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A Bending-Gradient theory for thick laminated
plates homogenization

A. Lebée, K. Sab

Abstract This work presents a new plate theory for out-of-plane loatiek plates
where the static unknowns are those of the Love-Kirchhefbtly, to which six com-
ponents are added representing the gradient of the bendingent. The Bending-
Gradient theory is an extension to arbitrary multilayeréatgs of the Reissner-
Mindlin theory which appears as a special case when theiglatamogeneous. The
new theory is applied to multilayered plates and its préalistare compared to full
3D 0's exact solutions and other approaches. It go@s jgredictions of both
deflection and shear stress distributions in any materiafigaration. Moreover,
under some symmetry conditions, the Bending-Gradient inomecides with the
second-order approximation of the exact solution as thedslkmess ratit./h goes
to infinity.

1 Introduction

Laminated plates are widely used in engineering applinati&or instance angle-
ply carbon fiber reinforced laminates are commonly used iiaoresutics. However,
these materials are strongly anisotropic and the plateatilerhavior is difficult to
capture. The most common plate theory is the Love-Kirchptzffe model. How-
ever, it is well-known that, when the plate slenderness tath is not large enough,
transverse shear stresses which are not taken into aceotim iLove-Kirchhoff
theory have an increasing influence on the plate deflection.
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In recent decades many suggestions have been made to intheogstimation
of transverse shear stresses. Two main approaches can g mymptotic ap-
proaches and axiomatic approaches. The first one is maisiydban asymptotic
expansions in the small paramektei [ﬂ |3]. However, no distinction between rel-
evant fields and unknowns was made. The second main app®aeséd on as-
sumingad hoc displacement or stress 3D fields. These models can be “Hqoiva
Single Layer or "Layerwise“. Equivalent single layer mdsl&reat the whole lam-
inate as an equivalent homogeneous plate. However, whéimgleath laminated
plates, these models lead systematically to discontinransverse shear stress dis-
tributions through the thickness as indicated by Reﬂjylfnllayerwise models, all
plate degrees of freedom are introduced in each layer ofaiménkte and conti-
nuity conditions are enforced between layers. The readerefr to Reddy|]4]
and Carreral5] for detailed reviews of kinematic approached to [[5[17[18] for
static approaches. Layerwise models lead to correct estsd local 3D fields.
However, their main drawback is that they involve a numbeteagfrees of freedom
proportional to the number of layers. The limitation is indiegely pointed out with
functionally graded materials, where the plate constitsiproperties vary continu-
ously through the thickness [9,]10].

Based on Reissneﬂll] paper, we suggest an EquivalenteSlayler higher-
order plate theory which gives an accurate enough estinfatemsverse shear
stresses in the linear elasticity framework. For this, weraotivated by two obser-
vations. The first one is that Love-Kirchhoff strain fieldv@alearly been identified
as good first-order approximation for slender plates thémksymptotic expansion
approaches. The second one is that the 3D equilibrium playgieal role in the
estimation of transverse shear stress in all the existipgogehes. We show in this
work that revisiting the use of 3D equilibrium in order to Wertransverse shear
stress as Reissner [11] did for homogeneous plates leadsidb@nding gradient
plate theory. The Reissner-Mindlin theory is as a specisé ad the new Bending-
Gradient theory when the plate is homogeneous.

In Sectior? notations are introduced. In Secfibn 3, we redReissnér's pro-
cedure for deriving transverse shear stress extended iod&ad plates. This lead
to the Bending-Gradient plate theory detailed in Sedibfridally, in Sectiob
the Bending-Gradient plate theory is applied to fibrous reatés under cylindri-
cal bending and compared to the exact solution and otheteSkguivalent Layer
approaches.

2 Notations

Vectors and higher-order tensors are boldfaced and difféypefaces are used for
each order: vectors are slant&du. Second order tensors are sans sbfife. Third
order tensors are in typewriter sty®:T". Fourth order tensors are in calligraphic
styleD, ¢. Sixth order tensors are double strolied.
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When dealing with plates, both 2-dimensional (2D) and 3Cs¢es are used.
Thus,T denotes a 3D vector affddenotes a 2D vector or the in-plane parTofThe
same notation is used for higher-order tensaris:.the 3D second-order stress tensor
while o is its in-plane part. When dealing with tensor componefits, ihdexes
specify the dimensiors;; denotes the 3D tensarwith Latin indexi, j, k.. =1,2,3
andagp denotes the 20 tensor with Greek indexes, 3,y.. = 1,2. C= Gik is
the fourth-order 3D elasticity stiffness tenssr= $iju = ¢ " is the fourth-order
3D elasticity compliance tensor white= ;5,5 denotes the plane-stress elasticity
tensor.c is not the in-plane part of but it is the inverse of the in-plane part §f
¢ =5~1. The identity for in-plane elasticity i&y5 = 3 (3ayp5 + dasdpy), Where
Oqp is Kronecker symbold&, g = 1 if a = B, 34 = O otherwise).

