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Abstract—An operator called CID and an efficient variant
3BCID were proposed in 2007. For numerical CSPs handled by
interval methods, these operators compute a partial consistency
equivalent to Partition-1-AC for discrete CSPs. The two main
parameters of CID are the number of times the main CID

procedure is called and the maximum number of sub-intervals
treated by the procedure. The 3BCID operator is state-of-the-
art in numerical CSP solving, but not in constrained global
optimization.

This paper proposes an adaptive variant of 3BCID. The
number of variables handled is auto-adapted during the search,
the other parameters are fixed and robust to modifications. On
a representative sample of instances, ACID appears to be the
best approach in solving and optimization, and has been added
to the default strategies of the Ibex interval solver.

I. CONSTRUCTIVE INTERVAL DISJUNCTION (CID)

A filtering/contracting operator for numerical CSPs called

Constructive Interval Disjunction (in short CID) has been

proposed in [13]. Applied first to continuous constraint sat-

isfaction problems handled by interval methods, it has been

more recently applied to constrained global optimization

problems. This algorithm is state-of-the-art in constraint sat-

isfaction, but is generally dominated by constraint propaga-

tion algorithms like HC4 in optimization. The main practical

contribution is that an adaptive version of CID becomes

efficient for both real-valued satisfaction and optimization

problems, while needing no additional parameter value from

the user.

A. Shaving

The shaving principle is used to compute the Singleton

Arc Consistency (SAC) of finite domain CSPs [7] and the

3B-consistency of numerical CSPs [9]. It is also at the core

of the SATZ algorithm [11] used to prove the satisfiability

of Boolean formula. Shaving works as follows. A value

is temporarily assigned to a variable (the other values are

temporarily discarded) and a partial consistency is computed

on the remaining subproblem. If an inconsistency is obtained

then the value can be safely removed from the domain of

the variable. Otherwise, the value is kept in the domain.

Contrarily to arc consistency, this consistency is not in-

cremental [7]. Indeed, the work of the underlying refutation

procedure on the whole subproblem is the reason why a

single value can be removed. Thus, obtaining the singleton

arc consistency on finite-domain CSPs requires an expen-

sive fixed-point algorithm where all the variables must be

handled again every time a single value is removed [7]. The

remark still holds for the improved version SAC-Opt [5]. A

similar idea can be followed on numerical CSPs (NCSPs).

B. Numerical CSP

An NCSP is defined by a tuple P = (X, [X], C),
where X denotes a n-set of numerical, real-valued variables

ranging in a domain [X]. We denote by [xi] = [xi, xi]
the interval/domain of variable xi ∈ X , where xi, xi are

floating-point numbers (allowing interval algorithms to be

implemented on computers). A solution of P is an n-vector

in [X] satisfying all the constraints in C. The constraints

defined in an NCSP are numerical. They are equations and

inequalities using mathematical operators like +, � , /, exp,

log, sin.

A Cartesian product of intervals like the domain [X] =
[x1] × ... × [xn] is called a (parallel-to-axes) box. w(xi)
denotes the width xi −xi of an interval [xi]. The width of a

box is given by the width xm −xm of its largest dimension

xm. The union of several boxes is generally not a box, and a

Hull operator has been defined instead to define the smallest

box enclosing all of them.

NCSPs are generally solved by a Branch & Contract interval

strategy:

• Branch: a variable xi is chosen and its interval [xi]
is split into two sub-intervals, thus making the whole

process combinatorial.

• Contract: a filtering process allows contracting the

intervals (i.e., improving interval bounds) without loss

of solutions.

The process starts with the initial domain [X] and stops

when the leaves/boxes of the search tree reach a width

inferior to a precision given as input. These leaves yield

an approximation of all the solutions of the NCSP.

