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From NMR measurements we show that the velocity field of a yield stress fluid flowing through a disordered
well-connected porous medium is very close to that for a Newtonian fluid. In particular, it is shown that no arrested
regions exist even at very low velocities, for which the solid regime is expected to be dominant. This suggests
that these results obtained for strongly nonlinear fluid can be extrapolated to any nonlinear fluid. We deduce a
generalized form of Darcy’s law for such materials and provide insight into the physical origin of the coefficients
involved in this expression, which are shown to be moments of the second invariant of the strain rate tensor.
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I. INTRODUCTION

Flows of non-Newtonian fluids through porous media are
involved in a wide range of applications [1], such as the
injection of cement in soils, penetration of glue in porous
substrates, propagation of blood through the kidneys, hydraulic
fracture [2], etc. One of the most important applications
concerns oil reservoir engineering, in which a wide range
of complex fluids (foams, polymers, emulsions) are used
to improve oil recovery [3]. In these processes the flow
characteristics of such fluids in porous media remain poorly
known due to the complexity of the fluid behavior and the
opacity of the solid structure.

For Newtonian fluids (of constant viscosity μ) we know that
any element of the liquid network flows, and in the absence
of inertia effects, the velocity field scaled by the average
velocity (V̄ ) is constant (Stokes flow). This is at the origin
of Darcy’s law, which tells us that the pressure gradient (∇p)
is proportional to V̄ by a factor μ/K, in which K is a
characteristic of the porous medium, namely, its permeability.
For nonlinear fluids we expect a significant evolution of the
distribution of flowing regions with the velocity and thus a
more complex relationship between ∇p and V̄ .

For yield stress fluids (mud, cement, concentrated emul-
sions, or foams), which flow like liquids only beyond a critical
stress and behave as solids otherwise, various analytical or
numerical approaches [4] have been developed but the validity
of their physical assumptions could not be checked. Some
in-depth physical studies suggested that two critical effects
could occur: (i) at the pore scale the flowing volume increases
with the pressure gradient [5] and (ii) at a macroscopic scale
the flow starts as a percolation effect, i.e., at a critical pressure
drop liquid regions exist only along a specific path throughout
the porous medium [5,6], and as ∇p is increased more flowing
paths progressively form within the porous medium. Such
effects still need experimental validation.

Here we observe a yield stress fluid flow inside a model
bead packing with a NMR technique which provides straight-
forward information on the average local flow characteristics
without being affected by any spatial resolution problem. We
show that there is no region of fluid at rest, even at low V̄

values, and the velocity density distribution is similar to that
of a Newtonian fluid. This makes it possible to deduce the
effective form of Darcy’s law for yield stress fluids and the
physical origin of its coefficients.

II. MATERIALS AND PROCEDURES

Our yield stress fluid is a water-in-oil emulsion (81% water,
19% oil) prepared by dispersing a water + CaCl2 (150 g/L)
salt solution in a surfactant solution (dodecane + 7.5 wt%
Span 80 surfactant) with a mixer. The droplet size ranges
from 1 to 5 μm. Rheological tests in simple shear show that
this is a simple yield stress fluid (with negligible thixotropic
character) with a flow curve that can be well represented by a
Herschel-Bulkley (HB) model (see Fig. 1): τ < τc ⇒ γ̇ = 0
(solid regime); τ > τc ⇒ τ = τc + kγ̇ n (liquid regime), in
which τ is the shear stress, γ̇ the shear rate, τc the yield
stress, and k and n two material parameters [7]. The fluid is
pushed by a piston through a duct (8 cm diameter) and then
penetrates a bead packing. Two types of beads were used with
a similar (when represented as a function of the size rescaled
by the mean diameter) triangular grain size distribution in the
range 0.8–1.2 times the average diameter D = 0.5 or 2 mm.
They were covered with a thin layer (≈0.015D) of resin which
stuck them together, leading to a porosity ε ≈ 0.33.

The generalized Reynolds number, i.e., Re = ρV̄ 2/τc, in
which ρ is the fluid density, is much smaller than 1, which
means inertia effects are negligible. Under these conditions
the flow is governed by the Bingham number, Bi = τc/kγ̇ n,
which estimates the ratio of the constant (elastoplastic) to the
rate-dependent (viscous) parts of the constitutive equation,
and finally gives an idea of the relative importance of the solid
and liquid regions in the sample. Thus flows through similar
porous media with different pore sizes or yield stress values
have similar flow characteristics (after appropriate rescaling)
as soon as they have the same Bingham number.