The transpose operatibsis applied to any order tensors as follo/)
Awt,U...Ba- B

Three contraction products are defined, the usual dot ptqdub = aby;), the
double contraction produdd { b = ajjbj;) and a triple contraction produdt (.B =
AqpyByga)- In these definitions Einstein’s notation on repeatedxedas used. It
should be noticed that closest indexes are summed togathentraction products.

Thus,&-n = $,5,ny is different fromn-& = ny,%,p,. The derivation operatdd
is also formally represented as a vectrfl = ajjJ; = ajj,j is the divergence and
a®0 = ajj0¢ = ajj « is the gradient. Here is the dyadic product. Finally, the

ap..pw —

h
integration through the thickness is not@d: ffg f(xg)dxz = (f).

3 Revisiting the Reissner-Mindlin plate theory

The 3D model

We consider a linear elastic plate of thickndéseccupying the 3D domai®® =
wx] —h/2,h/2[, wherew C R? is the mid-plane of the plate (Figut® 1). Cartesian
coordinategxy, X2, %3) in the reference fram@,,€,,€3) are used. The constitutive
material is assumed to be invariant with respect to traiosiain the(x;, x2) plane.
Hence, the stiffness tensgiis a function ofxs only. The plate is loaded on its upper
and lower faceso* = w x {h/2} with the distributed forc@ . There are no body
forces and the plate is clamped on its lateral edgex| —h/2,h/2[ wheredw is
the edge otv. The 3D problemz?® is summarized as follows:
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g-0=0 onQ. (1a)
N:E(x):E onQ. (1b)

7] 6.8=T onw. (1c)
:%(D®u+u®lil) onQ. (1d)

=0 ondwx]—h/2,h/2]. (1e)

wherel is the 3D displacement vector fieléljs the strain tensor field anal is the
stress tensor field.

Generalized Stresses

Fig. 1 The Plate Configuration

Reissner-Mindlin statically compatible fields

We recall here briefly the procedure for the derivation ofsReer-Mindlin equilib-
rium equatlonsmll.__ylHS]. The generalized Reissner-Mirgiresses associated
to the 3D stress field are:

Nog (X1,%2) = <aaB> (2)
Mag (X1,X2) = (X30ag) 3)
Qu (X1,X2) = (Ta3) (4)

whereN is the membrane stredd, the bending moment, ar@ the shear forces.

Reissner-Mindlin equilibrium equations are obtained kiggnating equationE{lLa)
andxz x ([I3) with respect tag. Taking also into account boundary conditiofd (1c)
yields:

Nggpg+da =0 (5a)

Qua+93=0 (5b)
Magg— Qo+ Ha =0 (5¢)
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whereqy = T, + T,~ are symmetric loadings per unit surface gmd= g(Tﬁr —
T,7) are skew-symmetric loadings per unit surface. More prégise= (qq) are
membrane loadings per unit surfagg,is the out-of-plane loading per unit surface,
u = (Hq) are couples per unit surface apglis the transverse bulk loading.

Since in-plane loadinggy( #) and out-of-plane loadingsl{, u3) are not of the
same order in the asymptotic analysis of the platie/asgoes to 0 (seé][3]), and for
the sake of simplicity, we focus only on the out-of-planediog g3 (qq = ui = 0).