Several contraction algorithms have been proposed. Let us

mention the constraint propagation algorithm called HC4 [3],

[10], an efficient implementation of 2B [9], that can enforce

the optimal local consistency (called hull-consistency) only

if strong hypotheses are met (in particular, each variable
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must occur at most once in a same constraint). The 2B-

Revise procedure works with all the projection functions of a

given constraint. Informally, a projection function isolates a

given variable occurrence within the constraint. For instance,

consider the constraint x + y = z.x; x ← z.x − y is a

projection function (among others) that aims at reducing

the domain of variable x. Evaluating the projection function

with interval arithmetics on the domain [x] × [y] × [z] (i.e.,

replacing the variable occurrences of the projection function

by their domains and using the interval counterpart of the

involved mathematical operators) provides an interval that is

intersected with [x]. Hence a potential domain reduction. A

constraint propagation loop close to that of AC3 is used to

propagate reductions obtained for a given variable domain

to the other constraints in the system.

C. 3B algorithm

Stronger interval partial consistencies have also been pro-

posed. 3B-consistency [9] is a theoretical partial consistency

similar to SAC for CSP although limited to the bounds of

the domains. Consider the 2n subproblems of the studied

NCSP where each interval [xi] (i ∈ {1..n}) is reduced to

its lower bound xi (resp. upper bound xi). 3B-consistency is

enforced iff each of these 2n subproblems is hull-consistent.

In practice, the 3B(w) algorithm splits the intervals in

several sub-intervals, also called slices, of width w, which

gives the accuracy: the 3B(w)-consistency is enforced iff the

slices at the bounds of the handled box cannot be eliminated

by HC4. Let us denote var3B the procedure of the 3B

algorithm that shaves one variable interval [xi] and s3b its

parameter, a positive integer specifying a number of sub-

intervals: w = w(xi)/s3b is the width of a sub-interval.

D. CID

Constructive Interval Disjunction (CID) is a partial con-

sistency stronger than 3B-consistency [13]. CID-consistency

is similar to Partition-1-AC (P-1-AC) in finite domain

CSPs [4]. P-1-AC is strictly stronger than SAC [4].

The main procedure varCID handles a single variable

xi. The main parameters of varCID are xi, a number scid

of sub-intervals (accuracy) and a contraction algorithm ctc
like HC4. [xi] is split into scid slices of equal width, each

corresponding subproblem is contracted by the contractor

ctc and the hull of the different contracted subproblems is

finally returned, as shown in Algorithm 1.

Intuitively, CID generalizes 3B because a sub-box that is

eliminated by var3B can also be discarded by varCID.

In addition, contrary to var3B, varCID can also contract

[X] along several dimensions.

Note that in the actual implementation the for loop can

be interrupted earlier, when [X]′ becomes equal to the initial

box [X] in all the dimensions except xi.

var3BCID is a hybrid and operational variant of

varCID.

Procedure VarCID (xi, scid, (X , C, in-out [X]), ctc)
[X]′ ← empty box
for j ← 1 to scid do

/* The jth sub-box of [X] on xi is handled: */
sliceBox ← SubBox (j, xi, [X])
/* Enforce a partial consistency on the sub-box: */
sliceBox’ ← ctc(X , C, sliceBox)
/* ”Union” with previous sub-boxes: */
[X]′ ← Hull([X]′, sliceBox’)

[X] ← [X]′

Algorithm 1: The main VarCID procedure of the CID

operator shaving a given variable xi.

1) Like var3B, it first tries to eliminate sub-intervals at

the bounds of [xi] of width w = w(xi)/s3b each. We

store the left box [Xl] and the right box [Xr] that are

not excluded by the contractor ctc (if any).

2) Second, the remaining box [X]′ is handled by

varCID that splits [X]′ into scid sub-boxes. The sub-

boxes are contracted by ctc and hulled, giving [Xcid].
3) Finally, we return the hull of [Xl], [Xr] and [Xcid].

The var3BCID process is illustrated in Figure 1.

3B: 

[x]’

CID: 

Figure 1. Task of the var3BCID procedure. The parameter s3b is set to
10 and scid is set to 1.

var3BCID comes from the wish of managing different

widths (accuracies) for s3b and scid. Indeed, the best choice

for s3b generally belongs to {5..20} while scid should always

be set to 1 or 2 (implying a final hull of 3 or 4 sub-boxes).

