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H I G H L I G H T S

! We explore the role of the air trapped into fine powders during roll compaction process.
! We determine density and velocity of the solid during the process, using Johansson model and mass conservation.
! We determine gas pressure distributions, using Darcy's law.
! We investigate effect of powder density and particle fragmentation on air pressure using Kozeny–Carman law.
! We discuss the initiation of instabilities based on the fluidization criterion and the impact of process parameters.
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a b s t r a c t

Permeating air is known to have a negative impact on the roller compaction process, because the feed is
destabilized by the flow of escaping gas, causing pressure to build-up and potentially damage compacts
at release. Airflow during powder roller compaction and its effect on the rolling process are investigated
in the rolling direction (1D), using an extension of the Johanson model for the solid. Fluid transport obeys
Darcy's law, with permeability being a function of both material density and particle size, through the
Kozeny–Carman relationship. In this modeling, the effect of the air pressure on the solid is neglected in
the compaction zone. Assuming air at atmospheric pressure at the feeding angle and ignoring airflow
through the gap, predictions of air pressure as a function of the rolling angle for bentonite material
powder are presented and discussed. Results suggest the existence of two different stability zones within
the operating conditions, where industrial systems could function without being affected by airflow
effects. The model highlights the importance of the permeability/rotation speed ratio, which governs the
proportion of air trapped in the compacts to the portion evacuated through the feed. We also investigate
the effect of particle fragmentation during the rolling process. Finally, we provide guidelines for the
scale-up of roller presses subjected to air flow issues, through a study of the effect of the system
dimensions and rotation speed on the elimination of air.

In spite of the lack of available experimental data, this model allows for a better understanding of
how air escapes by diffusing through the material during the rolling process, and opens interesting
perspectives for the mitigation of its effect on the process.

1. Introduction

Roll presses are routinely employed in various industrial
processes, for example in the pharmaceutical and mineral indus-
tries. The powder is fed to the compaction zone either by
gravitational feeding or by a screw feeder. The powder is then
drawn between two counter-rotating rolls in the consolidation
zone, where a high pressure is applied. In the pharmaceutical

industry, the process is used for dry granulation agglomeration of
fine powder mixtures to improve flowability for direct compres-
sion. In the mineral industries, presses are used for grinding, as the
particles are fractured into finer fragments by the high pressure
generated.

The roller compaction process has been the object of several
attempts at numerical modeling. The present work belongs to the
1-D model family. Conditions in the material are considered
variable in the direction of flow only: a reasonable hypothesis
when considering the geometry of the system. Notable 1-D models
found in the literature include Johanson's model (Johanson, 1965),
the slabs model (Dec et al., 2003) or the thin layers model
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(Peter et al., 2010). A good literature review of these models can be
found in (Cunningham, 2005).

Recently, finite-element numerical simulations have allowed
compaction to be modeled in 2-D (Dec et al. 2003, Michrafy et al.
2011b, Muliadi et al., 2012), or in 3-D (Cunningham et al., 2010,
Michrafy et al., 2011a). However, 1-D models still present an interest
for their relative simplicity and low computational cost. Their
predictions are also found to be in good agreement with finite
element simulations. 1-D model development thus seems a reason-
able first step to model any characteristics of the rolling process.

We have chosen to adopt a variation of the Johanson model
(Johanson, 1965), which stands as a reference in the domain.
Recent applications can be found for comparison to experimental
data (Bindhumadhavan et al., 2005), comparison to 2-D finite
element simulations (Michrafy et al. 2011b, Muliadi et al., 2012), or
modeling of the dynamic behavior of the press (Hsu et al. 2010).

The present work aims to extend existing models by including
modeling of the air and solid interactions. Air has a negative effect
on the press operation through two mechanisms:

! Compaction creates an air transport away from the compacted
zone, through the feed zone (Vinogradov and Fedorchenko,
1961). This in turn generates a pressure gradient that can
disturb the incoming flow. In the case of gravitational feeding,
where particles are only subjected to their own weight, it can
even result in the fluidization of the particles, which totally
disorganizes the press feeding. The press starts to vibrate as
cycles of fluidization/consolidation of the feed arise (Schwechten
and Milburn, 1990). Screw feeding allows for greater tolerance to
air flow but is eventually also disrupted by the pressure gradient
(Johanson and Cox, 1989). Such instabilities are detected by
significant fluctuations in roll pressure and torque, and in some
cases by vibrations and a popping noise generating rattling in of
the whole drive system (Dec, 1995).

! On the other hand, air that is not evacuated accumulates in the
compact and also leads to a pressure build up that can destroy
the compacts when they are ejected from the press (Dec, 1995).

Knowledge of the effect of air in the roll compaction is wide-
spread and has been strongly emphasized in the literature. But
studies have hardly ever gone beyond this assessment and tried to
predict the air elimination and pressure build-up during the
process more precisely. The work of Johanson and Cox (1989) is
a notable exception. In this very short paper, they present an
extension of Johanson's numerical model for solid compaction
(Johanson, 1965) to predict air transport, and present some mean-
ingful results, including some considerations on process stability.

