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A Bending-Gradient theory for thick laminated
plates homogenization

A. Lebée, K. Sab

Abstract This work presents a new plate theory for out-of-plane loaded thick plates
where the static unknowns are those of the Love-Kirchhoff theory, to which six com-
ponents are added representing the gradient of the bending moment. The Bending-
Gradient theory is an extension to arbitrary multilayered plates of the Reissner-
Mindlin theory which appears as a special case when the plateis homogeneous. The
new theory is applied to multilayered plates and its predictions are compared to full
3D Pagano’s exact solutions and other approaches. It gives good predictions of both
deflection and shear stress distributions in any material configuration. Moreover,
under some symmetry conditions, the Bending-Gradient model coincides with the
second-order approximation of the exact solution as the slenderness ratioL/h goes
to infinity.

1 Introduction

Laminated plates are widely used in engineering applications. For instance angle-
ply carbon fiber reinforced laminates are commonly used in aeronautics. However,
these materials are strongly anisotropic and the plate overall behavior is difficult to
capture. The most common plate theory is the Love-Kirchhoffplate model. How-
ever, it is well-known that, when the plate slenderness ratio L/h is not large enough,
transverse shear stresses which are not taken into account in the Love-Kirchhoff
theory have an increasing influence on the plate deflection.
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In recent decades many suggestions have been made to improvethe estimation
of transverse shear stresses. Two main approaches can be found: asymptotic ap-
proaches and axiomatic approaches. The first one is mainly based on asymptotic
expansions in the small parameterh/L [2, 3]. However, no distinction between rel-
evant fields and unknowns was made. The second main approach is based on as-
sumingad hoc displacement or stress 3D fields. These models can be “Equivalent
Single Layer“ or ”Layerwise“. Equivalent single layer models treat the whole lam-
inate as an equivalent homogeneous plate. However, when dealing with laminated
plates, these models lead systematically to discontinuoustransverse shear stress dis-
tributions through the thickness as indicated by Reddy [4].In Layerwise models, all
plate degrees of freedom are introduced in each layer of the laminate and conti-
nuity conditions are enforced between layers. The reader can refer to Reddy [4]
and Carrera [5] for detailed reviews of kinematic approaches and to [6, 7, 8] for
static approaches. Layerwise models lead to correct estimates of local 3D fields.
However, their main drawback is that they involve a number ofdegrees of freedom
proportional to the number of layers. The limitation is immediately pointed out with
functionally graded materials, where the plate constituents properties vary continu-
ously through the thickness [9, 10].

Based on Reissner [11] paper, we suggest an Equivalent Single Layer higher-
order plate theory which gives an accurate enough estimate of transverse shear
stresses in the linear elasticity framework. For this, we are motivated by two obser-
vations. The first one is that Love-Kirchhoff strain fields have clearly been identified
as good first-order approximation for slender plates thanksto asymptotic expansion
approaches. The second one is that the 3D equilibrium plays acritical role in the
estimation of transverse shear stress in all the existing approaches. We show in this
work that revisiting the use of 3D equilibrium in order to derive transverse shear
stress as Reissner [11] did for homogeneous plates leads to afull bending gradient
plate theory. The Reissner-Mindlin theory is as a special case of the new Bending-
Gradient theory when the plate is homogeneous.

In Section 2 notations are introduced. In Section 3, we resume Reissner’s pro-
cedure for deriving transverse shear stress extended to laminated plates. This lead
to the Bending-Gradient plate theory detailed in Section 4.Finally, in Section 5
the Bending-Gradient plate theory is applied to fibrous laminates under cylindri-
cal bending and compared to the exact solution and other Single Equivalent Layer
approaches.

2 Notations

Vectors and higher-order tensors are boldfaced and different typefaces are used for
each order: vectors are slanted:TTT , uuu. Second order tensors are sans serif:MMM, eee. Third
order tensors are in typewriter style:ΦΦΦ, ΓΓΓ. Fourth order tensors are in calligraphic
styleDDD, ccc. Sixth order tensors are double strokedFFF,WWW.
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When dealing with plates, both 2-dimensional (2D) and 3D tensors are used.
Thus,T̃TT denotes a 3D vector andTTT denotes a 2D vector or the in-plane part ofT̃TT . The
same notation is used for higher-order tensors:σ̃σσ is the 3D second-order stress tensor
while σσσ is its in-plane part. When dealing with tensor components, the indexes
specify the dimension:ai j denotes the 3D tensorãaa with Latin indexi, j,k.. = 1,2,3
andaαβ denotes the 2Daaa tensor with Greek indexesα,β ,γ.. = 1,2. C̃CC = Ci jkl is

the fourth-order 3D elasticity stiffness tensor.S̃SS = Si jkl = C̃CC
−1

is the fourth-order
3D elasticity compliance tensor whileccc = cαβ γδ denotes the plane-stress elasticity

tensor.ccc is not the in-plane part of̃CCC but it is the inverse of the in-plane part ofS̃SS :
ccc = SSS−1. The identity for in-plane elasticity isiαβ γδ = 1

2

(
δαγδβ δ + δαδ δβ γ

)
, where

δαβ is Kronecker symbol (δαβ = 1 if α = β , δαβ = 0 otherwise).
The transpose operationt• is applied to any order tensors as follows:(tA)αβ ...ψω =

Aωψ...β α .