The reason is that the actual time cost of the shaving part is

smaller than the one of the constructive domain disjunction.

Indeed, if no sub-interval is discarded by var3B, only two

calls to ctc are performed, one for each bound of the handled

interval; if varCID is applied, the subcontractor is often

called scid times.

The procedure var3BCID has been deeply studied and

experimented in the past. The number and the order in which

calls to var3BCID are achieved is a harder question studied

in this paper.

II. ADAPTIVE CID: LEARNING THE NUMBER OF

HANDLED VARIABLES

Like for SAC or 3B, a quasi fixed-point in terms of

contraction can be reached by 3BCID (or CID) by calling

var3BCID inside two nested loops. An inner loop calls

var3BCID on each variable xi. An outer loop calls the
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inner loop until no interval is contracted more than a

predefined (width) precision (thus reaching a quasi-fixed

point). Let us call 3BCID-fp (fixed-point) this historical

version.

Two reasons led us to radically change this policy. First,

as said above, var3BCID can contract the handled box

in several dimensions. One significant advantage is that the

fixed-point in terms of contraction can thus be reached in

a small number of calls to var3BCID. On most of the

instances in satisfaction or optimization, it appears that a

quasi fixed-point is reached in less than n calls. In this

case, 3BCID is clearly too expensive. Second, the varCID

principle is close to a branching point in a search tree. The

difference is that a hull is achieved at the end of the sub-box

contractions. Therefore an idea is to use a standard branching

heuristic to select the next variable to be “varcided”. We will

write in the remaining part of the paper that a variable is

varcided when the procedure var3BCID is called on that

variable to contract the current box.

To sum up, the idea for rendering 3BCID even more

efficient in practice is to replace the two nested loops by

a single loop calling numVarCID times var3BCID and to

use an efficient variant of the Smear function branching

heuristic for selecting the variables to be varcided (called

SmearSumRel in [12]). Informally, the Smear function

favors variables having a large domain and a high impact

on the constraints – measuring interval partial derivatives.

A first idea is to fix numVarCID to the number n of

variables. We call 3BCID-n this version. This gives good

results in satisfaction but is dominated by pure constraint

propagation in optimization. As said above, it is too time

costly when the right numVarCID is smaller than n (which

is often the case in optimization), but can also have a very

bad impact on performance if a bigger effort brought a

significantly greater filtering.

The goal of Adaptive CID (ACID) is precisely to compute

dynamically during search the value of the numVarCID

parameter. Several auto-adaptation policies have been tested

and we report three interesting versions. All the policies

measure the decrease in search space size after each call to

var3BCID. They measure a contraction ratio of a box [X]b

over another box [X]a as an average relative gain in all the

dimensions:

gainRatio([X]b, [X]a) =
1

n

n∑

i=1

(1 −
w(xb

i
)

w(xa

i
)
)

A. ACID0: auto-adapting numVarCID during search

The first version ACID0 adapts the number of shaved

variables dynamically at each node of the search tree. First,

the variables are sorted by their impact, computed by the

same formula as the SmearSumRel function (used for

branching). Variables are then varcided until the cumulative

contraction ratio during the last nv calls to var3BCID

becomes less than ctratio. This algorithm has thus 2 param-

eters nv and ctratio, and it was difficult to tune them. We

experimentally found that ctratio could be fixed to 0.001
and nv should depend on the number of variables n of

the problem. Setting nv to 1 is often a bad choice, and

fixing it with the formula nv = max(3, n

4
) experimentally

gave the best results. The experimental results are not bad

but this policy prevents numVarCID from reaching 0, i.e.

from calling only constraint propagation. This is a significant

drawback when a simple constraint propagation is the most

efficient approach.

B. ACID1: interleaving learning and exploitation phases

A more sophisticated approach avoids this drawback.