More generally, the problem of the air trapped inside the fine
powders and its escape by transport through the material is also
encountered in other powder-handling processes, such as silo
discharge and screw feeding. In contrast to the roller compaction
process, the effect of air pressure in discharging or loading a silo
has been relatively well studied. Different analyses of the dissipa-
tion of air from an aerated powder in a silo have been proposed
(Coffey and Gremaud, 2003, Johanson, 1971, Johanson and Jenike,
1971, Murfitt and Bransby, 1980). These approaches were used for
hopper design (Johanson and Jenike, 1971), or for exploring the
effect of the geometry of the container and the length of time a
given material takes to consolidate (Coffey and Gremaud, 2003).

In the rolling process, which is the object of this study, the
situation is made even more complex by the considerable trans-
formations the powder is subjected to: a high degree of compac-
tion, particle fragmentation, etc. The disturbances are also closely
linked to the dynamic of the system and most notably to the
rolling speed.

The present study explores the role of the air transport in the
feed powder during the rolling process through the analysis of
created gas pressure distributions, with a simple, 1D, numerical
model. We base our study on an extension of the well-known
Johanson model for the solid phase (Johanson, 1965) for the
prediction of the solid behavior, but a very similar approach could
be adopted for any 1D model of roller compaction.

The transport equations of air in the powder are described, in
the rolling direction, using Darcy's law. We also investigate the
combined effect of powder density and particle fragmentation on
air transport using the Kozeny–Carman law for permeability.
Particle size evolution is fitted from experimental data.

We discuss the initiation of instabilities based on the fluidiza-
tion criterion originally proposed by Johanson and Cox (1989).
We also evaluate the impact of different process parameters, such
as the combined effect of rolling speed and powder permeability.
We give particular attention to the effect of the fragmentation of
particles and of the dimension of the press, two parameters that,
to our knowledge, have never been investigated.

2. Solid and air flow numerical model

2.1. Solid behavior

For the prediction of the evolution of solid properties, we have
based our analysis on the classic Johanson model. An extensive
description of this model can be found in Dec (1995) and Sommer
and Hauser (2003) and here we shall only briefly recall the main
characteristics of this model.

The geometry of the system is presented in Fig. 1a. Material is
fed to the rolls at angle θ0. The position of the material can be
characterized either by the rotation angle θ or the position
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Fig. 1. (a) Effective and wall yield locus. (b) Roll press and nip angle.



x¼ R sin θ. The gap is the zone where the distance of the rolls is
minimal, at θ¼ 0. Materials are released shortly after the gap at
the angle of release θe.

The Johanson model we are basing our study upon only
provides a model for the zone between θ¼ 0 and θ0. Modeling
the release zone (between θ¼ 0 and θe) is accessible to a 1D model
(Cunningham, 2005), but good knowledge of the elastic properties
of compacts is required, and phenomena that are hard to predict,
such as slip or compact fracture, can occur.

2.1.1. Bulk properties of the solid
The powder behavior is assumed to be isotropic, frictional,

cohesive and compressible and to obey the Jenike and Shield
effective yield function (Jenike and Shield, 1959). The powder
properties, internal friction angle δ and wall friction angle ϕw

shown in Fig. 1a, are measured using a direct shear test, originally
proposed in (Jenike et al., 1960).

In the concept of the Johanson model (Johanson, 1965), the
mean normal stress is defined as:

sθ ¼ s1 θð Þþs2 θð Þð Þ=2 ð1Þ

where s1 and s2 are major and minor principal stresses.
The mean normal stress s0 at the feed angle θ0 of application of

the known stress applied in the flow direction, q0, and is given by

s0 ¼ q0ð1& sin ðδÞÞ ð2Þ

The feed angle θ0 is assumed to be:

θ0 ¼ ðϕwþarcsinð sin ðϕwÞ= sin ðδÞÞÞ=2 ð3Þ

and its computation is possible when the angle of wall friction ϕw

and the internal friction angle δ are known. This, however,
depends exclusively on the material data and the wall friction
parameters. This is one of the differences with finite element
modeling (Cunningham et al., 2010, Michrafy et al., 2011a,
Michrafy et al., 2011b) where the feeding angle could be chosen
independently of powder properties. For simplification purposes,
we assume in the rest of this study that the feeding angle
corresponds to this angle θ0.