Three contraction products are defined, the usual dot product (ãaa · b̃bb = aibi), the
double contraction product (ãaa : b̃bb = ai jb ji) and a triple contraction product (AAA ∴ BBB=
Aαβ γBγβ α ). In these definitions Einstein’s notation on repeated indexes is used. It
should be noticed that closest indexes are summed together in contraction products.
Thus,ΦΦΦ ·nnn = Φαβ γnγ is different fromnnn ·ΦΦΦ = nαΦαβ γ . The derivation operator̃∇∇∇
is also formally represented as a vector:ãaa · ∇̃∇∇ = ai j∇ j = ai j, j is the divergence and

ãaa⊗ ∇̃∇∇ = ai j∇k = ai j,k is the gradient. Here⊗ is the dyadic product. Finally, the

integration through the thickness is noted〈•〉:
∫ h

2

− h
2

f (x3)dx3 = 〈 f 〉.

3 Revisiting the Reissner-Mindlin plate theory

The 3D model

We consider a linear elastic plate of thicknessh occupying the 3D domainΩ =
ω×]−h/2,h/2[, whereω ⊂R

2 is the mid-plane of the plate (Figure 1). Cartesian
coordinates(x1,x2,x3) in the reference frame(̃eee1, ẽee2, ẽee3) are used. The constitutive
material is assumed to be invariant with respect to translations in the(x1,x2) plane.
Hence, the stiffness tensorC̃CC is a function ofx3 only. The plate is loaded on its upper

and lower facesω± = ω×{±h/2}with the distributed forcẽTTT
±

. There are no body
forces and the plate is clamped on its lateral edge,∂ω×]− h/2,h/2[ where∂ω is
the edge ofω . The 3D problemP3D is summarized as follows:
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P
3D






σ̃σσ ·∇̃∇∇ = 0 onΩ . (1a)

σ̃σσ = C̃CC(x3) : ε̃εε on Ω . (1b)

σ̃σσ · ẽee3 = T̃TT
±

on ω±. (1c)

ε̃εε =
1
2

(
∇̃∇∇⊗ ũuu+ ũuu⊗∇̃∇∇

)
on Ω . (1d)

ũuu = 0 on∂ω×]−h/2,h/2[. (1e)

whereũuu is the 3D displacement vector field,ε̃εε is the strain tensor field and̃σσσ is the
stress tensor field.

Fig. 1 The Plate Configuration

Reissner-Mindlin statically compatible fields

We recall here briefly the procedure for the derivation of Reissner-Mindlin equilib-
rium equations [11, 12, 13]. The generalized Reissner-Mindlin stresses associated
to the 3D stress field̃σσσ are:

Nαβ (x1,x2) =
〈
σαβ

〉
(2)

Mαβ (x1,x2) =
〈
x3σαβ

〉
(3)

Qα (x1,x2) = 〈σα3〉 (4)

whereNNN is the membrane stress,MMM the bending moment, andQQQ the shear forces.
Reissner-Mindlin equilibrium equations are obtained by integrating equations (1a)

andx3×(1a) with respect tox3. Taking also into account boundary conditions (1c)
yields:





Nαβ ,β + qα = 0 (5a)

Qα ,α + q3 = 0 (5b)

Mαβ ,β −Qα + µα = 0 (5c)
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whereqi = T +
i + T−

i are symmetric loadings per unit surface andµi = h
2(T +

i −
T−

i ) are skew-symmetric loadings per unit surface. More precisely, qqq = (qα) are
membrane loadings per unit surface,q3 is the out-of-plane loading per unit surface,
µµµ = (µα) are couples per unit surface andµ3 is the transverse bulk loading.

Since in-plane loadings (qqq, µµµ) and out-of-plane loadings (q3, µ3) are not of the
same order in the asymptotic analysis of the plate ash/L goes to 0 (see [3]), and for
the sake of simplicity, we focus only on the out-of-plane loadingq3 (qα = µi = 0).