ACID1 interleaves learning and exploitation phases for auto-

adapting the numVarCID value. Depending on the node

number, the algorithm is in a learning or in an exploitation

phase.

The behavior of ACID1, shown in Algorithm 2, is the

following:

• The variables are first sorted according to their impact

measurement (using the SmearSumRel heuristic).

• During a learning phase (during learnLength nodes), we

then analyze how the contraction ratio evolves from a

var3BCID call to the next one, and store the number

kvarCID of varcided variables necessary to obtain most

of the possible filtering.

More precisely, 2.numVarCID variables are varcided

at each node (with a minimum value equal to 2,

in case numVarCID= 0). In the first learning phase,

we handle n variables. At the current node, the

lastSignificantGain function returns the num-

ber kvarCID of varcided variables giving the last

significant improvement. After the kvarCIDth call to

var3BCID, the gain in current box size from a

var3BCID call to the next one, computed by the

gainRatio formula, never exceeded a small given

ratio, called ctratio. This analysis starts from the last

varcided variable. (For the readibility of the pseudo-

code, we omit the parameters of the var3BCID proce-

dure, i.e. s3b, scid, the constraints C and the contractor

ctc.)

• During the exploitation phase following the previous

learning phase, the average of the different kvarCID

values (obtained in the nodes of the learning phase)

provides the new value of numVarCID. This value

will be used by 3BCID during the exploitation phase.

Compared to the previous value (previous call to an

exploitation phase), note that this new value can at most

double, but can also drastically decrease.

Every cycleLength nodes in the search tree, both

phases are called again.

Numerous variants of this schema were tested. In partic-

ular, it is counterproductive to learn numVarCID only once

902



Procedure ACID1 (X , n, in-out [X], in-out call, in-out
numVarCID)

learnLength ← 50
cycleLength ← 1000
ctratio ← 0.002
/* Sort the variables according to their impact */
X ← smearSumRelSort (X)
if call % cycleLength ≤ learnLength then

/* Learning phase */
nvarCID ← max(2, 2 . numVarCID)
for i from 1 to nvarCID do

[X]old
← [X]

var3BCID (X[i%n], [X], ...)

ctcGains[i] ← gainRatio( [X], [X]old)

kvarCID[call] ← lastSignificantGain

(ctcGains, ctratio, nvarCID)
if call % cycleLength = learnLength then

/* End of learning phase */
numVarCID ← average (kvarCID[])

else
/* Exploitation Phase */
if numVarCID > 0 then

for i from 1 to numVarCID do
var3BCID (X[i % n], [X], ...)

call ← call + 1

Algorithm 2: Algorithm ACID1

Function lastSignificantGain(ctcGains, ctratio,
nvarCID)

for i from nvarCID downto 1 do
if (ctcGains[i] > ctratio) then

return i

return 0

or, on the contrary, to memorize the computations from a

learning phase to another one.

We fixed experimentally the 3 parameters of the ACID1

procedure learnLength, cycleLength and ctratio,

respectively to 50, 1000 and 0.002. ACID1 becomes then

a parameter free procedure. With these parameter values,

the overhead of the learning phases (where we double the

previous numVarCID value) remains small.

C. ACID2: taking into account the level in the search tree

A criticism against ACID1 is that we average kvarCID

values obtained at different levels of the search tree. This

drawback is partially corrected by the successive learning

phases of ACID1, where each learning phase corresponds

to a part of the search tree.

In order to go further in that direction, we designed a

refinement of ACID1 for which each learning phase tunes

at most 10 different values depending on the width of the

studied box. A value corresponds to one order of magnitude

in the box width. For example, we store a numVarCID

value for the boxes with a width comprised between 1

and 0.1, another one for the boxes with a width comprised

between 0.1 and 0.01, etc. However, this approach, called

ACID2, gave in general results similar to those of ACID1

and appeared to be less robust. Indeed, only a few nodes

sometimes fall at certain width levels, which renders the

statistics not significant.

