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Compaction band instabilities due to cataclasis and dissolution in rocks -Strong chemo-poro-mechanical coupling, grain breakage and chemical softening

Introduction

The presence of compaction bands in nature may provide useful information on various geological processes as it is an indication of the stress state history of a geological formation.

Compaction bands are usually characterized by a significant reduction of the pore space, which in most of the cases is accompanied by an important reduction in permeability. Thus, compaction bands are also important in reservoir mechanics for oil production and CO 2 storage [START_REF] Olsson | Compaction Localization in Porous Sandstone: Implications for Reservoir Mechanics[END_REF][START_REF] Holcomb | Compaction localization in the Earth and the laboratory: state of the research and research directions[END_REF][START_REF] Rutqvist | The Geomechanics of CO2 Storage in Deep Sedimentary Formations[END_REF]. Pore collapse, intergranular grain fracturing and sliding, Hertzian cracking at grain contacts, grain crushing, grain attrition, grain-matrix debonding and matrix fracturing are often observed to a less or bigger extent inside the compacting zone [START_REF] Baud | Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity[END_REF][START_REF] Baud | Compaction and Failure in High Porosity Carbonates: Mechanical Data and Microstructural Observations[END_REF][START_REF] Sternlof | Anticrack inclusion model for compaction bands in sandstone[END_REF][START_REF] Tondi | The role of deformation bands, stylolites and sheared stylolites in fault development in carbonate grainstones of Majella Mountain, Italy[END_REF][START_REF] Holcomb | Compaction localization in the Earth and the laboratory: state of the research and research directions[END_REF][START_REF] Aydin | Bed-parallel compaction bands in aeolian sandstone: Their identification, characterization and implications[END_REF][START_REF] Zhu | Micromechanics of cataclastic pore collapse in limestone[END_REF][START_REF] Cilona | Deformation bands in porous carbonate grainstones: Field and laboratory observations[END_REF][START_REF] Rustichelli | Development and distribution of bed-parallel compaction bands and pressure solution seams in carbonates (Bolognano Formation, Majella Mountain, Italy)[END_REF][START_REF] Wong | The brittle-ductile transition in porous rock: A review[END_REF]. In parallel, it has been observed that reactive fluids play a significant role in creep and compaction of porous rocks [e.g. Le [START_REF] Le Guen | Enhanced deformation of limestone and sandstone in the presence of high P co 2 fluids[END_REF][START_REF] Liteanu | Influence of pore fluid salt content on compaction creep of calcite aggregates in the presence of supercritical CO2[END_REF][START_REF] Rutqvist | The Geomechanics of CO2 Storage in Deep Sedimentary Formations[END_REF]. Generally, mechanical damage and chemical degradation of the solid skeleton (i.e. of the grains and matrix) are important factors that may trigger instabilities in the form of compaction bands. The objective of the present paper is to explore the possibilities and conditions of compaction band formation due to chemo-mechanical reasons in porous geomaterials.

In the frame of Continuum Mechanics, compaction bands can be seen as an instability of the underlying mathematical problem. Discrete approaches like the Discrete Element Method have also been proposed in the literature [START_REF] Katsman | Numerical simulation of compaction bands in high-porosity sedimentary rock[END_REF][START_REF] Katsman | A study of compaction bands originating from cracks, notches, and compacted defects[END_REF][START_REF] Wang | A discrete element model for the development of compaction localization in granular rock[END_REF]Marketos and Bolton, 2009, among others] but they are computationally intensive and the identification of the general conditions that lead to strain localization is not straightforward. On the other hand a continuum approach can reveal the conditions for compaction band triggering given the constitutive behavior of the material [START_REF] Rudnicki | Conditions for the localization of deformation in pressuresensitive dilatant materials[END_REF][START_REF] Vardoulakis | Bifurcation Analysis in Geomechanics[END_REF][START_REF] Rudnicki | Diffusive instabilities in dilating and compacting geomaterials[END_REF]. It is commonly observed that strain localization is favored by strain softening and most of the existing theoretical studies focus on pure mechanical reasons for compaction band formation (mechanical softening due to grain and matrix damage and pore collapse). Nevertheless, more recently, the role of chemical softening on slip instabilities has been explored [e.g. [START_REF] Brantut | Strain Localization and Slip Instability in a Strain-Rate Hardening, Chemically Weakening Material[END_REF][START_REF] Veveakis | Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms[END_REF][START_REF] Veveakis | Failure in shear bands for granular materials: thermo-hydro-chemo-mechanical effects[END_REF] showing that chemistry may play an important role in shear band instabilities and strain localization. Here we focus on the conditions that lead to the formation of pure compaction bands in quartz-or carbonate-based geomaterials by considering the effect of chemical dissolution.