Localization

The second step of Reissner’s approach consists in derivingthe stress energy per unit
surfacew∗RM(NNN,MMM,QQQ) from the 3D model. As in many homogenization procedures,
the derivation ofw∗RM is based on an approximation scheme for the real 3D stress
fields in terms of the generalized plate stress fields:

σ̃σσRM
(x1,x2,x3) = σ̃σσ (N)

(x1,x2,x3)+ σ̃σσ(M)
(x1,x2,x3)+ σ̃σσ (Q)

(x1,x2,x3)

whereσ̃σσ (N), σ̃σσ (M), andσ̃σσ (Q) are 3D stress fields generated byNNN,MMM andQQQ as follows:





σ (N)
i j = s

(N)
i jαβ (x3)Nαβ (x1,x2) (6a)

σ (M)
i j = s

(M)
i jαβ (x3)Mαβ (x1,x2) (6b)

σ (Q)
i j = s

(Q)
i jα (x3)Qα(x1,x2) (6c)

wheres
(N)
i jαβ (x3), s

(M)
i jαβ (x3) ands

(Q)
i jα (x3) are localization tensors depending only on

thex3 coordinate. This can be rewritten using contraction products as:

σ̃σσRM
= s̃ss

(N) : NNN+ s̃ss
(M) : MMM+ s̃ss

(Q) ·QQQ

Once this approximation of stress fields is set, the stress potential energy density
w∗RM(NNN,MMM,QQQ) is defined simply as the quadratic form:

w∗RM(NNN(xxx),MMM(xxx),QQQ(xxx)) =
1
2

〈
σ̃σσRM

(x̃xx) : S̃SS(x3) : σ̃σσRM
(x̃xx)

〉
(7)

Hence, a consistent choice fors̃ss
(N), s̃ss

(M) ands̃ss
(Q) is critical.

Love-Kirchhoff fields

The derivation of̃sss(N) and̃sss
(M) is based on the Love-Kirchhoff plate theory. Accord-

ing to this theory, plane-stress is assumed and the in-planepart of the strain is linear
in x3:
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εεεLK = eee+ x3χχχ (8)

whereeee is the membrane strain andχχχ the curvature. We draw the reader’s attention
to the fact that strain componentsεi3 are not null in the general case. Membrane
stressNNN and bending momentsMMM are linearly dependent oneee andχχχ:

{
NNN = AAA : eee+BBB : χχχ (9a)

MMM = t
BBB : eee+DDD : χχχ (9b)

with:
(AAA,BBB,DDD) =

〈(
1,x3,x

2
3

)
ccc(x3)

〉
(10)

Using 3D constitutive equation under plane-stress assumption, Love-Kirchhoff
constitutive equation (9) and in-plane strains definition (8), it is possible to express
Love-Kirchhoff stress fields as functions ofNNN andMMM:

{
σσσ (N)(x1,x2,x3) = ccc(x3) :

(
aaa + x3

t
bbb
)

: NNN(x1,x2) andσ (N)
i3 = 0 (11a)

σσσ (M)(x1,x2,x3) = ccc(x3) : (bbb + x3ddd ) : MMM(x1,x2) andσ (M)
i3 = 0 (11b)

whereaaa, bbb andddd are the reciprocal compliance tensors of the constitutive equa-
tion (9).

Stress field generated by a linear variation of the bending moment

The main idea of Reissner’s method is to recall that the shearforces are related to the
bending moment through the plate equilibrium (5). With a homogeneous plate, com-
bining both 3D equilibrium and plate equilibrium enables the derivation of a stress
field directly depending on shear forces. However, with laminated plates it is not
possible to bring out shear force with this procedure. Here,we suggest considering
a more general shear variable for laminates, the full bending gradient:RRR=MMM⊗∇∇∇. In
the following, we resume the procedure from Reissner [11] for deriving shear fields
in the case of laminated plates.

We havẽσσσ (M)
·∇̃∇∇ = 0 if MMM is (x1,x2)-invariant. WhenMMM is function ofx1 andx2,

we have:

σ̃σσ (M)
·∇̃∇∇ = s

(M)
i jβ α(x3)Mαβ (x1,x2)∇ j = s

(M)
i jβ αMαβ ,γδ jγ = s

(M)
iγβ αRαβ γ

f (R)
i = s

(M)
iγβ αRαβ γ is the force per unit volume generated by first order variations of

the bending momentRRR. Rαβ γ is a third-order tensor which respectsMαβ symmetries

(Rαβ γ = Rβ αγ). Usingσ̃σσ (M) definition (Equation 11b) and assuming that each layer
follows monoclinic symmetry we identify the force per unit volume as:

fff (R) = ccc(x3) : (bbb + x3ddd ) ∴ RRR and f (R)
3 = 0 (12)
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Then, we definẽσσσ (R) the 3D stress generated by a(x1,x2)-invariant bending gradient