Localization

The second step bf Reissner’s approach consists in detivirgiress energy per unit
surfacen*™ (N, M, Q) from the 3D model. As in many homogenization procedures,
the derivation ofv*™ is based on an approximation scheme for the real 3D stress
fields in terms of the generalized plate stress fields:

~RM ~(N ~(M ~

6™ (x1,%2,%5) = 5 (x1, %, %3) + 8" (X1, %2, %5) + G Y (%1, X2, ¥s)

whereg™, 6™ andg'? are 3D stress fields generatedbyM andQ as follows:

(N) _ (N

Gij " = Sijap (%3)Ngg(X1,X%2) (6a)

0" = e (%) Map (x1. %) (6b)

Ui('Q) = si(j?x) (X3)Quar (X1, X2) (6¢)
wheresi(j'\('}[)l3 (X3), Si(jl\g;z(x3> andsi(j%) (x3) are localization tensors depending only on

thexs coordinate. This can be rewritten using contraction preslas:
™M =N :N+sM:M+59.Q

Once this approximation of stress fields is set, the streenpial energy density
w™M(N,M,Q) is defined simply as the quadratic form:

W™ (NX). M. QM) = 5 (5™ 5(x5) : ™ X)) ™

Hence, a consistent choice féf\'), ™ ands'Q is critical.

Love-Kirchhoff fields

The derivation 08 ands™ is based on the Love-Kirchhoff plate theory. Accord-
ing to this theory, plane-stress is assumed and the in-plarief the strain is linear
in Xa:
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¥ —e+xzx (8)
wheree is the membrane strain axdthe curvature. We draw the reader’s attention
to the fact that strain componergg are not null in the general case. Membrane
stresdN and bending momenM are linearly dependent enandy:

N=42:e+B: X (9a)
{ M='8:e+D:x (9b)

with:
(ﬂa$a1)> = <(17X37X%) C(X3>> (10)

Using 3D constitutive equation under plane-stress assamptove-Kirchhoff
constitutive equatiorf]9) and in-plane strains definit@) it is possible to express
Love-Kirchhoff stress fields as functionsfandM:

(M)

{ o™ (x4, %,%3) = c(xa) : (a+%3'6) :N(xq,%2) anday) =0 (11a)
0™ (xq,%2,%3) = ¢(x3) : (B+X3d) :M(x1,x2) anday” =0 (11b)

wherea, 6 andd4 are the reciprocal compliance tensors of the constitutiuee

tion (@).

Stress field generated by a linear variation of the bendingnem

The main idea df Reissner's method is to recall that the Soeaes are related to the
bending moment through the plate equilibridh (5). With a lbgeneous plate, com-
bining both 3D equilibrium and plate equilibrium enables trerivation of a stress
field directly depending on shear forces. However, with tzated plates it is not
possible to bring out shear force with this procedure. Heresuggest considering
a more general shear variable for laminates, the full bepgliadientR =M & 0. In
the following, we resume the procedure from Reissnér [1d§l&wiving shear fields
in the case of laminated plates.

We haved™ .0 =0ifMis (X1, X%2)-invariant. WherM is function ofx; andxg,
we have:

~(M) &/ M M M
6™ .0 =5} ()Map(x1. %) 0} = 5155 Map.y By = s\pa Rapy

fi(R> = si(yl\;AszRaBy is the force per unit volume generated by first order vanetiof

the bending momeit R, g, is a third-order tensor which respedg g symmetries
(Ragy = Rpay)- Using&“v') definition (Equatiol_Ib) and assuming that each layer
follows monoclinic symmetry we identify the force per unitvme as:

f® —¢(xg): (6+x3d) . Randf{¥ =0 (12)
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Then, we defing™ the 3D stress generated bya, x»)-invariant bending gradient
R associated to the localization tens;ﬁmy suchag® =3® - R. This stress field
is derived through the auxiliary problem:

{ e®.0+7" -0 (13a)
o™ .&=0 for xs=+h/2 (13b)

The (x1,x2)-invariant solution of this problem is easily found, leaglio the explicit
determination of®:

B )= [ (2) (Bsyeq +2dsyeg) Az, s&) . —0andsly) . =0 (14)
a3ne\"3) — p Canyd Syl dye VSapnie — 33nle

We have derived a localization tens8t which depends on all bending gradient
componentsk,g, = Mgg - Accordingly we define a new approximation of stress
fields involving all bending gradient components:

=" 1™ +g"

and a new stress energy density identical to Defin[flon 7:
wE(N,M R)

Actually o approximation for 3D stress fields is a higher-order gradiee-
ory, as described irEl4] for 3D continuum arﬂ[lS] for pefmdeams. However,
to be consistent with higher-order theories, we should aken into account the
gradient of other static unknowns such as the membranes gfradient for instance.
It is the choice of the authors to limit the number of staticiafales only to those
which have a contribution to the macroscopic equilibriuntla# plate. Thus the
number of unknowns remains limited and adapted to engingepplications, con-
trary to asymptotic expansions and other rigorous appesmchwhich no distinc-
tion is made between significant static unknowns.