III. EXPERIMENTS

All the algorithms were implemented in the C++ in-

terval library Ibex (Interval Based EXplorer) [6]. All

the experiments were run on the same computer (Intel

X86 3GHz). We tested the algorithms on square NCSP

solving and constrained global optimization. NCSP solving

consists in finding all the solutions of a square system

of n nonlinear equations with n real-values variables with

bounded domains. Global optimization consists in finding

the global minimum of a function over n variables subject

to constraints (equations and inequalities), the objective

function and/or the constraints being non-convex.

A. Experiments in constraint satisfaction

We selected from the COPRIN benchmark1 all the sys-

tems that were solved by one of the tested algorithms in

a time comprised between 2 s and 3600 s. The timeout was

fixed to 10,000 s. The required precision on the solution is

10−8. Some of these problems are scalable. In this case, we

selected the problem with the greatest number of variables

that was solved by one of the algorithms in less than one

hour.

We compared our ACID method and its variants with the

well known filtering techniques: a simple constraint prop-

agation HC4, 3BCID-n (see Section II) and 3BCID-fp

(fixed-point) in which a new iteration on all the vari-

ables is run when a variable domain width is reduced

by more than 1%. At each node of the search tree, we

used the following sequence of contractors : HC4, shaving,

Interval-Newton [8], and X-Newton [2]. shaving de-

notes a variant of ACID, 3BCID-n, 3BCID-fp or nothing

when only HC4 is tested.

For each problem, we used the best bisection heuristics

available (among two variants of the Smear function [12]).

The main parameter ctratio of ACID1 and ACID2, measur-

ing a stagnation in the filtering while variables are varcided,

was fixed to 0.002. The var3BCID parameters s3b and scid

were fixed to the default settings, respectively 10 and 1, pro-

posed in [13]. Experiments on the selected instances confirm

that these settings are relevant and robust to variations. In

particular, setting s3b to 10 gives results better than with

smaller values (s3b = 5) and with greater values. (For 21

over the 26 instances, s3b = 20 gives worse results.) As

1www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html
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Table I
CONTINUOUS CSP SOLVING: ACID1 RESULTS. FOR EACH PROBLEM, WE PRESENT ITS NUMBER OF VARIABLES AND THE RESULTS OBTAINED BY

ACID1: THE CPU TIME, THE NUMBER OF BRANCHING NODES IN THE SEARCH TREE, THE AVERAGE NUMBER OF VARCIDED VARIABLES (TUNED BY

ACID1 DYNAMICALLY). WE ALSO REPORT THE BEST AND THE WORST METHODS AMONG ACID1, HC4, 3BCID-fp, AND 3BCID-n, THE CPU TIME

RATIO OF ACID1 OVER THE BEST METHOD AND OVER THE WORST METHOD.