RRR associated to the localization tensors
(R)
i jαβ γ such as̃σσσ (R)

= s̃ss
(R)

∴RRR. This stress field
is derived through the auxiliary problem:

{
σ̃σσ (R)

·∇̃∇∇+ f̃ff
(R)

= 0̃00 (13a)

σ̃σσ (R)
· ẽee3 = 0̃00 for x3 = ±h/2 (13b)

The(x1,x2)-invariant solution of this problem is easily found, leading to the explicit
determination of̃sss(R):

s
(R)
α3ηζε(x3) =−

∫ x3

− h
2

cαηγδ (z)
(

bδγεζ + zdδγεζ
)

dz , s
(R)
αβ ηζε = 0 ands

(R)
33ηζε = 0 (14)

We have derived a localization tensors̃ss
(R) which depends on all bending gradient

components:Rαβ γ = Mαβ ,γ . Accordingly we define a new approximation of stress
fields involving all bending gradient components:

σ̃σσBG
= σ̃σσ (N)

+ σ̃σσ (M)
+ σ̃σσ (R)

and a new stress energy density identical to Definition 7:

w∗BG(NNN,MMM,RRR)

Actually σ̃σσBG approximation for 3D stress fields is a higher-order gradient the-
ory, as described in [14] for 3D continuum and [15] for periodic beams. However,
to be consistent with higher-order theories, we should havetaken into account the
gradient of other static unknowns such as the membrane stress gradient for instance.
It is the choice of the authors to limit the number of static variables only to those
which have a contribution to the macroscopic equilibrium ofthe plate. Thus the
number of unknowns remains limited and adapted to engineering applications, con-
trary to asymptotic expansions and other rigorous approaches in which no distinc-
tion is made between significant static unknowns.

The mechanical meaning of the gradient of the bending moment

The full bending gradientRRR has six components (R111, R221, R121, R112, R222, R122)
whereasQQQ has two components. Thus, using the full bending gradient asstatic
unknown introduces four static unknowns whicha priori are not related to plate
equilibrium (5c). Only(NNN,MMM,QQQ) appeared while integrating 3D equilibrium equa-
tion (1a) through the thickness in Section 3.

Let us derive generalized stresses associated toσ̃σσ (R). Using Equation 14 and in-
tegrating by parts when necessary leads to:

〈
σ (R)

αβ

〉
= 0,

〈
x3σ (R)

αβ

〉
= 0,

〈
s
(R)
α3β γδ

〉
= iαβ γδ (15)



8 A. Lebée, K. Sab

and we have:
〈

σ (R)
α3

〉
= iii ∴ RRR = QQQ. Only QQQ remains after integrating̃σσσ (R) through

the thickness and the four other static unknowns are self-equilibrated stress. More
precisely we have:

R111 R221 R121 R112 R222 R122

σ13

〈
s
(R)
13111

〉
= 1

〈
s
(R)
13122

〉
= 0

〈
s
(R)
13121

〉
= 0

〈
s
(R)
13211

〉
= 0

〈
s
(R)
13222

〉
= 0

〈
s
(R)
13221

〉
= 1/2

σ23

〈
s
(R)
23111

〉
= 0

〈
s
(R)
23122

〉
= 0

〈
s
(R)
23121

〉
= 1/2

〈
s
(R)
23211

〉
= 0

〈
s
(R)
23222

〉
= 1

〈
s
(R)
23221

〉
= 0

R111 andR222 are the cylindrical bending part of shear forcesQ1 andQ2, R121

andR122 are the torsion part of shear forces andR112 andR221 are linked to strictly
self-equilibrated stresses (warping).

4 The Bending-Gradient plate model

Once stress energy densityw∗BG(NNN,MMM,RRR) and plate equilibrium equations 5 to which
is addedRRR = MMM⊗∇∇∇ are given it is possible to build a complete plate theory using
conventional variational tools. The reader is refered to [16] for details.

Summary of the plate model

Equilibrium equations and boundary conditions involving stress fields are gathered
in the set of statically compatible fields:





NNN ·∇∇∇ = 000 onω (16a)

MMM⊗∇∇∇−RRR= 0 onω (16b)

(iii ∴ RRR) ·∇∇∇ = −q3 onω (16c)

NNN ·nnn =VVV d on∂ωs (16d)

MMM = MMM
d on ∂ωs (16e)

(iii ∴ RRR) ·nnn = V d
3 on ∂ωs (16f)

where∂ωs is the portion of edge on which static boundary conditions apply: ṼVV
d

is the force per unit length andMMMd the full bending moment enforced on the edge.
This set of equations is almost identical to Reissner-Mindlin equations where shear
forces have been replaced by the bending gradientRRR.

