. This corresponds to a resolution

of 6000 voxels per grain.

The size of the elastic Representative Elementary Volume of

copper was studied in 2005 in the frame defined by Kanit et al.

[38]. Houdaigui et al. stated that 10 sets of 445 grains are required

to compute its shear modulus with a precision of 1% [39].

The limit of the elastic domain have been computed for differ-

ent modified Hutchinson criteria (p = 0, p = 1, p = 2 and p = 3) as

proposed in [15]. Each microstructure comprises 500 grains and

an unimodal grain size distribution was obtained with the micro-

structure builder. For each microstructure, two average elastic

loadings were imposed and their responses were calculated. The

problem being linear, it is straightforward to calculate the elastic

response to any linear combination of these two loadings. The ob-

tained yield surfaces are plotted in Fig. 14. As noted in [15], it is

pointed out that the obtained ensemble average matches the esti-

mate delivered by the self-consistent model for a given p value.

3.4.2. Effet of grain size dispersion and intragranular stress

heterogeneity

To illustrate the additional effect of the grain size dispersion, we

have considered log-normal grain size distributions with different
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Fig. 13. Yield inception under uniaxial loading for p = 0 at different numbers of runs

and for various �. Here, the average diameter is 1 lm and the real dispersion is

r = 0.34.

Table 2

Determination of the slip system reaching first the local plastic criterion for a microstructure of 100 grains with different discretization grids.

Size of grid Voxels/grain p = 0 p = 2

Grain r System k ŝrk Grain System ŝrk

10 10 77 7 0.4929 80 6 0.5692

20 80 77 7 0.4948 80 6 0.5613

30 270 59 5 0.4958 80 6 0.5646

40 640 59 5 0.4954 80 6 0.5627

50 1250 77 7 0.4954 80 6 0.5609

64 2621 77 7 0.4949 80 6 0.5626

80 5120 59 5 0.4947 80 6 0.5622

100 10,000 59 5 0.4944 80 6 0.5627

144 29,859 59 5 0.4929 80 6 0.5605

160 40,960 59 5 0.4930 80 6 0.5610
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Fig. 14. Initial yield surface in tension–torsion according to the statistical yield

criterion with different p values.

Table 3

Hall–Petch coefficients for p = 0 and various grain size dispersions.

Size distribution Real dispersion r ka (MPa lm1/2) s0 (MPa)

Self consistent scheme 0 113.17 22.40

Unimodal 0.02 113.44 20.11

Lognormal (r = 0.1) 0.08 111.19 20.31

Lognormal (r = 0.5) 0.34 69.81 22.02

Lognormal (r = 1) 0.47 46.44 21.72
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dispersion parameters r. The corresponding yield stress has been

evaluated with the proposed yield criterion for two values of the

p parameter: p = 0 which amounts to neglect the stress fluctuations

and p = 1. The results are plotted on Fig. 15. For low value of the

dispersion parameter (r = 0.02) the FFT results almost coincide

with the self-consistent estimate. For the criterion based on the

intragranular average stress (p = 0), a decrease of the effective

Hall–Petch slope is described when the dispersion parameter in-

creases (Fig. 15 and Table 3). This full-field result on Laguerre poly-

crystalline microstructures agrees with previous results obtained

with the self-consistent approach [13].

However, as explained above, a yield criterion neglecting the

stress fluctuation at the grain scale is likely to provide irrealistic

estimates. In this context, it is thus interesting to consider the

more general criterion that we have proposed with a non-vanish-

ing value of the p parameter. As shown in Fig. 15 for p = 1, our re-

sults show that the incorporation of the stress field heterogeneity

significantly affects the effective Hall–Petch slope. These observa-

tions highlight the combined influence of the grain size distribu-

tion and the intragranular stress field fluctuations for the

description of the inception of plasticity.

4. Conclusion

A numerical framework encompassing the generation of three-

dimensional polycrystalline microstructures and FFT full-field

computations has been proposed to study the influence of the

grain size distribution on the inception of plasticity. Concerning

the generation of artificial microstructures, it has been shown that

the combination of dense-sphere packing and Laguerre diagrams

provides a convenient way to produce microstructures with a pre-

scribed grain size distribution. Besides, this procedure has been ex-

tended to situations of morphological anisotropy representative of

extruded or laminated polycrystals. By adopting an explicit grain

size dependence of the critical resolved shear stresses and using

a local plastic criterion taking into account the intragranular stress

field fluctuations, the macroscopic Hall–Petch slope, corresponding

to the initial yield surface, has been obtained. A significant influ-

ence of the stress heterogeneity is described. Our full-field results

also confirm previous results from the literature derived in the

framework of mean-field approaches.

Appendix A. Grain size distribution from EBSD images

A.1. Hypothesis and frame

EBSD technics provide data on orientations of grains on the sur-

face. Stereology enables use of this slice so as to recover statistic

datas on the polycrystal. Hypothesis must be made on grain shape.

Statistic characteristics of grain shape and spatial repartition is ex-

pected independent to the frame. Grains are also expected to be al-

most spherical, with a low aspect ratio. The first hypothesis has a

strong effect on pair correlation function, which depends only on

distance between points. The second hypothesis enable a simple

stereological study of the EBSD image (see Figs. A.1 and A.2).

Three different technics were used. The first one is the one de-

scribed by Humphreys [43]. The second one is based on an article

of Sahagian and Proussevitch [44] and more recent work of Jagnow

[45]. The last one is similar to the second one but hypothesis are

changed (see Table A.1 and A.2).

Some grains were not considered is this study, namely:

� All the grains that touched the boundary of the image.

� All the grains that were represented by less than 10 pixels.