2.1.2. Pressure–density relationship of the solid
The feed powder is drawn between two counter-rotating rolls in

the compaction zone, where a high pressure is applied to form a strip
that has the dimensions of the roll gap. Drawing of the powder into
the press and densification mechanisms are based on the concept of
the nip angle α, which defines two contiguous zones between rolls,
represented in Fig. 1b. Before the nip angle, in the area named the
slip region, the powder is transported by relative sliding on the roll
and obeys the Jenike's yield criteria, and a slip condition at the
surface of the rolls. Once the nip angle is reached, the powder is
assumed to be drawn by sticking to the roll surface and to be
compacted by deformation under the high roll pressure near the gap.
In this region, stress evolution can be calculated, assuming adherence
of the material on the walls and a behavior law linking density to the
mean stress. In this study we adopt the following form:

if sθr sc then ρθ ¼ ρ0 ð4aÞ

if sθ 4sc then ρθ ¼ ρ0
sθ
sc

! "1=β

ð4bÞ

ρ0 is the density at the feeding angle (we further assume it to be
equal to the tapped density), sc a characteristic stress value. The
constant β is a material property representing the compressibility of
the powder and is determined by a simple compression test using a
tablet press.

Johanson adopted a law similar to (4b), but for all stress values.
Condition (4a) was adopted here to prevent the density from

dropping to nonphysical small values for small stresses. But in
Johanson's work, relation (4b) plays a role only in the stick region,
so the two approaches are strictly identical for the solid solution as
long as sθZsc in the stick region.

The solid material is considered incompressible. The reduction
of the volume under pressure is only due to the reduction of the
porosity ϕ defined as:

ϕ¼ 1&
ρθ
ρs

! "
ð5Þ

where ρs is the true density of the solid. In Eq. (5), the porosity is,
of course, a function of the rotating angle θ.

2.1.3. Pressure distribution of the solid
In the Johanson model, the pressure between rolls is computed

as follows (Johanson, 1965): first, two solutions are calculated for
the stress gradient in the material, either assuming that slip occurs
or does not occur on the roll surface. The “slip” solution describes
the situation in the “slip zone”, while the “stick” solution describes
the situation in the nip zone. The nip angle is determined using a
continuity argument on the stress gradient, and the stress solution
for both zones can then be deduced. Finally, the pressure distribu-
tion between rolls is computed by combining the two solutions
before and after the nip angle.

One important property of this solution is that it does not
depend on the roll speed.

2.1.4. Solid velocity in rolling direction
The determination of the solid speed υs comes through the

conservation of material mass. As the solution is in steady state,
the quantity of solid is conserved in any Eulerian slab of material.
In an equivalent manner, the flux of solid is constant through any
given fixed surface in a cross-section of the rolling direction:

ðSþ2Rð1& cos ðθÞÞÞ ð1&ϕðθÞÞυs ¼ A ð6Þ

where S is the gap, R the roll radius, υs the solid velocity and A a
constant.

The constant A can be determined in the nip zone from the roll
rotation speed ω in rpm, as there is no slip between the roll and
the material. For instance, at the gap (θ¼ 0), we have:

υsð0Þ ¼ ωR ð7Þ

which, once injected into Eq. (6), yields:

υsðθÞ ¼ωSRð1&ϕð0ÞÞ=ððSþ2Rð1& cos ðθÞÞÞ ð1&ϕðθÞÞÞ ð8aÞ

This expression can similarly be written in a shorter form as:

υsðθÞ ¼ωf ðθÞ ð8bÞ

where f ðθÞ ¼ SRð1&ϕð0ÞÞ=ððSþ2Rð1& cos ðθÞÞÞ ð1&ϕðθÞÞÞ

2.2. Gas pressure in the porous medium

We now want to establish the gas pressure field in the powder.
Establishing a solution for gas pressure from the solid solution
supposes that the effect of the gas on the solid can be neglected.
In poromechanics, it is well established that the effect of the fluid
on the porous solid can be neglected when fluid pressure (and its
variations) are small compared to solid stress (Coussy, 2004).

This assumption is true by several orders of magnitude
between the rolls, where solid stresses reach values up to
100 MPa or more, while gas pressures are of the order of
magnitude of atmospheric pressure (100 kPa). Thus the effect of
the gas on the solid can be neglected.

Before the rolls, or after the release angle, this assumption does
not hold, and the gas can have a possibly harmful effect on the



solid (instability generation in the feed, damaging the compact at
release).

We believe the procedure described here is similar to the one used
by Johanson and Cox (1989). However, the description of the model
for gas transport in that short paper is very succinct, preventing us
from certifying that our approach is strictly similar to his.

2.2.1. Continuity equation of the gas model
First, a relation on the gas velocity υg is established from the gas

conservation in any Eulerian slab, in a similar way to Eq. (6) for the
solid:

ðSþ2Rð1& cos ðθÞÞÞ ϕðθÞρgυg ¼ const: ð9Þ

where ρg is the density of the gas. In Eq. (9), υg represents the
superficial velocity of gas.

2.2.2. Constitutive equations of gas
First, the gas is assumed to be ideal and isothermal (i.e. density

ρg is proportional to the gas pressure P). The variation in the
temperature of the gas during the process is neglected here.
Expected variations of temperature that do not exceed a few
dozen Kelvin, are in any case insufficient to have any significant
effect on the gas density.