#var ACID1 ACID1 ACID1 best worst Time ratio Time ratio

time #nodes #varcids ACID1/best ACID1/worst

Bellido 9 3.45 518 5 ACID1 HC4 1 0.89
Brown-7 7 396 540730 4.5 ACID1 HC4 1 0.82
Brent-10 10 17.6 3104 9 ACID1 HC4 1 0.14
Butcher8a 8 981 204632 9 3BCID-n HC4 1.03 0.49
Butcher8b 8 388 93600 10.8 ACID1 HC4 1 0.31
Design 9 29.2 5330 11 3BCID-n HC4 1.07 0.37
Dietmaier 12 926 82364 26.3 ACID1 HC4 1 0.19
Directkin 11 32.7 2322 7 ACID1 3BCID-fp 1 0.84
Disc.integralf2-16 32 592 58464 0.4 HC4 3BCID-fp 1.02 0.52
Eco-12 11 3156 297116 12 ACID1 HC4 1 0.32
Fredtest 6 25.2 11480 0.8 HC4 3BCID-fp 1.04 0.91
Fourbar 4 437 183848 0.1 ACID1 3BCID-n 1 0.85
Geneig 6 178 83958 2.9 HC4 3BCID-fp 1.02 0.82
Hayes 7 3.96 1532 7.5 3BCID-n HC4 1.14 0.77
I5 10 15.9 3168 11.5 ACID1 HC4 1 0.13
Katsura-25 26 691 5396 10.4 ACID1 3BCID-fp 1 0.67
Pramanik 3 23.1 23696 0.2 ACID1 HC4 1 0.69
Reactors-42 42 1285 23966 134 3BCID-fp HC4 1.07 0.13
Reactors2-30 30 1220 38136 90 3BCID-n HC4 1.14 0.12
Synthesis 33 356 7256 53.8 3BCID-fp HC4 1.15 0.25
Trigexp2-23 23 2530 227136 39.4 3BCID-fp HC4 1.26 0.25
Trigo1-18 18 2625 37756 6.1 ACID1 3BCID-fp 1 0.8
Trigo1sp-35 36 2657 70524 2.4 ACID1 3BCID-fp 1 0.41
Virasoro 8 1592 266394 0.6 3BCID-n 3BCID-fp 1.08 0.28
Yamamura1-16 16 2008 68284 0.4 3BCID-n HC4 1.02 0.86
Yamamura1sp-500 501 1401 146 144 ACID1 HC4 1 0.14

shown in Table I, ACID1 appears to be often the best one,

or close to the best one. In only 4 problems on 26, it was

more than 10% slower than the best. The number of varcided

variables was tuned close to 0 in the problems where HC4

was sufficient, and more than the number of variables in the

problems where 3BCID-fp appeared to be the best method.

In the left part of Table II, we summarize the results

obtained by the three variants of ACID and their competitors.

It appears that only ACID1 could solve the 26 problems in

1 hour, while HC4 could solve only 21 problems in 10,000s.

The gains in cpu time obtained by ACID1 w.r.t. competitors

are sometimes significant (see the line max gain), while its

losses remain weak. ACID0 with its two parameters was

more difficult to tune, and it was not interesting to run

the more complex algorithm ACID2. ACID1 obtains better

gains w.r.t 3BCID-n in total time than on average because

the best gains were obtained on difficult instances with

more variables. In the right part of the table, we report the

solving time ratios obtained when X-Newton is removed

(¬ XN) from the contractor sequence (4 problems could

not be solved in 10,000s). The only ACID variant studied

was ACID1. ACID1 and 3BCID-n obtain globally similar

results, better than 3BCID-fp, but with a greater dispersion

(i.e., standard deviation) than with X-Newton since the

shaving takes a more important part in the contraction.

B. Experiments in constrained global optimization

We selected in the series 1 of the Coconut constrained

global optimization benchmark2 all the 40 instances that

ACID or a competitor could solve in a CPU time comprised

between 2 s and 3600 s.

The time out was fixed to 3600s. We used the

IbexOpt strategy of Ibex that performs a Best First

Branch & Bound. The experimental protocol is the same as

the NCSP experimental protocol, except that we do not use

Interval-Newton that is only implemented for square

systems.

For each instance, we use the best bisection heuris-

tics (the same for all methods) among largestFirst,

roundRobin and variants of the Smear function. The

precision required on the objective is 10−8. Each equation

is relaxed by two inequalities with a precision 10−8.

Table III reports the same columns as Table I, plus a

column indicating the number of constraints of the instance.

For the constraint programming part of IbexOpt, HC4 is

state of the art and 3BCID is rarely needed in optimization.3

2www.mat.univie.ac.at/∼neum/glopt/coconut/Benchmark/Benchmark.
html

3In fact, the more recent Mohc constraint propagation algorithm [1]
is better than HC4. Mohc is not yet reimplemented in Ibex 2.0. How-
ever, 3BCID(Mohc) shows roughly the same gains w.r.t. Mohc than
3BCID(HC4) does w.r.t. HC4...
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Table II
NCSP: SOLVING TIME GAIN RATIOS. WE REPORT THE NUMBER OF PROBLEMS SOLVED BEFORE 3600 S AND BEFORE 10,000 S, AND DIFFERENT