Shear enhanced compaction bands are out of the scope of the present study and their investigation can be a future extension of the proposed model.

The effect of chemical dissolution is important in field and in reservoir applications. For instance, the experimental results of [START_REF] Xie | Influences of chemical degradation on mechanical behaviour of a limestone[END_REF] showed that the chemical dissolution of a limestone leads to a significant increase of the porosity (from 23% for the intact rock to 27% for the degraded one). According to the same authors, the plastic pore collapse threshold is also reduced from about 30 to 20 MPa and the chemically degraded materials become more collapsible and more ductile due to the increase in porosity and the degradation of the inter-granular cementation.

This evidence is corroborated by other authors [e.g. [START_REF] Nova | A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation[END_REF]Hu and Hueckel, 2007b;[START_REF] Zinsmeister | Mechanical evolution of an altered limestone using 2D and 3D digital image correlation (DIC)[END_REF] for a class of geomaterials and results in a contraction of the elastic domain only due to chemical reasons (chemical softening). In parallel, in a saturated porous geomaterial, the progressive mechanical damage of the solid skeleton during compaction has as a result the increase of the interface area of the reactants (i.e. of the solution with the solid) and consequently the acceleration of the dissolution rate of the solid phase [cf. [START_REF] Rimstidt | The kinetics of silica-water reactions[END_REF]. Thus, the solid skeleton is degraded more rapidly (mass removal because of dissolution), the overall mechanical properties of the system diminish (contraction of the elastic domainchemical softening), deformations increase and the solid skeleton is further damaged (intergranular fractures, debonding, breakage of the porous network etc.). Figure 1 schematically shows this positive feedback process, whose stability is not guaranteed. Actually, as it will be shown in this paper, instabilities in the form of compaction bands may be triggered.

The impact of chemical phenomena and, in particular, of pressure solution inside deformation bands, has been demonstrated in several cases [START_REF] Tondi | The role of deformation bands, stylolites and sheared stylolites in fault development in carbonate grainstones of Majella Mountain, Italy[END_REF][START_REF] Tondi | Nucleation, development and petrophysical properties of faults in carbonate grainstones: Evidence from the San Vito Lo Capo peninsula (Sicily, Italy)[END_REF][START_REF] Liteanu | Influence of pore fluid salt content on compaction creep of calcite aggregates in the presence of supercritical CO2[END_REF][START_REF] Cilona | Deformation bands in porous carbonate grainstones: Field and laboratory observations[END_REF][START_REF] Rustichelli | Development and distribution of bed-parallel compaction bands and pressure solution seams in carbonates (Bolognano Formation, Majella Mountain, Italy)[END_REF]. However, the effect of dissolution on compaction band formation is difficult to observe in the field and its exact role is still a subject of investigation. Notice that field observations are made long after the formation of compaction bands, where the poro-mechanical properties of the rock have obviously drastically changed.

Exploring the effects of dissolution prior to compaction band formation is also a difficult task in the laboratory as the reproduction of the field conditions is not straightforward. Nevertheless, recent experimental tests with dissolvable surrogate materials and numerical studies with the Discrete Element Method have shown that dissolution of grains causes pronounced changes in the fabric and in the intergranular force transmission that may result in episodic microstructural changes and to strain localization [START_REF] Shin | Development of discontinuities in granular media[END_REF][START_REF] Shin | Mineral Dissolution and the Evolution of k0[END_REF][START_REF] Tran | Mineral dissolution effects on mechanical strength[END_REF].

The aforementioned indications of chemically induced strain localization instabilities provides the motivation of the present study and justifies the consideration of strong chemo-mechanical couplings in models due to dissolution.