With this assumption, Eq. (9) becomes:

PðθÞ ðSþ2Rð1& cos ðθÞÞÞ ϕðθÞ υg ¼ const: ð10Þ

Secondly, the pressure gradient and gas velocity are related
through Darcy's law, which can be written as:

ϕðθÞðυg &υsÞ ¼
KðϕÞ
μg

∂P
∂x

ð11Þ

where K is the permeability of the powder depending on the local
porosity and hence the position θ. The constant μg is the gas viscosity.

Eliminating the gas velocity between (10) and (11), we reach:

PðθÞ ðSþ2Rð1& cos ðθÞÞÞ ϕðθÞ υsðθÞþ
KðϕÞ
μg

∂P
∂x

!

¼ B ð12Þ

where B is a constant.
Knowledge of the permeability K(ϕ) is required to compute the

gas pressure P. Its values can be determined experimentally for
any powder for various porosities, and fitted by an empirical law.
This was the approach chosen by Johanson and Jenike (1971). For
this study, we prefer to adopt the widely used Kozeny–Carman
relationship:

KðϕÞ ¼
ϕ3D2

p

180ð1&ϕÞ2
ð13aÞ

with

Dp ¼
6Vp

Sp
ð13bÞ

where Dp is an average characteristic size of particles, calculated
from the ratio between the average characteristic volume Vp and
the average characteristic surface Sp.

Darcy's law (11) is very widely used to model fluid diffusion
through a porous solid. It applies as long as the gas flow is slow
enough to be considered laminar. For higher speeds, a turbulent
drag term in the square of the gas speed has to be considered
(Forchheimer's law).

Dullien (1992), based on an extensive literature review, sug-
gests that the field of application of Darcy's and Forchheimer's
laws can be evaluated by calculating an appropriate Reynold's
number Re ¼

ρgυgDp

μg
. Darcy's law could safely be considered to be

applicable as long as Re is lower than 2 or 4.
For fine powders and small systems, this relation is always

verified. An evaluation of Re for Dp ¼ 20 mm and air at 20 1C

indicates that Darcy law's is applicable if υg is lower than 2 or
4 m s&1. For a 100 mm diameter press, the superficial speeds of
the rolls, which are of the same order of magnitude as the gas
speeds, will not reach such a value unless the rolls are turning at
400–800 rpm, which is unrealistic. This limitation should be kept
in mind, though, when considering either bigger systems
(increased υg or coarser powders).

The use of Eq. (13) is widely documented (Dullien, 1992), and is
certainly a good choice for permeability prediction in the absence
of further characterization of the powder. It also has the great
advantage of introducing the dependence of the permeability in
the particle size in a comprehensive way. From there, particle size
can either be considered constant throughout the process, or
expressed as a function of either the porosity or the stress in the
grains, in the case of the reduction of particle sizes for brittle
material during the rolling process.

The equations for the gas flow during the roll compaction
process are completed by two boundary conditions:

Pðθ0Þ ¼ Patm ð14Þ

∂P
∂x

####
θ ¼ 0

¼ 0 ð15Þ

The first boundary condition consists in assuming that the gas is at
atmospheric pressure at the feeding angle. In the case of a closed
feeding system this might not be the case, however. If the air has
to permeate through the material between the entry angle and any
point at the atmospheric pressure, this could generate a pressure
gradient that raises the pressure at entry beyond this value. One
should then couple the present model with a model of the
permeation through the feeding system.

With the second boundary condition, we assume that the
pressure gradient is null at the gap. This corresponds to the
situation where the flow of the gas is forced to be all opposite to
the solid flow.

This assumption is acceptable as long as the quantity of gas
escaping through the compacted material between θ¼ 0 and the
release angle θe can be neglected. In the case of full dense material
at the exit (ϕðθ¼ 0Þ ¼ 0),the boundary condition (15) is verified.
But in our case, the porosity at the exit is as 0.2, which intuitively,
can suggest the escape of a small quantity of gas toward the exit.
However, for this study, Eq. (15) is a good approximation as long as
condition (16) is verified. This relationship is a comparison
between the gas flux due to Darcean transport through the
compact to the release angle and the flux of gas entrained with
the solid.

γ ¼
& K

μg
P&Patm
R sin θe

ϕωR
⪡1 ð16Þ

Assuming θe¼&31, a value comforted by the literature (Cunningham,
2005), relation (16) is well verified in most of the simulations
presented in this study. Exceptionally, for small R and high K

ω ratios,
gamma (γ) values as high as 0.3 are obtained. Condition (15) might be
a bad approximation in those cases, and a modeling of the behavior in
the release zone might be required to better account of the air flow.

2.2.3. Combined effects of permeability and roll speed
on the gas pressure

One aspect concerns the relative role of permeability and roll
rotation speed on the gas pressure described in the above model
(Eq. (12)). Indeed, one can see in the equations that the rotation
speed of the rolls and the permeability of the powder play a very
similar role.