So as to compare various grain size repartition functions, all

sizes were divided by the medium size. The pixel dimension of

built microstructure is then chosen so that this medium size is sim-

ilar. The medium size is such that half of the material is made of

grains below this size and half above. Definition of grain size repar-

tition function can be found in [29]. Using the average grain size

may be more meaningful from a statistical point of view but med-

ium size corresponds to medium volume which is not the case

with averages.

Fig. 15. Effective Hall–Petch relation for log-normal grain size distribution. p = 0 (left) and p = 1 (right).
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A.2. Stereologic technics

A.2.1. First technic

The first approach is based on an article by Humphreys [43].

The equivalent diameter of a grain is artificially linked to the

apparent section of this grain. If D is the equivalent diameter of

the grain area, the equivalent diameter of the grain ECD is given

by ECD = 0.816 � D.

The volumic ratio of grains of corresponding size is estimated

through:

VG

V total

¼ AG

Atotal

This method is very practical but a direct link between section area

and volume is clearly a potential source of mistake. Other technics

exist that take account of the probabilistic feature of such link will

give better results.

A.2.2. Second technic

The second one is based on an article of Sahagian and Proussev-

itch [44] and more recent work of Jagnow [45]. This method takes

account of the fact that a big grain may be hiden behind a small

section.

As the image is supposed to contain all the statistical data on

grain size, the bigger section area correspond to the bigger grain.

An hypothesis is added on grain size distribution. There are 20 dif-

ferent radius Ri between the bigger one and the smaller one. The

radius are placed in arithmetic sequence or geometric sequence.

First, the number of sections per area unit NAi on the image is cal-

culated. NAi is the number of sections of radius between Ri�1 et Ri

per area unit. Numbers of grains per volume unit NVi are then esti-

mated. NVi represents the number of grain of equivalent radius Ri

per unit volume. The sections of radius between Ri�1 and Ri corre-

spond to grains of equivalent radius higher than Ri�1, here higher

than or equal to Ri. So NAi is expressed using NVj, where jP i:

NAi ¼
X

jPi

HðRjÞPðRi�1;Ri;RjÞNVj

where

� H(R) is the average projected high and worths 2R (sphere)

� P(Ri�1,Ri,R) is the probability to obtain a section radius between

Ri�1 et Ri by cutting a sphere of radius R. It worths:

PðRi�1;Ri;RÞ ¼
1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

i�1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

i

q� �

After calculating NVj by successive substitution, grain size repar-

tition function is calculated. At each radius Ri, the repartition func-

tion has a 4p
3
R3
i NVi high step. This method is not very accurate for

small radius. The hypothesis or discrete radius may trigger errors.

More realistic hypothesis can be adopted as in the third technic.

A.2.3. Third technic

This technic is close to the second one, expect the hypothesis on

the grain size distribution function has changed. The third method

supposes that the repartition function F is a piecewise linear func-

tion. It is affine on each interval [Ri�1,Ri].

On [Ri�1,Ri]

dF

dR
ðRÞ ¼ dNV

dR
ðRÞ4p

3
R3 ¼ ai

It is still true that:

NAi ¼
Z 1

Ri�1

HðRÞPðRi�1;Ri;RÞ
dNV

dR
ðRÞdR

NA ¼ Ka

K is an upper triangular matrix. Its coefficients are:

� j < i: Kij = 0

� j = i: K ij ¼
R Ri
Ri�1

2
3p

ffiffiffiffiffiffiffiffiffiffiffiffi
R2�R2

i�1

p

R3
dR

� j > i: K ij ¼
R Rj
Rj�1

2
3p

ffiffiffiffiffiffiffiffiffiffiffiffi
R2�R2

i�1

p
�

ffiffiffiffiffiffiffiffiffiffi
R2�R2

i

p

R3
dR

These integrals can be calculated using the primitive of
ffiffiffiffiffiffiffiffi
x2�1

p

x3
:

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

2x2
� p

4
þ 1

2
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p� �

A.3. Comparison of results

The three methods were applied to a fake EBSD image calcu-

lated with the help of a Voronoi tessellation. The grain size repar-

tition function can be therefore estimated with both the exact

calculated volumes of grains or the EBSD image and stereology

technics. 2000 germs were used. The produced section contains

600 � 600 dots on a hexagonal lattice. 2244 sections were ob-

served on this slice which reproduces many times the periodic

square. Medium diameter and average diameter were calculated

with the different methods.

Technics that take account of the probability in linking sections

and volumes seem more accurate. So as to compare different
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Table A.1

Estimates of medium diameter, Voronoi diagram.

Medium diameter Average diameter

Exact 0.1024 0.1017

Using technique 1 0.0601 0.0597

Using technique 2 0.0944 0.0909

Using technique 3 0.0908 0.0901

Table A.2

Estimates of medium diameter, zirconium EBSD image.

Medium diameter (lm) Average diameter (lm)

Technic 1 22.64 23.00

Technic 2 31.68 32.15

Technic 3 32.17 31.98
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scales, the ratio diameter
median diameter

is plotted. The different technics leave

similar results. All of them overestimate the volume ratio of small

grains. The first one forgets that little section may come from big

grains. Errors in other methods may be triggered by successive

determination of numbers of grain in each radius interval starting

from the bigger ones. The sphere not being spherical may be an-

other potential source of mistake. At last, the image may not con-

tain all the statistical data on the microstructure.

Those three methods were applied on a real EBSD image of a

zirconium polycrystal. The image is 700 � 430 lm2 wide. Me-

sured points are on an hexagonal lattice of 466 � 331 points.

1018 grains were seen on the image and only 665 were used

for this study.
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