For the flow through a complex geometry we use a charac-
teristic shear rate (γ̇ = V/d), which is the ratio of the average
velocity through the void volume (V ) to a characteristic length
scale of the cross section of the geometry (d). For our bead
packing we have V = V̄ /ε and we take d = D/6. Our range
of velocities (V̄ from 0.013 to 1.3 mm s−1) and bead sizes lead
to Bi ranging from 1 to 11.4, which includes the main classes
of yield stress fluid flows, i.e., (i) almost purely plastic flows
(Bi � 1) and (ii) flows with both elastoplastic and viscous
effects playing a significant role (Bi ≈ 1).

Measurements were carried out after a time of flow (after
saturation of the bead packing) such that the distance (typically
10 cm) covered at the average velocity was several orders of
magnitude larger than the bead size. This ascertains that a
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FIG. 1. Distribution function vs velocity scaled by the maximum
velocity for flows through a capillary: Newtonian fluid (dashed line)
and yield stress fluid (continuous line) following a HB model with
an unsheared region (plug) extending over 2/3 of the capillary
radius (i.e., Bi = 5.4). Inset: experimental flow curve of our material
(squares) fitted by a HB model [7] (continuous line), and Newtonian
flow curve of arbitrary viscosity (dashed line).

steady-state flow was reached and residual creep motions in
the solid regions were negligible.

The whole setup is inserted vertically in the channel of
a vertical proton magnetic resonance imaging (MRI) system
(Avance 24/80 DBX by Bruker, 0.5-T superconducting mag-
net by Oxford, 20-cm inner diameter). Velocity distributions
in the pore space are measured by means of pulsed-gradient
spin echo (PGSE) proton NMR [8] as follows: After an
initial excitation of the hydrogen spin system of liquid
molecules, a pair of self-compensating field gradient pulses
of value �G produces in the spin precession a motion-sensitive
phase shift δϕ = γ �G · (

∫ δ

0 �r(t)dt − ∫ �+δ

�
�r(t)dt), where γ is

the gyromagnetic ratio, �r(t) the molecular trajectory, and time
constants δ and � define the timing of the pulse sequence.
The NMR protocol uses various gradient intensities to recover
statistical information on the bracketed term [9]. The latter
corresponds to local velocity field components by some
known multiplicative factor, provided molecular self-diffusive
motions can be neglected and sequence timing is short.
The sequence was designed here to be sensitive only to water
phase. Water confinement in micrometer-size droplets strongly
restricts diffusive motions. Residual diffusion inside droplets
was quantified [10] so as to find sequence tunings which kept
the spurious effects of water diffusion on velocity distributions
under some undetectable level [11]. Results are presented
in terms of a probability density function of one velocity
component (also often called “1D velocity propagator”), which
is such that the fraction of fluid having a velocity between v

and v + dv is f (v)dv. We checked the ability of the technique
to measure the effective velocity distribution for flows in
simple geometry, including arrested regions (see, for example,
Fig. 2)

In order to appreciate the data in a straightforward way, we
think it more appropriate to look at the distribution function,
defined as F (v) = ∫ v

−∞ f (u)du. Indeed, the shape of F is
less dependent on the measurement uncertainties, in particular,

FIG. 2. (Color online) Distribution function vs velocity scaled by
the mean velocity (in the small duct) measured for the flow of a yield
stress fluid through a 7-cm-diameter and 7-cm-long duct between 3.5-
cm-diameter ducts for Bi = 14. The colored regions approximately
correspond to those which are visible on the velocity field (see inset)
obtained from independent measurements (see [13]) and represented
by color scale (in mm/s): outer arrested region (red and gray dotted
lines), transitional region (light green, continuous line), moving plug
region (dark blue, dashed line).

the impact of the noise is damped as the integral filters out
some noise components [11]. In the following, except when
mentioned, we will focus on the longitudinal velocity, i.e.,
along the cylindrical sample axis. For example, for the flow
through a capillary, F takes very different shapes depending
on the rheological behavior of the fluid (see Fig. 1), which
means that the distribution function can be a fingerprint of this
behavior. For a yield stress fluid there is an unsheared region
(plug) around the center of the duct which is associated with
a vertical jump at the end of the distribution (see Fig. 1). The
size of this region increases with Bi. On the contrary, if the
fluid is arrested in a region of volume fraction φA, such as in
an expansion-contraction, the distribution globally starts by a
jump to a finite level [F (0) = φA] (see Fig. 2).