STATISTICS ON THE CPU TIME GAIN RATIO OF ACID1 OVER EACH COMPETITOR Ci (ONE PER COLUMN): THE AVERAGE, MAXIMUM, MINIMUM AND

STANDARD DEVIATION VALUES OF THIS RATIO
acid1 time

Ci time

ACID1 HC4 3BCID-fp 3BCID-n ACID0 ACID2 ACID1 3BCID-fp 3BCID-n

¬ XN ¬ XN ¬ XN

#solved instances < 3600 26 20 23 24 25 24 20 16 20

#solved instances < 10000 26 21 26 26 26 26 22 21 22

Average gain 1 0.7 0.83 0.92 0.96 0.91 1 0.78 1.02

Maximum gain 1 0.13 0.26 0.58 0.45 0.48 1 0.18 0.38

Maximum loss 1 1.04 1.26 1.14 1.23 1.05 1 2.00 1.78

Standard deviation gain 0 0.32 0.23 0.15 0.15 0.19 0 0.34 0.28

Total time 23594 >72192 37494 27996 26380 30428 29075 50181 31273

Total gain 1 0.63 0.84 0.89 0.78 1 0.58 0.93

Therefore, we report in the penultimate column a compar-

ison between ACID1 and HC4. The number of varcided

variables was indeed tuned by ACID1 to a value comprised

between 0 and the number of variables. Again, we can see

that ACID1 is robust and is the best, or at most 10% worse

than the best, for 34 among 40 instances. Table IV shows

that we obtained an average gain of 10% over HC4. It is

significant because the CP contraction is only a part of the

IbexOpt algorithm [12] (linear relaxation and the search

of feasible points are other important parts, not studied in

this paper and set to their default algorithms in IbexOpt).

ACID0 shaves a minimum of 3 variables, which is often too

much. ACID2 obtains results slightly worse than ACID1,

rendering this refinement not promising in practice.

IV. CONCLUSION

We have presented in this paper an adaptive version of

the 3BCID contraction operator used by interval methods

and close to partition-1-AC. The best variant of this

Adaptive CID operator (ACID1 in the paper) interleaves

learning phases and exploitation phases to auto-adapt the

number of variables handled. These variables are selected by

an efficient branching heuristic and all the other parameters

are fixed and robust to modifications.

Overall, ACID1 adds no parameter to the solving or opti-

mization strategies. It offers the best results on average and is

the best or close to the best on every tested instance, even in

presence of the best Ibex devices (Interval-Newton,

X-Newton). Therefore ACID1 has been added to the Ibex

default solving and optimization strategies.
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Table III
OPTIMIZATION PROBLEMS: ACID1 RESULTS