If we consider Eq. (8b), we can clearly see that υs is proportional
to the rotation speed of the rolls. Using this expression in Eq. (12),



and dividing all by ω, a simple derivation according to x yields:

∂
∂x

PðθÞ ðSþ2Rð1& cos ðθÞÞÞ ϕf ðθÞþ
KðϕÞ
μgω

∂P
∂x

 !" #
¼ 0 ð17Þ

As previously stated, the permeability is calculated from the
density (or porosity ϕ) computed from the Johanson solution of
stress for the solid, which does not depend on the roll rotation
speed. It can now readily be seen that the solution P of Eq. (17) is
going to depend on K(ϕ) and rotation speed only through the ratio
K(ϕ)/ω. In other words, the model predicts that a proportional
variation of the permeability and the rotation speed of the roll are
going to lead to the same calculated gas pressure, anywhere in the
system.

2.2.4. Definition of stability thresholds
The dimensionless pressure gradient at the entry is defined as

DPG¼ ∂P
∂x =ρsg where ρs is the true particles density and g the

gravity. DPG is a dimensionless quantity that measures the effort
exerted on the particles by the airflow, relative to their own
weight. In the absence of other efforts (i.e. in the case of gravity
feeding), A DPG value of 1 would correspond to the initiation of
the fluidization of the bed.

In order to characterize the stability of the system, we can focus
on the DPG value at the entry of the rolls: inside the press,
particles are likely to be least affected due to the effort exerted by
the rolls and the incoming feed. In the case of gravity feeding,
DPG41 will result in fluidization of the feed and process instabil-
ity. In the case of screw feeding, DPG41 values can be reached
due to the effort exerted by the feeding system, but Johanson and
Cox (1989), based on empirical considerations, stated that
DPG410 values are difficult to sustain even with screw feeding.
In such a situation, a solution to partially eliminate air in the feed
is required.

2.3. Numerical determination of solid and fluid solutions

Knowing the material properties of the powder and feed
pressure q0, the first step consists in determining the response of
the solid under roll pressure by solving the Johanson equations.
In this step, the pressure distribution sθ in the solid phase is first
determined. The details of this step are not recalled here and can
be found in various publications such as Johanson (1965) and Patel
et al. (2010). Once the pressure distribution and the material
compressibility β are known, the density distribution of the solid is
computed from Eq. (4), and determination of the porosity follows
from Eq. (5). The last variable needed for the determination of the
gas pressure in the porous medium is the velocity of the solid υs,
which is simply calculated from Eq. (8).

Once all of the aforementioned data has been collected, the gas
pressure should be determined, during the roll compaction pro-
cess, by solving Eqs. (12)–(15). As this problem is highly non-
linear, no analytical solution could be established, but it can be
numerically integrated.

A finite differences scheme was applied for the discretization of
Eq. (12), assuming an initial value for the unknown constant B.
Compliance to the boundary condition (15) then gives us a value of
P(0) at the gap, and from there a numerical solution, assuming this

value of B. In all likelihood, however, this solution does not respect
boundary condition (14). The value of B is then optimized through
an iterative procedure until the boundary condition (14) is
also met.

This numerical procedure is stable and converges rapidly.
Finally, the gas pressure and its gradient are computed.

3. Results and discussions

3.1. Materials and press data

Two types of powders were used: bentonite and limestone
powders. Their properties were characterized by commonly used
tests in the area, and the data are summarized in Table 1. Particle
size was calculated from the measure of the Blaine Specific Surface
(BSS) through the relation Dp ¼ 6=ðρBSSÞ. This value is of course
likely to differ from a characteristic size measured by another
means, such as the d50 value obtained from a measurement using
laser granulometry. The measurement of the Blaine Specific Sur-
face is based on a permeability measurement, the surface estima-
tion coming from the Kozeny–Carman law (13a). Thus the
experimental approach can alternatively be seen as measuring
the permeability for a given porosity and particle size, and
adopting (13a) only for the relative variations of porosity and
particle size.

Simulations were carried out using a roll press diameter of
100 mm and a gap of 2 mm for bentonite, 500 mm and 10 mm for
limestone.

The bentonite was considered to have a fixed particle size, and
all results in the absence of particle fragmentation were recorded
using this powder.

The limestone powder was characterized for its fragmentation
properties. Particle size was measured for several pressures in an
oedometric compression cell, a well-known solution in the grind-
ing community for a simple characterization of powder fragmen-
tation in compression (Fuerstenau et al., 1996; Hosten and Cimilli,
2009; Schönert, 1996). The averaged evolution of Dp, the char-
acteristic particle size (calculated from Eq. (13)), is provided as a
function of material density. The fit for this relation is represented
in Fig. 2. In a characteristic pattern, the particle size quickly
decreases in the early stage of compaction, before reaching a limit,
as fragmentation is no longer possible in the compacted material.

3.2. Solid pressure and porosity

In Figs. 3 and 4 the predicted solid pressure and porosity
distribution for the bentonite powder were plotted, using the
Johanson approach. It was assumed that the compaction was
achieved with a given maximum roll pressure of 110 MPa and
the required feed pressure q0 was determined accordingly. This
pressure was then used to calculate the porosity of the compact
and the air pressure gradient as a function of roll rotation speeds.
At the feed angle θ0, the porosity of the powder was relatively high
(0.65) and decreased under roll pressure up to 0.2.