Generalized stressesNNN, MMM, andRRR work respectively with the associated strain
variables:eee, the conventional membrane strain,χχχ the conventional curvature and
ΓΓΓ the generalized shear strain. These strain fields must comply with the following
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compatibility conditions and boundary conditions:




eee = iii : (∇∇∇⊗UUU) on ω (17a)

χχχ = ΦΦΦ ·∇∇∇ on ω (17b)

ΓΓΓ = ΦΦΦ+ iii ·∇∇∇U3 onω (17c)

ΦΦΦ ·nnn = HHH
d on ∂ωk (17d)

ŨUU = ŨUU
d

on ∂ωk (17e)

whereŨUU is the 3D displacement of the mid-plane of the plate andΦΦΦ is the gener-
alized rotation.ΓΓΓ andΦΦΦ are 2D third-order tensors with the following symmetry:
Φαβ γ = Φβ αγ . Moreover,∂ωk is the portion of edge on which kinematic boundary

conditions apply:̃UUU
d

is a given displacement andHHHd is a symmetric second-order
tensor related to a forced rotation on the edge. These fields are almost identical to
Reissner-Mindlin kinematically compatible fields where the rotation pseudo-vector
is replaced by the generalized rotationΦΦΦ.

Finally, for constitutive material following local monoclinic symmetry with re-
spect to(x1,x2) plane (uncoupling betweenRRR and (NNN,MMM)) the Bending-Gradient
plate constitutive equations are written as:





NNN = AAA : eee+BBB : χχχ (18a)

MMM = t
BBB : eee+DDD : χχχ (18b)

ΓΓΓ = fff ∴ RRR, where (III−fff ∴ FFF) ∴ ΓΓΓ = 0 (18c)

where conventional Love-Kirchhoff stiffnesses are definedas:

(AAA,BBB,DDD) =
〈(

1,x3,x
2
3

)
ccc(x3)

〉

andfff is the generalized shear compliance tensor1 defined as:fff=
∫ h

2

− h
2

(∫ x3

− h
2

(t
bbb + zddd

)
: ccc(z)dz

)
·SSS(x3) ·

(∫ x3

− h
2

ccc(z) : (bbb + zddd )dz

)
dx3 (19)

whereSSS = Sαβ = 4Sα3β 3 is the out-of-plane shear compliance tensor. Sincefff is
not always invertible, we introduced Moore-Penrose pseudoinverse for the shear
stiffness tensorFFF: FFF= lim

κ→0
(fff ∴ fff+ κIII)−1

∴ fff
whereIII is the identity for 2D sixth-order tensors following the generalized shear
compliancefff minor and major symmetries (Iαβ γδεζ = iαβ εζ δγδ ). The solution of
the plate model must comply with the three sets of equations (16, 17, 18). The
compliancefff is positive. However whenfff is not definite, there is a set of solutions,
up to a self-stress field.

1 fαβγδεζ follows major symmetry:fαβγδεζ = fζ εδγβα and minor symmetryfαβγδεζ = fβαγδεζ .
Thus there are only 21 independent components
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Projection of the Bending-Gradient plate model

In some cases, the Bending-Gradient is turned into a Reissner-Mindlin plate model.
This is the case for homogeneous plates. Thus, we need a meansto estimate the
difference between both plate models. It is possible to define the exact projection of
the Bending-Gradient model on a Reissner-Mindlin model.

The Reissner-Mindlin part offff is:fffRM =

(
2
3

iii · iii

)
∴ fff ∴

(
2
3

iii · iii

)
(20)fffRM can be considered as the restriction offff when setting warping unknowns to zero.

Consequently, we introduce the pure warping part offff as the orthogonal complement
of fffRM: fffW = fff−fffRM (21)

Finally we suggest the following relative distance betweenthe Bending-Gradient
plate model and the Reissner-Mindlin one:

∆ RM/BG =
‖fffW‖

‖fff‖ , where ‖fff‖ =
√fαβ γδεζ fζεδγβ α (22)

∆ RM/BG gives an estimate of the pure warping fraction of the shear stress energy
and is a criterion for assessing the need of the Bending-Gradient model. When the
plate constitutive equation is restricted to a Reissner-Mindlin one, we have exactly
∆ RM/BG = 0.