III. EXPERIMENTAL DATA AND ANALYSIS

The first critical result from our data for the flow through a
bead packing is that over our whole range of Bi the distribution
function starts around zero, i.e., F (0) ≈ 0.05 (see Fig. 3).
More precisely, in contrast with the distribution for the model
pore of Fig. 2, the overall shape (i.e., leaving apart possible
uncertainties around zero) of the curves for porous media does
not exhibit any apparent step around zero which might be
associated with a more significant arrested region. Similar
conclusions can be drawn from transversal distributions (see
inset of Fig. 3). For a yield stress fluid in steady flow this
means that the whole fluid is in the liquid regime and flows,
i.e., the arrested (solid) regions occupy a negligible volume.
This observation is in contradiction with previous conceptual
expectations for such flows [5,6]. In particular, our result
implies that even at low velocity there is no preferential
pathway involving a fraction of the pores through which the
fluid would flow while it would be arrested outside. Our data
also prove that at the scale of the pore there is no significant
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FIG. 3. (Color online) Distribution functions as a function of
the velocity scaled by the average velocity through the voids.
(i) Computed from literature NMR data for f (at sufficiently small �)
with Newtonian fluids (water or oil) through bead packings: (squares)
Fig. 1 of [15] V = 3.55 mm s−1; (circles) data from Fig. 4 of [16]
V = 1.1 mm s−1, and (stars) for a power-law fluid (Xanthan), Fig. 9
of [17], V = 30 mm s−1. (ii) From our tests with a yield stress fluid:
(D = 2 mm) short dash light blue (V = 0.12 mm s−1, Bi = 7.3) and
dotted red line (V = 4 mm s−1, Bi = 1.8); (D = 0.5 mm) black line
(V = 0.12 mm s−1, Bi = 4.2) and dashed dark blue (V = 4 mm s−1,
Bi = 1.04). Our data for intermediate velocities fall exactly along the
other data. The data for Bi = 11.4 are similar although slightly more
affected by diffusion. The inset shows the distribution function for the
transversal velocity for D = 0.5 mm, and V = 0.4 mm s−1, Bi = 3
(black), V = 1.2 mm s−1, Bi = 1.7 (dotted red), and V = 4 mm s−1,
Bi = 1.04 (dashed dark blue).

volume of arrested fluid; otherwise this would occur in a large
number of pores, leading, on average, to a significant fraction
of arrested fluid.

This is a surprising result, since in a model pore made of a
short duct between two smaller ducts and for a similar range
of Bi there remains, around the central flowing region, a wide
region of arrested fluid where the stress is necessarily smaller
than the yield stress [12,13] (see Fig. 2). Moreover, in order to
induce the flow of a yield stress fluid between two long plates
situated at a distance h, the minimum pressure gradient to apply
is 2τc/h, which tends to infinity when h tends to zero. Thus in a
bead packing we could expect a stoppage in the regions situated
between two very close beads. We suggest that this does not
occur, because such regions extend over short distance and are
connected in various directions with other regions containing
larger fluid volumes. Finally, the picture we get from these
data is that instead of keeping some restricted regions at rest,
a liquid regime sets up everywhere in the fluid network.

Let us now compare the distribution functions obtained for
different porous media and at different V by representing them
as a function of the velocity scaled by V . Owing to small �

and δ imposed by NMR sequence tuning, this is equivalent
to looking at the distribution of local displacements scaled by
the mean displacement. With such a representation, for flows
of Newtonian fluids in the absence of inertia effects (i.e., low
Re), we expect a single distribution function for different V or
similar porous media of various length scales. For example, in
a capillary, F is a straight line in any case. On the contrary,
for a yield stress fluid F varies widely with the Bingham

number, which depends on the velocity and capillary diameter
(see Fig. 1).

Surprisingly, for a yield stress fluid through a bead packing,
in our range of experimental conditions, the distribution
function in the transversal and longitudinal directions are
independent of V and D (see Fig. 3). Thus, once again in
contrast with yield stress fluid flows through simple geometry,
V has no significant impact on the velocity distribution.
Actually, such a phenomenon has already been observed for
a complex flow (extrusion) of yield stress fluids [14] in a
similar range of Bi: over a length of the entrance conduit
approximately equal to its diameter, the velocity fields (in a
longitudinal cross section) scaled by the piston velocity appear
quite similar for different Bi.

Since the independence of F with regard to V and D is
typically obtained for a Newtonian fluid, our results suggest
that the local flow characteristics of a yield stress fluid through
a bead packing are similar to those of a Newtonian fluid. This
conclusion is further supported by the observation that the
distribution function for the yield stress fluid is approximately
similar to that for a Newtonian fluid (see Fig. 3) and to that for
a simple shear-thinning fluid (without yield stress).