Table 1
Powders properties.

Powder Internal friction δ(1) Wall friction ϕw(1) Compressibility β Blaine Specific Surface BSS (cm2/g) Particle size (μm) True density (kg/m3)

Bentonite 39 32 7.84 8000 2.84 2640
Limestone 40 35.75 13.05 170 135 2590



3.3. Air pressure distribution versus roll rotation speed

Calculated air pressure profiles are displayed in Fig. 5 for the
different roll rotation speeds. Fig. 6 is a zoom on the values
calculated near the entry. The higher values of the rotation speed
are of course unrealistic but the results are presented to show the
diversity of situations that can arise in these systems.

In all cases, gas pressure builds up progressively from the entry
of the rolls. With the narrowing of the material slab and the
densification of the powder, space available for air is reduced.
Some of the air stays in the reduced space, contributing to the
pressure rise, and some is evacuated through the incoming
material. The air pressure profile is then going to depend on the
proportion of air that is trapped in the porosity, and on the
proportion that is evacuated.

Rotation speed (0.95 rpm) is a case where the rotation speed is
low, or the powder is very permeable to gas. Air migration through
the powder is easy, either because the high powder permeability
implies minimal resistance to gas movement, or because the slow
rotation implies that the quantities of gas entrained are small.
In this situation, most of the air escapes. We name this situation
the “permeable limit case”. Pressure build-up at the gap is
minimal (Fig. 5). Pressure gradient at entry (the slope on curves
in Fig. 6) is also very small, as the powder does not present
significant resistance to the reduced quantity of air in movement.

Rotation speed (66.7 rpm) embodies the opposite situation,
where rotation speed is high, or the powder is very impermeable.
Resistance to air movement is considerable, or the quantities of air
to be evacuated are large, due to the rotation speed: most of the air
is trapped in the material. We name this situation the “imperme-
able limit case”. Pressure at the gap reaches very high values. This
high pressure in the end products can eventually lead to their
rupture once they are released by the press (Dec, 1995; Johanson
and Cox, 1989). In a less intuitive manner, the pressure gradient at
the entry is also very small. As most of gas is trapped within the
porosity, the quantities of gas evacuated are not sufficient to create
a high pressure gradient, at least near the entry.

Fig. 3. Roll pressure distribution of bentonite powder (Johanson Model).

Fig. 4. Porosity distribution of the compacted bentonite powder (after Eq. (5)).

Fig. 5. Air pressure distribution versus roll rotation angle.

Fig. 6. Zoom on the air pressure distribution at the roll feed.

Fig. 2. Evolution of limestone particles characteristic size (Dp) with porosity.



As regards the gas speed, we introduce the Dimensionless
Relative Speed (DRS), defined by

DRS¼ ðυg&υsÞ=ωR ð18Þ

DRS is a dimensionless measurement of the speed of the gas
relative to the moving solid as ωR corresponds to the solid speed at
θ¼ 0, where it reaches its maximum.

Fig. 7a displays DRS variation with θ in the same three cases as
Figs. 5 and 6. The first effect is that relative gas speed decreases
with a decreasing K/ω ratio. It even tends to 0 when K/ω tends to 0.
This corresponds to increasingly impermeable conditions, as gas is
forced into movement at the same speed as the solid. When K/ω
tends to infinity, DRS will tend to its maximum υs=ωR, as the gas is
not affected at all by the solid movement and stays motionless in
the absolute reference frame.

We also see that the gas speed is influenced by two conflicting
factors: increased confinement of the powder generates gas flow,
but the compacted powder becomes impermeable to gas move-
ment. This explains why gas speed is low at roll entry (where there
is little compaction) and near the gap (where the powder is almost
impermeable). The maximum reached by the DRS corresponds to
the triggering of the compaction of the powder, when switching
from relation (4a) to (4b) to represent powder compaction
behavior. It also almost corresponds to the position of the nip
angle.

Fig. 7b displays the maximum gas pressure (for θ¼ 0) as a
function of the rotation speed of the rolls. It confirms the result
just stated: gas pressure rises at the gap as an increasing propor-
tion of the air is trapped. The value reaches a limit, corresponding
to the case where all the air initially present in the porosity is
trapped in the compact.

In most applications, high gas pressure in the compacts is not
acceptable, as it can reduce cohesion and damage the compacts
when they are liberated from the stresses exerted by the press.
Unfortunately, it is not possible to determine a general threshold
value, as this would depend on the compact cohesion (and then
the powder properties), as well as on the process requirements.