5 Application to laminates

5.1 Plate configuration

We consider angle-ply laminates. Each ply is made of unidirectional fiber-reinforced
material oriented atθ relative to the bending directionx1. All plies have the same
thickness and are perfectly bounded. A laminate is denoted between brackets by the
successive ply-orientations along thickness. For instance [0◦,90◦] denotes a 2-ply
laminate where the lower ply fibers are oriented in the bending direction. The con-
stitutive behavior of a ply is assumed to be transversely isotropic along the direction
of the fibers and engineering constants are chosen similar tothose of [1]:

EL = 25×106psi, ET = 1×106psi, GLT = 0.5×106psi, GT T = 0.4×106psi,

νLT = νT T = 0.25
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whereGT T has been changed to preserve transversely isotropic symmetry. L is the
longitudinal direction oriented in the(x1,x2) plane atθ with respect tõeee1, T is the
transverse direction.

Distance between the Reissner-Mindlin and the Bending-Gradient model

In Table 1, are given the values of∆ RM/BG for the laminates considered in this work.
For a single ply, the criterion is zero since the Bending-Gradient model is exactly a
Reissner-Mindlin model in this case. However, when there are several plies, the dis-
tance is greater than 10%. Thus with these laminates, the shear constitutive equation
cannot be reduced to a Reissner-Mindlin behavior.

Stack [0◦] [0◦,90◦] [30◦,−30◦]s [30◦,−30◦]

∆ RM/BG 0 16.0% 16.0% 23.9 %

Table 1 The criterion∆ RM/BG for several laminates

5.2 Cylindrical bending

Pagano [1] gives an exact solution for cylindrical bending of simply supported
composite laminates. We choose the same configuration for the Bending-Gradient
model. The plate is invariant and infinite inx2 direction. It is out-of-plane loaded
with q3(x1)=−q0sinκx1 whereλ = 1/κ is the wavelength of the loading (Figure 2).
The plate is simply supported atx1 = 0 andx1 = L with traction free edges:

U3(0) = 0, U3 (L) = 0, MMM(0) = 0, MMM(L) = 0, NNN(0) ·eee1 = 000, NNN(L) eee1 = 000 (23)

M22(0)= M22(L) = 0 is the additional boundary condition compared to the Reissner-
Mindlin plate model. This additional boundary condition takes into account free
edge effects similar to those described in [17] for periodically layered laminate. The
resolution is provided in details in [18].

Closed-form solutions using the Reissner-Mindlin model were also derived in
order to compare them with the Bending-Gradient. The work ofWhitney [19] was
used for deriving transverse shear stress distributions and shear correction factors
were taken into account into the shear constitutive equation of the Reissner-Mindlin
plate model.

A comparison with a finite elements solution was also performed on ABAQUS
[20]. Since the Bending-Gradient is an Equivalent Single Layer theory, conventional
shell elements were chosen (3 displacements and 3 rotations). Transverse shear
fields with shell elements in ABAQUS are derived using an approach very similar
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Fig. 2 Pagano’s cylindrical bending configuration

to [19] where it is furthermore assumed that the plate overall constitutive equation
is orthotropic with respect to the main bending direction.S4, linear quadrangle with
full integration elements, were used. A convergence test was performed. This study
enforced the typical size of an elementlchar = h/5 whereh is the plate thickness. For
instance when the slenderness ish/L = 1/4 there are 20 elements. Figure 3 shows
a typical deformation of this mesh. Periodicity was enforced on lateral edges of the
strip in Figure 3 by equating corresponding rotations and displacements. Finally,
section integration is performed during the analysis.

Fig. 3 Finite Element undeformed and deformed mesh for an anisotropic laminate

Two error estimates are introduced: the first one for the transverse shear part of
the stresses for which we introduce the following seminorm:

‖σσσ‖2 =

∫ L
2

− L
2

∫ h
2

− h
2

σα3Sα3β 3σβ 3dx3dx1

and we define the relative error as:∆(σσσ ) =
‖σσσ Ex−σσσ‖
‖σσσEx‖

, whereσσσEx is the exact shear
stress distribution from Pagano [1, 21, 22]. The second one is the mid-span deflec-

tion relative error:∆(U3) =
UEx

3 (L/2)−U3(L/2)

UEx
3 (L/2)

, whereUEx
3 (x1) is the plate deflection

taken for the exact solution.
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5.3 Results