#var #ctr ACID1 ACID1 ACID1 best worst Time ratio Time ratio Time ratio

time #nodes #varcids ACID1/best ACID1/HC4 ACID1/worst

Ex2 1 7 20 10 8.75 465 3 HC4 3BCID-fp 1.03 1.03 0.7
Ex2 1 8 24 10 6.18 200 0 HC4 3BCID-fp 1.06 1.06 0.91
Ex2 1 9 10 1 10.1 1922 0.75 HC4 3BCID-fp 1.04 1.04 0.9
Ex5 4 4 27 19 915 23213 0.8 ACID1 3BCID-n 1 0.96 0.91
Ex6 1 1 8 6 60.8 13071 8.9 HC4 3BCID-fp 1.21 1.21 0.73
Ex6 1 3 12 9 297 29154 11.7 HC4 3BCID-fp 1.19 1.19 0.63
Ex6 1 4 6 4 1.99 505 6 ACID1 3BCID-fp 1 0.97 0.8
Ex6 2 6 3 1 107 46687 0 HC4 3BCID-fp 1.02 1.02 0.74
Ex6 2 8 3 1 48.2 21793 0.1 HC4 3BCID-fp 1.01 1.01 0.72
Ex6 2 9 4 2 51.9 19517 0.1 HC4 3BCID-fp 1.02 1.02 0.72
Ex6 2 10 6 3 2248 569816 0 ACID1 3BCID-fp 1 0.99 0.64
Ex6 2 11 3 1 29.3 13853 0.3 HC4 3BCID-fp 1.05 1.05 0.73
Ex6 2 12 4 2 21.6 7855 0.1 HC4 3BCID-fp 1.02 1.02 0.8
Ex7 2 3 8 6 19.4 4596 4.4 3BCID-n HC4 1.07 0.17 0.17
Ex7 2 4 8 4 36.8 5606 4.2 3BCID-fp HC4 1.04 0.66 0.66
Ex7 2 8 8 4 38.0 6792 4.1 3BCID-n HC4 1.09 0.71 0.71
Ex7 2 9 10 7 78.0 14280 9.3 3BCID-n HC4 1.07 0.48 0.48
Ex7 3 4 12 17 2.95 366 3 3BCID-n 3BCID-fp 1.23 0.99 0.89
Ex7 3 5 13 15 4.59 894 6 3BCID-n HC4 1.05 0.38 0.38
Ex8 4 4 17 12 1738 46082 0.9 ACID1 3BCID-fp 1 0.99 0.87
Ex8 4 5 15 11 772 25454 4.8 HC4 3BCID-fp 1.03 1.03 0.75
Ex8 5 1 6 5 9.67 2138 2.75 ACID1 3BCID-fp 1 0.84 0.82
Ex8 5 2 6 4 32.5 5693 0.8 ACID1 3BCID-fp 1 0.9 0.87
Ex8 5 6 6 4 32.4 10790 1.8 HC4 3BCID-fp 1.02 1.02 0.76
Ex14 1 7 10 17 665 95891 3.3 3BCID-n HC4 1.03 0.61 0.61
Ex14 2 3 6 9 2.01 360 2 HC4 3BCID-fp 1.17 1.17 0.69
Ex14 2 7 6 9 49.9 5527 0 HC4 3BCID-n 1.47 1.47 0.48
alkyl 14 7 3.95 714 4 HC4 3BCID-fp 1.2 1.2 0.91
bearing 13 12 11.6 1098 13 3BCID-n HC4 1.01 0.53 0.53
hhfair 28 25 26.6 3151 10 3BCID-n HC4 1.12 0.58 0.58
himmel16 18 21 188 21227 15.5 3BCID-n 3BCID-fp 1.1 0.94 0.88
house 8 8 62.8 27195 3.25 HC4 3BCID-fp 1.09 1.09 0.79
hydro 30 24 609 32933 0 ACID1 3BCID-fp 1 0.88 0.78
immun 21 7 4.17 1317 2.5 ACID1 3BCID-fp 1 0.55 0.28
launch 38 28 107 2516 21 ACID1 3BCID-n 1 0.79 0.43
linear 24 20 751 27665 0.25 ACID1 3BCID-n 1 0.98 0.65
meanvar 7 2 2.43 370 2 HC4 3BCID-fp 1.04 1.04 0.84
process 10 7 2.61 611 8 HC4 3BCID-fp 1.08 1.08 0.77
ramsey 31 22 164 4658 4.3 ACID1 3BCID-fp 1 0.85 0.68
srcpm 38 27 160 6908 0.5 ACID1 3BCID-fp 1 0.62 0.33

Table IV
OPTIMIZATION PROBLEMS: GAIN RATIO IN SOLVING TIME: TIME ACID1/TIME XXX

ACID1 HC4 3BCID-fp 3BCID-n ACID0 ACID2

#solved instances 40 40 40 40 40 40

Average gain 1 0.9 0.77 0.88 0.91 0.97

Maximum gain 1 0.17 0.28 0.35 0.62 0.28

Maximum loss 1 1.47 1.04 1.23 1.18 1.19

Standard deviation gain 0 0.25 0.16 0.18 0.12 0.14

Total time 9380 10289 12950 11884 11201 9646

Total gain 1 0.91 0.72 0.79 0.84 0.97
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