3.4. Dimensionless pressure gradient and stability considerations

In Fig. 8, the dimensionless pressure gradient DPG is plotted,
calculated at the entry as a function of the rotation speed. For both
extreme situations – very slow and very high rotation speed – the
pressure gradient at the entry tends to 0. The highest pressure
gradients at the entry, which are the most likely to hinder the
feeding system, are reached for intermediate situations, where the
resistance to air is both high enough to lead to a high pressure
gradient, but small enough to allow a sufficient quantity of air to
be evacuated. This is the situation for Rotation speed (19.1 rpm) on
Figs. 5 and 6, where the pressure gradient at the entry is close to
its maximum. One can see that the maximum pressure is relatively
high, but reached more progressively than in the impermeable
case.

From a general point of view, dimensionless pressure gradients
predicted in this simulation are very high due to the very high air
content at entry. Small press dimensions are another explanation
(the effect of the press dimensions is analyzed in Section 3.6).

A third point is that the proposed model can be described as
conservative: as we neglect air leaking through the gap, and roll
sides, we tend to overestimate air pressure building effects.

Fig. 9 is a diagram displaying isometric lines for the DPG in the
rotation speed/square of particle size space. We recall that accord-
ing to (13), the permeability is proportional to the square of the
particle size. Unsurprisingly, when considering the role of the K/ω
ratio, the isometrics are straight lines. These lines correspond to
the stability thresholds defined in Section 2.2.4. They outline
2 stability zones, one corresponding to the “permeable limit case”,
and the other to the “impermeable case”.

3.5. Effect of particle fragmentation

The main advantage of using expression (13) for the definition
of the permeability is that it allows us to evaluate the impact of the
particle fineness on the compaction process. When this fineness
does not evolve with the process, we see that this impact is best
assessed through consideration of the permeability/rotation speed
ratio.

Fig. 7. (a) Dimensionless gas speed (DRS) distribution for different rolls rotation
speed. (b) Maximum gas pressure (reached at the gap), as a function of rolls
rotation speed (case of the bentonite powder).

Fig. 8. Dimensionless Pressure Gradient (DPG) versus roll speed: stability zones
(case of the bentonite powder).



We now want to consider the effect of the fragmentation of
powders on the air pressure during the compaction process. This
fragmentation can either be incidental, when compacting a
powder where grains can display a fragile behavior (brittle
material), or be the targeted outcome of the process when the
roll press is used as a grinding solution. As stated in Section 3.1, we
used a limestone powder whose characteristics are found in
Table 1. Fragmentation is taken into account through a fitted
relationship between Dp and the porosity, which is plotted in
Fig. 3. We then compare simulations where this variation of Dp is
activated to simulations where its value is kept constant at the
initial value.

Including the fragmentation in the simulation exacerbates the
reduction in the permeability of the powder with compaction, as
the effect of the smaller particle size is added to the effect of the
reduction in the porosity. This can readily be seen in Fig. 10, where
we display the evolution of the permeability with the rotation
angle, with and without taking into account the fragmentation.
The permeabilities are initially identical, and in both cases they
decrease drastically with compaction due to the reduction in
porosity. But the effect is much stronger in the fragmentable case
where the powder is an order of magnitude less permeable at the
neutral angle.

Fig. 11 displays the consequence on the distribution of pressure.
For the chosen set of conditions, we are close to the permeable
limit case for reasonable values of rotation speed. The fragmen-
table powder clearly shows an increased tendency to entrap air in
the final stage of compaction: the air pressure is much higher in
the immediate neighborhood of the gap than in the absence of
fragmentation. This is logical as it is in this zone that the powder
permeability has been most affected by the fragmentation.

The increased tendency of fragmentable powder to entrap air is
also illustrated in Figs. 12 and 13, which display the DPG at the
feeding angle, and the maximum pressure at the gap as a function
of rotation speed. DPG is, in general, lower in the fragmentable
case, and the maximum occurs for smaller values of the rotation
speed. Both these features can be explained through the increased
ability of the fragmentable powder to entrap air in the final stages
of compaction. The maximum pressure increases faster with
rotation speed for the fragmentable powder, even though in both
situations the ultimate limit is the same.

Fig. 9. Contours of Dimensionless Pressure Gradient at the entry of the rolls.

Fig. 10. Air pressure distribution. Effects of the powder fragmentation (case of the
limestone powder).

Fig. 11. Effect of the powder fragmentation on the permeability distribution (case
of the limestone powder).

Fig. 12. Dimensionless Pressure Gradient versus roll speed. Effect of the powder
fragmentation (case of the limestone powder).

Fig. 13. Maximum gas pressure (measured at the gap) as a function of rotation
speed. Limestone powder, with and without fragmentation.



From a general point of view, it seems that the DPG at the
feeding angle is only slightly affected by the fragmentation (which
is very high in the chosen example). Switching from a non-
fragmentable to a fragmentable powder with similar initial fine-
ness could have only a limited impact on process stability. If the
preoccupation is more about the maximum air pressure in the
solid (to avoid explosion of the solid when liberated by the rolls,
for instance), the effect is much stronger, even at low rotation
speeds.