First, we consider a skew-symmetric cross ply[0◦,90◦] laminate. In this case, the
plate configuration fulfills the assumptions made for the finite elements approxima-
tion (orthotropic laminate). In Figure 4, shear stress distribution in both directions
are plotted for the exact solution from Pagano [1]σσσEx, the Bending-Gradient so-
lution σσσ (R), Whitney’s shear distributionσσσ (Q),W and the finite elements solution
σσσ (Q),FE . The slenderness ratio is set toL/h = 4 as conventionally done when bench-
marking plate models. The three approximate solutions yield the same distribution.
The discrepancy with the exact solution is well-known and associated to edge ef-
fects. In Figure 5 the transverse shear stress distributionerror∆(σσσ ) versus the slen-
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Fig. 4 Normalized shear distributionσ13 at x1 = 0 for a[0,90◦] laminate,L/h = 4
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Fig. 5 Shear stress distribution error versus
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tio for a [0,90◦] laminate
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derness ratioL/h is plotted for the Bending-Gradient solution (BG), the finite ele-
ments solution (RM,FE) and the closed-form Reissner-Mindlin solution (RM,WE).
In this case, Whitney’s solution converges withL/h whereas finite elements and
Bending-Gradient approximations do not converge and lead to rather small errors
(≃ 10−3). In Figure 6 the mid-span deflection error is also plotted versus the slen-
derness ratio. The three approximate solutions yields almost the same error.

We consider now a symmetric and non-orthotropic[30◦,−30◦]s laminate. This
configuration does not comply with the assumptions made for the finite elements
approach. In Figure 7 shear distributions are compared to the exact solution. The
Bending-Gradient solution remains close to the exact solution. However finite el-
ements and Whitney’s solution yield different distributions which are not as accu-
rate as the Bending-Gradient. More precisely, in Direction2, the FE solution does
not capture the change of slope associated to the change of ply orientation. In Di-
rection 1 the macroscopic equilibrium is respected for all approximated solutions
(〈σ13〉 = Q1). However in Direction 2 we can see that

〈
σFE

23

〉
6= Q2 for both finite

elements and Whitney’s solution. In Figure 8 the transverseshear stress distribution
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Fig. 7 Normalized shear distribution in both directions atx1 = 0 for a[30◦,−30◦]s laminate,L/h =
4, a)σ13 b) σ23.

error versus the slenderness ratio is plotted. Contrary to the finite elements solution
and Whitney’s solution, the Bending-Gradient solution converges when the plate

is slender. More precisely we have:∆(σσσBG) ∝
(

h
L

)2
in this case. In Figure 9 the

mid-span deflection error is also plotted versus the slenderness ratio. The Bending-
Gradient solution is the most accurate one for conventionalslenderness.

Finally, in Figure 10 the comparison is made for a non-symmetric and non-
orthotropic ply [30◦,−30◦]. Again, this configuration does not comply with the
assumptions made for the finite elements approach. The Bending-Gradient solu-
tion remains close to the exact solution and Whitney’s solution yields acceptable

results (except a mismatch forσ (QQQ),W
23 ). However in this case, finite elements yields

inappropriate results: in Direction 1 the stress distribution does not respect macro-
scopic equilibrium

〈
σFE

13

〉
6= Q1. We checked nevertheless that FE nodal forces ful-
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Fig. 8 Shear stress distribution error versus
slenderness ratio for a[30◦,−30◦]s laminate
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Fig. 9 Deflection error versus slenderness ra-
tio for a [30◦,−30◦]s laminate

fills macroscopic equilibrium. This inaccuracy is also clear in Figure 5 showing
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Fig. 10 Normalized shear distribution in both directions atx1 = 0 for a [−30◦,30◦] laminate,
L/h = 4, a)σ13 b) σ23.

the transverse shear stress distribution error versus the slenderness ratio whereas the
Bending-Gradient converges as∆(σσσBG) ∝

(
h
L

)2
and both the Whitney and finite el-

ements solutions lead to non-negligible errors. Again, in Figure 12, the deflection
error indicates that FE are too compliant and that the Bending-Gradient is more
accurate than the Reissner-Mindlin solution.



16 A. Lebée, K. Sab

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Slenderness L/h

S
h
ea

r
st

re
ss

E
rr

o
r,

∆
(σ

)

 

 

BG
RM, FE
RM, W

Fig. 11 Shear stress distribution error versus
slenderness ratio for a[30◦,−30◦] laminate
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Fig. 12 Deflection error versus slenderness
ratio for a[30◦,−30◦] laminate

5.4 Discussion

We have compared three approaches for deriving an approximation of the exact
solution for cylindrical bending suggested by Pagano [1, 21, 22].

First we derived closed-form solutions for the Reissner-Mindlin model using
shear correction factors and shear distributions from [19]. This approach yields a
fair estimation of the deflection and shear distributions incylindrical bending but it
is not as accurate as the Bending-Gradient approximation inmost cases. The main
limitation of this approach is the cylindrical bending assumption. It is not sure that
shear correction factors and shear distributions will remain valid with more gen-
eral plate boundary conditions, especially involving torsion, whereas the Bending-
Gradient theory is not limited to cylindrical bending.