The mechanical meaning of the gradient of the bending moment

The full bending gradierk has six component®{11, R221, R121, R112, R222, R122)
whereasQ has two components. Thus, using the full bending gradierdtaisc
unknown introduces four static unknowns whialfpriori are not related to plate
equilibrium [&t). Only(N,M,Q) appeared while integrating 3D equilibrium equa-
tion (TA) through the thickness in Sectldn 3.

Let us derive generalized stresses associatedo Using Equatiofil4 and in-
tegrating by parts when necessary leads to:

<a§2> =0, <xsaéﬁ>> -0, <s§23y5> = inpys (15)
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R
a
the thickness and the four other static unknowns are selifiecated stress. More
precisely we have:

and we have<a( >> =i. R=Q. Only Q remains after integratin(;(R) through

‘ Ri11 R221 Ri21 Ri12 Ro22 Ri122
013 <5g)111> =1 <5g)122> =0 <5g)121> =0 <5g)211> =0 <5g)222> =0 <5g)221> =1/2
023 <5g)111> =0 <5g)122> =0 <5g)121> =1/2 <5g)211> =0 <5g)222> =1 <5g)221> =0

R111 andRap; are the cylindrical bending part of shear fore@sand Qz, Ri21
andRj2; are the torsion part of shear forces and, andRy»; are linked to strictly
self-equilibrated stresses (warping).

4 The Bending-Gradient plate model

Once stress energy density® (N, M, R) and plate equilibrium equatiofik 5 to which
is addedk = M ® O are given it is possible to build a complete plate theory gisin
conventional variational tools. The reader is refered f far details.

Summary of the plate model

Equilibrium equations and boundary conditions involvitrgss fields are gathered
in the set of statically compatible fields:

N-O=0onw (16a)
M@O-R=00nw (16b)
(i..R)-O0=-gz0nw (16c¢)
N-n=V9ondw® (16d)
M =M ondw® (16€)
(i..R)-n=VJ ondw® (16f)

wheredw? is the portion of edge on which static boundary conditiornslya;ﬂd
is the force per unit length arM? the full bending moment enforced on the edge.
This set of equations is almost identical to Reissner-Mimeguations where shear
forces have been replaced by the bending gra@ient

Generalized stress@ M, andR work respectively with the associated strain
variables:e, the conventional membrane strajnthe conventional curvature and
' the generalized shear strain. These strain fields must gowithi the following



A Bending-Gradient theory for thick laminated plates hoemgation 9

compatibility conditions and boundary conditions:

e=i:(0®U)onw (17a)
x=%-0Oonw (17b)
r=¢+i-0Uzonw (17¢c)
&-n=HYondw (17d)
0 =0 onaak (17€)

whereU is the 3D displacement of the mid-plane of the plate &risl the gener-
alized rotationI" and$ are 2D third-order tensors with the following symmetry:
38y = ¥pay- Moreover,dwX is the portion of edge on which kinematic boundary

conditions applyﬂd is a given displacement arttf' is a symmetric second-order
tensor related to a forced rotation on the edge. These fietdalaost identical to
Reissner-Mindlin kinematically compatible fields where tiotation pseudo-vector
is replaced by the generalized rotati&n

Finally, for constitutive material following local monacic symmetry with re-
spect to(x1,x2) plane (uncoupling betweem and (N,M)) the Bending-Gradient
plate constitutive equations are written as:

N=42:e+B:X (18a)
M='8:e+D:x (18b)
r=Ff-R, where I-F-F). . .T=0 (18c)

where conventional Love-Kirchhoff stiffnesses are defiasd
(4,8.D) = {(1,%3,X3) ¢(x3))

andf is the generalized shear compliance tefisiefined as:

r:/i (/X; (‘6+24) :c(z)dz) -S(xa) - (/X;c(z) : (6+zd)dz) dxs  (19)

whereS = Sy = 4,33 is the out-of-plane shear compliance tensor. She
not always invertible, we introduced Moore-Penrose psenderse for the shear
stiffness tensadF:

F=lim(..f+ KDt F

wherel is the identity for 2D sixth-order tensors following the gealized shear
compliancef minor and major symmetried (g, 5., = iggez Oy5)- The solution of
the plate model must comply with the three sets of equati@asTT,[IB). The
compliancef is positive. However whefiis not definite, there is a set of solutions,
up to a self-stress field.