3.6. Dimensional scale-up and effects on gas pressure

The size of compaction installations can vary dramatically with
roll diameters varying, for instance, from about 10 cm for small
lab-scale installations to 2 m for the biggest presses used for
grinding in the mineral industry. In the Johanson model, as in
most simulations where only the stress in the solid phase is
calculated, the size of the press does not have a direct impact on
the calculated roll pressure. The latter only depends on the
geometry through dimensionless ratios, such as the gap width/
roll diameter ratio, the entry angle, etc. But this is no longer the
case when considering the calculation of air pressure and its
gradient.

We have chosen to focus on the air gradient at the entry, which
we know is of special interest for the stability of the system.

We examined, from the studied model (Eq. (16)), the situation
where all spatial dimensions are amplified by a factor λ :
ðx¼ λx; R¼ λR; S¼ λSÞ: With these assumptions we now want
to see for which rotation speed ω we could have the same air
pressure distribution: Pðθ;ωÞ ¼ Pðθ;ωÞ.

We designate PðxÞ the resulting air pressure from Eq. (16) for a
roll rotation speed ω. After considering that ∂P

∂x ¼ 1
λ
∂P
∂x, it can then

readily be seen that for ω¼ ω
λ2
, pressures P and P satisfy the same

equation (Eq. (16)). This means that for ðω; ∂P
∂xÞ and

ðω¼ ω
λ2
; ∂P

∂x ¼ 1
λ
∂P
∂xÞ, pressure profiles P and P as functions of the

rotating angle (which is the same at any scale) are identical. The
effect of a change in the dimensions of the system can then be
deduced for the pressure field and its gradient through a very
simple transformation.

This simple result could be of prime importance for compaction
system design at different scales, if the model could be validated
by experiments. To our knowledge, this finding has never been
presented in the literature.

The first consequence of this finding mainly concerns the scale-
up from laboratory press to the pilot or to the production presses.
By doubling the size of the press and the gap, and keeping their
ratio constant, for example, the DPG at the feeding angle as a

function of the roll rotation speeds, we can take profiles like those
plotted in Fig. 14.

As regards the maximum pressure at the gap, the effect is clear:
presses of different dimensions will generate similar pressure
distributions for rotation speeds proportional to 1

λ2
. Bigger presses

are always going to generate much higher-pressure build-up for
similar rotation speeds.

As concerns the pressure gradient at the entry, at first sight, an
increase of the system dimension seems to be a disadvantage for
the stability of the system, at least near the permeable limit case,
where most industrial systems seem to function. The DPG takes
somewhat smaller values, but they are reached for even smaller
values of the rotation angle. The DPG is only going to reach lower
values for bigger systems as they function close to their maximum
DPG or in the impermeable limit case. However, a bigger press can
provide considerable throughput even for small rotation speeds
(throughput is proportional to λ3ω). This could compensate for the
limitation in terms of rotation speed.

These considerations would of course benefit considerably
from being confirmed by experimental studies of the behavior of
presses of different sizes. We believe, however, that they are
valuable to anyone involved in the design of a compaction system
affected by air evacuation, and its scale-up.

4. Conclusion

A 1D model for air flow during powder roller compaction was
proposed and tested, based on the Johanson model for calculation
of the solid stress and deformation, and on Darcy's law for fluid
transport. Permeability was set as a function of porosity and
particle size through the use of the Kozeny–Carman law. In this
modeling, two assumptions were assumed: the effect of the air
pressure on the solid was neglected between rolls and the airflow
through the gap was ignored. We stress the importance of the
ratio between permeability and roll rotation speeds, which deter-
mines the proportion of air trapped within the compact. According
to the variations of this parameter, the model predicts the
existence of two stability zones where industrial systems could
possibly be operated, unaffected by the effect of air transport
through the feed. The effects of the fragmentation of the particles
were also investigated. Finally, the model provides guidelines for
compaction systems scale-up, which could prove useful for
dimensioning systems subjected to important air elimination
issues.

The proposed model is a considerable simplification, and does
not allow us to predict all of the subtleties of the fluid flow. The
present study would also benefit greatly from the experimental
validation.

Nomenclature

θ rotating angle
x¼ Rsinθ axis of rolls symmetry
D¼2R roll diameter
S gap
ω rotational roll speed
ρθ ; ρs apparent and true density of solid
BSS Blaine Specific Surface
g gravity (m2/s)
φw; δ wall and internal friction angle
sθ mean normal stress at position θ
siðθÞ; i¼ 1;2 major and minor principal stresses
q0; s0; θ0 pressure, normal stress and feed angle
ϕ; υs porosity and solid velocityFig. 14. Dimensionless Pressure Gradient at feeding angle. Effect of press dimension.



β compressibility coefficient of powder
ρg density of the gas
υg superficial velocity of gas
K permeability
μg gas viscosity
Dp average size of particles
P gas pressure
DPG¼ ∂P

∂x =ρsg Dimensionless Pressure Gradient at the entry
Re Reynold's number
DRS Dimensionless Relative Speed
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