It could be argued that there is an effect of statistical
averaging over the various local geometrical shapes leading
to the same average distribution whatever the differences at a
local scale. However, even after this transformation the final
distribution should depend on the specific local characteristics
of the fluid flow. Indeed, if we assume that in a given pore
(i.e., a void region), due to a different rheological behavior we
have a velocity distribution different from that for a Newtonian
fluid, e.g., a larger fraction with high velocities, we will have
a similar effect in another pore of different shape and finally a
similar effect on the average over all pores, with some impact
on F . Thus we can conclude that the local velocity fields for
the different fluid types are very close; otherwise we would
not get similar distribution functions.

IV. DISCUSSION

These observations lead us to conclude that the strong
differences of flow characteristics usually induced by different
rheological behavior types, such as can be observed in a
capillary (see Fig. 1), are “broken” by the porous medium.
This conclusion is further supported by the observation that
the yielding character of a fluid is broken around the entrance
in a small die, which well represents the situation continuously
encountered inside a bead packing: far from the entrance there
is a plug flow [14], but just after the entrance the velocity
profile is close to that for a Newtonian fluid and only after
some distance of the order of the conduit diameter the standard
profile including a plug is recovered (see Fig. 4). Finally, the
corresponding distribution function in cross section evolves as
described in Fig. 1, i.e., from that of a simple fluid to that of a
yield stress fluid (see Fig. 4).

We consider that the process at the origin of the breakage of
the non-Newtonian character in a bead packing is as follows:
The fluid is continuously and significantly deformed in various
directions as it moves through a complex porous network. As
soon as it has been significantly deformed so as to reach a
velocity field similar to that of a Newtonian fluid, it will never
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FIG. 4. (Color online) Yield stress fluid flow (arriving from a
8-cm-diameter duct) through a die of 1 cm diameter. Distribution
function in cross sections at 1 mm (circles) and 16 mm (squares)
from the die entrance, calculated from the velocity profiles (see inset)
(data from [14]). The velocity field in color scale [highest velocities
in red (central region), smallest ones in blue (outside region)] is also
shown in the inset.

encounter a region allowing it to recover its flow characteristics
typical of a yield stress fluid in uniform flow, and thus will keep
a Newtonian velocity field.

We can now use these results to establish a general form of
Darcy’s law for some complex fluids. In particular, for a yield
stress fluid the usual three-dimensional form of the constitutive
equation [14], which leads to a HB model in simple shear,
is τII < τc ⇒ d = 0 (solid regime) and τII > τc ⇒ τ =
τc d/dII + 2nkdn−1

II d (liquid regime), in which τ is the devia-
toric stress tensor, d the strain rate tensor, and dII =

√
trd2/2.

The viscous dissipation inside the bead packing (of volume 
)

is P = ∫



tr(d · τ )dω. Introducing the constitutive equation
we deduce P = τc

∫
2dII dω + k

∫
(2dII )n+1dω, which may

be rewritten as P = ατcε
(V/D) + βnε
(V/D)n+1, with
α = (1/ε
)

∫
2D

V
dII dω, βn = (1/ε
)

∫
(2D

V
dII )n+1dω.

The above experimental results concerning the approx-
imately unique scaled velocity field obtained for different
velocities and bead diameters lead to the conclusion that
(D/V )dII is a unique dimensionless function weakly depen-
dent on the effective behavior of the material. That means that
α and βn are two dimensionless coefficients depending only on
this distribution of shear rate intensity and on the coefficient n.
Since the viscous dissipation may also be expressed through a
macroscopic approach as 
∇p · V̄ = ε
∇p · V , we deduce
Darcy’s law for yield stress fluids (which includes power-law
and Newtonian fluids):

∇p = α
τc

D
+ βnk

1

D

(
V

D

)n

(1)

The form of this law is consistent with the analysis of a series
of measurements of ∇p as a function of V for different
yield stress fluids and pore sizes [18]. Our approach now
demonstrates that this is the general form of Darcy’s law for
yield stress fluids and provides explicit expressions and the
physical meaning for the two coefficients (α and βn).

V. CONCLUSION

Finally, our experimental results suggest a change of
paradigm for dealing with transport in porous mediums, i.e.,
the fact that the flow of a nonlinear fluid in a complex geometry
tends to somehow cancel its rheological complexity. The
complete origin of this effect still needs to be understood
by theory or simulations, for example, via the promising
Lattice-Boltzmann approaches [19,20].
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