1 Fapyss; follows major_symmetry[FaBV&z = Fz¢5yga @Nd minor symmetry g 5e; = Faysez -
Thus there are only 21 independent components
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Projection of the Bending-Gradient plate model

In some cases, the Bending-Gradientis turned into a Reiddimellin plate model.
This is the case for homogeneous plates. Thus, we need a riteasmate the
difference between both plate models. It is possible to defie exact projection of
the Bending-Gradient model on a Reissner-Mindlin model.

The Reissner-Mindlin part dfis:

F (gu) f (gu) (20)

f™M can be considered as the restrictiofl wihen setting warping unknowns to zero.
Consequently, we introduce the pure warping paftasf the orthogonal complement
of FRV:

W =f—fM (21)

Finally we suggest the following relative distance betwiéenBending-Gradient
plate model and the Reissner-Mindlin one:

ﬂ‘W
ARV/BG _ ﬁ, where ||f|| = \/m (22)

ARVM/BG gives an estimate of the pure warping fraction of the sheasstenergy
and is a criterion for assessing the need of the Bendingi@rachodel. When the

plate constitutive equation is restricted to a Reissnereliih one, we have exactly
ARV/BG — 0,

5 Application to laminates

5.1 Plate configuration

We consider angle-ply laminates. Each ply is made of unitiveal fiber-reinforced

material oriented af relative to the bending directioq. All plies have the same
thickness and are perfectly bounded. A laminate is denatedden brackets by the
successive ply-orientations along thickness. For ingt#ifc 90°] denotes a 2-ply

laminate where the lower ply fibers are oriented in the bemdirection. The con-

stitutive behavior of a ply is assumed to be transversetyapic along the direction

of the fibers and engineering constants are chosen simithose of|ﬂ1]:

EL=25x10°psi, Er=1x1CPps, Gt =05x1CFPps, Grr=04x1FPps,

vt =vrTt =0.25
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whereGrt has been changed to preserve transversely isotropic sysinés the
longitudinal direction oriented in thgq, x2) plane atd with respect tay, T is the
transverse direction.

Distance between the Reissner-Mindlin and the Bendingdi@na model

InMARIE], are given the values 4fY/BC for the laminates considered in this work.
For a single ply, the criterion is zero since the BendingdByat model is exactly a
Reissner-Mindlin model in this case. However, when theeesaveral plies, the dis-
tance is greater than 10%. Thus with these laminates, tfae shastitutive equation
cannot be reduced to a Reissner-Mindlin behavior.

Stack |[0°] [0°,90°] [30°, —30°]s [30°, —30]
AF‘M/BG‘O 16.0% 16.0%  23.9%

Table 1 The criterionA™/BG for several laminates

5.2 Cylindrical bending

Pagano[[]l] gives an exact solution for cylindrical bendirigsionply supported
composite laminates. We choose the same configuration éoBémding-Gradient
model. The plate is invariant and infinite ¥a direction. It is out-of-plane loaded
with gz(X1) = —0oSinkx, whereA = 1/k is the wavelength of the loading (Figure 2).
The plate is simply supported st = 0 andx; = L with traction free edges:

Us(0) =0, Us(L) =0, M(0)=0, M(L)=0, N(0)-e,=0, N(L) &, =0 (23)

M22(0) = M2, (L) = Oiis the additional boundary condition compared to the Reiss
Mindlin plate model. This additional boundary conditiorkéa into account free
edge effects similar to those described.id [17] for periatijdayered laminate. The
resolution is provided in details i [18].

Closed-form solutions using the Reissner-Mindlin modetevalso derived in
order to compare them with the Bending-Gradient. The wor/bftney m] was
used for deriving transverse shear stress distributiodsshear correction factors
were taken into account into the shear constitutive equatiche Reissner-Mindlin
plate model.

A comparison with a finite elements solution was also perégiron ABAQUS
[E]. Since the Bending-Gradientis an Equivalent Singlgdraheory, conventional
shell elements were chosen (3 displacements and 3 rotatibramsverse shear
fields with shell elements mﬁ are derived using an apph very similar
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— X1
Qs = ocos 7!