Second, we implemented a finite elements approximation, using conventional
shell elements. This approach assumes both cylindrical bending and orthotropy in
the same direction. When these assumptions are not valid, the results might be
really affected both for deflection and stress distributionas demonstrated for the
[30◦,−30◦] laminate.

Finally, the Bending-Gradient solution was presented. This approach enables
the derivation of stress distributions and gives good enough deflection and stress
distribution estimates whatever the plate configuration and the bending direction
are. Moreover, it was numerically demonstrated that in someconfigurations the
Bending-Gradient solution converges with the slendernessratio.

Let us state this convergence condition precisely. We choseto neglect the gradi-
ent of membrane stressNNN⊗∇∇∇ since it is not related to macroscopic stress. In the
cylindrical bending configuration, the membrane stress is reduced toN22. When
N22 = 0, the membrane stress gradient vanishes. This is the case for [30◦,−30◦]s
and [30◦,−30◦] since they are balanced laminates (as manyθ plies as−θ plies).
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In these cases, the Bending-Gradient solution converges because the stress fields
related to the membrane stress gradient do not contribute tothe final solution. It is
possible to generalize this result to any boundary conditions with mirror symmetric
laminates (BBB = 0) for which the membrane problem is fully uncoupled from the
out-of-plane problem. With these laminates, the Bending-Gradient solution is the
Saint-Venant solution for an out-of-plane loaded plate.

6 Conclusion

In the present paper, we derived a new plate theory, the Bending-Gradient theory,
which is the extension of Reissner-Mindlin theory to laminated plates. Compari-
son with the exact solution for cylindrical bending of crossply laminates demon-
strates that the Bending-Gradient gives good predictions of both deflection and shear
stress distributions in any material configuration. It is also the Saint-Venant solution
when membrane stresses are fully uncoupled from bending moments and gener-
alized shear stresses. Finally, with usual laminated plates, we pointed out that the
Bending-Gradient cannot be reduced to a Reissner-Mindlin plate model.

Several outlooks are under consideration. First, this plate theory can be extended
to periodic plates such as sandwich panels [23, 24]. Second,the estimation of the in-
fluence of the membrane stress gradient on the quality of the shear stress estimation
should be studied in detail.

References

[1] N. Pagano, Exact Solutions for Composite Laminates in Cylindrical Bending,
Journal of Composite Materials 3 (3) (1969) 398–411.

[2] D. Caillerie, Thin elastic and periodic plates., Mathematical Methods in the
Applied Sciences 6 (2) (1984) 159 – 191, ISSN 01704214.

[3] T. Lewinski, Effective Models Of Composite Periodic Plates .1. Asymptotic
Solution, International Journal Of Solids And Structures 27 (9) (1991) 1155–
1172.

[4] J. N. Reddy, On Refined Computational Models Of CompositeLaminates, In-
ternational Journal For Numerical Methods In Engineering 27 (2) (1989) 361–
382.

[5] E. Carrera, Theories and finite elements for multilayered, anisotropic, com-
posite plates and shells, Archives Of Computational Methods In Engineering
9 (2) (2002) 87–140.

[6] A. Diaz Diaz, J.-F. Caron, R. P. Carreira, Model for laminates, Comptes Ren-
dus de l’Académie des Sciences - Series IIB - Mechanics 329 (12) (2001)
873–879, ISSN 1620-7742.



18 A. Lebée, K. Sab

[7] J. F. Caron, A. D. Diaz, R. P. Carreira, A. Chabot, A. Ehrlacher, Multi-particle
modelling for the prediction of delamination in multi-layered materials, Com-
posites Science And Technology 66 (6) (2006) 755–765.

[8] A. Diaz Diaz, J. F. Caron, A. Ehrlacher, Analytical determination of the modes
I, II and III energy release rates in a delaminated laminate and validation of a
delamination criterion, Composite Structures 78 (3) (2007) 424–432.

[9] T.-K. Nguyen, K. Sab, G. Bonnet, First-order shear deformation plate models
for functionally graded materials, Composite Structures 83 (1) (2008) 25–36.

[10] T.-K. Nguyen, K. Sab, G. Bonnet, Green’s operator for a periodic medium with
traction-free boundary conditions and computation of the effective properties
of thin plates, International Journal of Solids and Structures 45 (25-26) (2008)
6518–6534, ISSN 0020-7683.

[11] E. Reissner, The effect of transverse shear deformation on the bending of elas-
tic plates, Journal of Applied Mechanics 12 (1945) 68–77.

[12] J.-F. Caron, K. Sab, Un nouveau modèle de plaque multicouche épaisse. A
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