Fig. 2 [Pagaro’s cylindrical bending configuration

to [|E] where it is furthermore assumed that the plate oleaalstitutive equation

is orthotropic with respect to the main bending directi®f.linear quadrangle with
full integration elements, were used. A convergence testpeaformed. This study
enforced the typical size of an elemént, = h/5 wherehis the plate thickness. For
instance when the slenderneséj& = 1/4 there are 20 elements. Figlile 3 shows
a typical deformation of this mesh. Periodicity was enfdroa lateral edges of the
strip in Figure[B by equating corresponding rotations arspldcements. Finally,
section integration is performed during the analysis.

Fig. 3 Finite Element undeformed and deformed mesh for an anfsicttaminate

Two error estimates are introduced: the first one for thestrarse shear part of
the stresses for which we introduce the following seminorm:

L h

2 2
||UH2=/L/h0a35a3/33053dX3dX1

—2Y72

Bx_ .
and we define the relative error a&(o) = “(ﬁaEXﬁH’ wherea™ is the exact shear

stress distribution from Pagarﬂ m 21l 22]. The second siieel mid-span deflec-
Ex _
tion relative errorA(Usz) = % whereUEX(x,) is the plate deflection
3
taken for the exact solution.
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5.3 Results

First, we consider a skew-symmetric cross [}y, 90°] laminate. In this case, the
plate configuration fulfills the assumptions made for thedigiements approxima-
tion (orthotropic laminate). In Figuld 4, shear stressritlistion in both directions
are plotted for the exact solution from Pagaﬂo ¢f}, the Bending-Gradient so-
lution o®), Whitney's shear distributio@W and the finite elements solution
o(QFE The slenderness ratio is setlt¢h = 4 as conventionally done when bench-
marking plate models. The three approximate solutionslyiled same distribution.
The discrepancy with the exact solution is well-known ansbagted to edge ef-
fects. In Figur&lb the transverse shear stress distribatiamA (g) versus the slen-

0.5
0.4 T13

0.3 o
0.2
0.1

—

xg/h
o

-0.1
-0.2
-0.3
-0.4
-0.5
0

0.5 1 5
h013/()\f10])

Fig. 4 Normalized shear distributioon 3z atx; = 0 for a[0,90°] laminateL/h =4

0
10 ; HEO: : 015
0.1
SETN —
a S
A 005
o <
2 g
- o
m -2 g
»n 10 o 0
g g
= 3
< o -0.05f
g 3
w107 =}
-0.1F
BG
—+— RM,FE
RM,W
4
0 n 2 o 1 2
10 10 10 10 10 10
Slenderness L/h

Slenderness L/h

Fig. 5 Shear stress distribution error versus Fig. 6 Deflection error versus slenderness ra-
slenderness ratio for[@°,90°] laminate tio for a[0,90°] laminate
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derness ratid./h is plotted for the Bending-Gradient solutioBQ), the finite ele-
ments solutionffM, FE) and the closed-form Reissner-Mindlin solutid®,WE).

In this case y’'s solution converges witlih whereas finite elements and
Bending-Gradient approximations do not converge and leadther small errors
(~ 1073). In Figurel® the mid-span deflection error is also plottexsus the slen-
derness ratio. The three approximate solutions yields stlithe same error.

We consider now a symmetric and non-orthotro8i@’, —30°]s laminate. This
configuration does not comply with the assumptions madeherfinite elements
approach. In FigurEl 7 shear distributions are comparede@xact solution. The
Bending-Gradient solution remains close to the exact mslutHowever finite el-
ements anmy’s solution yield different distributsowhich are not as accu-
rate as the Bending-Gradient. More precisely, in DirecBothe FE solution does
not capture the change of slope associated to the changg ofiphtation. In Di-
rection 1 the macroscopic equilibrium is respected for pfiraximated solutions
((013) = Q1). However in Direction 2 we can see tha$F ) # Q, for both finite
elements anmy’s solution. In Figlile 8 the transvehsar stress distribution
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Fig. 7 Normalized shear distribution in both directionsat= 0 for a[30°, —30°|s laminate . /h =
4, a)013 b) 023.

error versus the slenderness ratio is plotted. Contrafyddinite elements solution
andm's solution, the Bending-Gradient solutionv@nges when the plate

is slender. More precisely we hava{g®) O (E)2 in this case. In FigurEl9 the
mid-span deflection error is also plotted versus the sleredsrratio. The Bending-
Gradient solution is the most accurate one for conventislealderness.

Finally, in Figure[ID the comparison is made for a non-symineind non-
orthotropic ply [30°, —30°]. Again, this configuration does not comply with the
assumptions made for the finite elements approach. The Bg@liadient solu-
tion remains close to the exact solution ﬁhneys smtuyields acceptable
results (except a mismatch foég)’w). However in this case, finite elements yields
inappropriate results: in Direction 1 the stress distidoutioes not respect macro-
scopic equilibriun‘(af§> #+ Q1. We checked nevertheless that FE nodal forces ful-
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Fig. 8 Shear stress distribution error versus Fig. 9 Deflection error versus slenderness ra-
slenderness ratio for[80°, —30°]s laminate tio for a[30°, —30°]s laminate

fills macroscopic equilibrium. This inaccuracy is also clemFigure[% showing
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Fig. 10 Normalized shear distribution in both directionsxat= 0 for a [-30°,30°] laminate,
L/h =4, a)Ulg b) 023.

the transverse shear stress distribution errar versusghdesness ratio whereas the
Bending-Gradient converges A$g™) [ (E)2 and both thmy and finite el-
ements solutions lead to non-negligible errors. Again,igufe[12, the deflection
error indicates that FE are too compliant and that the Bep@radient is more
accurate than the Reissner-Mindlin solution.
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5.4 Discussion

We have compared three approaches for deriving an apprtigimaf the exact
solution for cylindrical bending suggested by Pag

First we derived closed-form solutions for the Reissnendin model using
shear correction factors and shear distributions fﬂw.[IB]s approach yields a
fair estimation of the deflection and shear distributionsyitindrical bending but it
is not as accurate as the Bending-Gradient approximatiomoist cases. The main
limitation of this approach is the cylindrical bending assation. It is not sure that
shear correction factors and shear distributions will renvalid with more gen-
eral plate boundary conditions, especially involving itons whereas the Bending-
Gradient theory is not limited to cylindrical bending.

Second, we implemented a finite elements approximatiomgusdnventional
shell elements. This approach assumes both cylindricalibgrand orthotropy in
the same direction. When these assumptions are not vaédresults might be
really affected both for deflection and stress distributi@ndemonstrated for the
[30°, —30°] laminate.

Finally, the Bending-Gradient solution was presentedsTdpproach enables
the derivation of stress distributions and gives good ehalgflection and stress
distribution estimates whatever the plate configuratiod #re bending direction
are. Moreover, it was numerically demonstrated that in seomigurations the
Bending-Gradient solution converges with the slenderregss.

Let us state this convergence condition precisely. We ctwseglect the gradi-
ent of membrane stred® O since it is not related to macroscopic stress. In the
cylindrical bending configuration, the membrane stresediced toN2,. When
Ny, = 0, the membrane stress gradient vanishes. This is the ca§g0fo—30°]s
and[30°, —30°] since they are balanced laminates (as mérplies as—6 plies).
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In these cases, the Bending-Gradient solution convergemuBe the stress fields
related to the membrane stress gradient do not contributestfinal solution. It is
possible to generalize this result to any boundary contlitiith mirror symmetric
laminates 8 = 0) for which the membrane problem is fully uncoupled from the
out-of-plane problem. With these laminates, the Bendimgeiznt solution is the
Saint-Venant solution for an out-of-plane loaded plate.

6 Conclusion

In the present paper, we derived a new plate theory, the Bgr@radient theory,
which is the extension of Reissner-Mindlin theory to lantéthplates. Compari-
son with the exact solution for cylindrical bending of crgdg laminates demon-
strates that the Bending-Gradient gives good predictibbeth deflection and shear
stress distributions in any material configuration. It soahe Saint-Venant solution
when membrane stresses are fully uncoupled from bendingentsnand gener-
alized shear stresses. Finally, with usual laminated plate pointed out that the
Bending-Gradient cannot be reduced to a Reissner-MindHite pnodel.

Several outlooks are under consideration. First, thigglaory can be extended
to periodic plates such as sandwich parElHE& 24]. Setlaestimation of the in-
fluence of the membrane stress gradient on the quality ohtbarstress estimation
should be studied in detail.
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