Two scales are distinguished in the present chemo-hydro-mechanical model. The first scale is related to the macroscopic poromechanical behavior of the geomaterial. At this level the mass balance equation and the stress equilibrium are expressed over the representative elementary volume (REV). The second scale, which will be called here micro-scale, concerns the behavior of a single grain of the geomaterial and its surrounding matrix. Intergranular and matrix fracturing, grain-matrix debonding and the dissolution reaction kinetics refer to this scale. The distinction of the micro-and the macro-scale is presented schematically in Figure 2. The bridging between the macro-and the micro-scale is achieved here through the empirical law of [START_REF] Lade | Significance of Particle Crushing in Granular Materials[END_REF], which relates the effective grain size to the mechanical energy input to the system. In this sense, at least part of the mechanical energy is dissipated through the various micro-mechanisms related to the solid skeleton damage for the creation of new surfaces in the medium (fracturing). The advantage of the aforementioned empirical law over other micromechanical approaches is that it needs the calibration of only one parameter. More sophisticated grain damage models that account for the degradation of the inter-granular cement of rocks might be suitable, but the chosen phenomenological approach is a first step for studying some key features of chemical degradation on compaction banding by avoiding unnecessary complexity. Dissolution reaction kinetics at the micro-level (i.e. at the scale of a single grain) are then up-scaled to the macro-level. As it was already mentioned, the present analysis aims at exploring the possibilities of compaction band formation due to chemical softening effects only. Therefore, mechanical softening (or hardening) induced by grain damage or pore collapse is not considered herein in order to isolate the chemical effects. This means that the effect of grain damage and pore collapse on the evolution of the yield surface as described for instance by [START_REF] Das | Compaction bands due to grain crushing in porous rocks: A theoretical approach based on breakage mechanics[END_REF] is neglected.

On the other hand the effect of the damage of the solid skeleton on the acceleration of chemical reaction is taken into account by explicitly introducing the effective specific surface of the grains in the reaction kinetics law. Of course it is possible to account also for mechanical softening/hardening due to grain damage and pore collapse but this would somewhat hide the role of chemical effects explored here.

The first two sections of the paper are devoted to the formulation of the proposed chemo-poromechanical model by distinguishing the micro-and the macro-level behavior. At the macro-level (section 2), the constitutive behavior of the material is described within the frame of plasticity theory, the mass balance equation is derived and the linear momentum balance is set forth in
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Chemical Softening order to account for the different species in the REV. At the micro-level (section 3), the evolution of the effective grain size due to various micro mechanisms is described and the reaction kinetics are formulated and upscaled to the macro-level. Next, in section 4, the possibility of compaction band formation is discussed through a linear stability analysis. A criterion for compaction band instabilities is proposed and its sensitivity to the various parameters of the model is explored.

Note that because of the strong chemo-poro-mechanical coupling, the application of the classical localization criterion of [START_REF] Rice | The localization of plastic deformation[END_REF] is not straightforward. Finally, in section 5 two examples of compaction band instabilities are given for a quartzic rock under water flooding conditions and for a carbonate grainstone in relation with CO 2 injection and storage. All the mathematical calculations were performed with the symbolic language mathematical package Mathematica© and they are available to the reader upon request.

Figure 2. Schematic representation of the REV (macro-scale) and of the grains (micro-scale).

The picture is an idealization of the microstructure of a rock. The dissolution rate is homogeneous in the REV when the size and the chemical composition of the grains is homogeneous. In the case of compaction bands, the grains break, their size is not necessarily uniform in the REV and consequently the dissolution rate is not any more homogeneous.

Macro-scale

Constitutive behavior

Based on experimental research and theoretical considerations, several constitutive laws have been proposed in the literature that relate the observed macroscopic stresses and strains. Plasticity

Micro-scale / Grain

Macro-scale / REV theory is a standard framework for the mathematical formulation of the underlying mechanical problem. For a recent review of common plasticity models used for porous rocks we refer to [START_REF] Wong | The brittle-ductile transition in porous rock: A review[END_REF].

Depending on the applied stress path, the boundary conditions and the geomaterial at hand, a strain hardening or softening response can be observed due to the various mechanisms, which take place at the microlevel, i.e. at the grain-scale, and are related to the evolution of the microstructure of the solid skeleton (e.g. pore collapse) and to grain damage (e.g. grain fracturing). However, for the reasons exposed in the introduction, only chemical softening will be considered herein.

The removal of minerals from the solid skeleton through chemical processes causes the mechanical strength of the rock to decrease [e.g. Hu andHueckel, 2007a, 2007b]. Therefore, we expect the mechanical strength of a rock to be a function of the (residual) mass of the solid skeleton after the dissolution process. Expressing as
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, the ratio of the current mass, ( ) s M t , of the constituent ' s ' over its initial mass, ( )
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= , in the REV before the chemical process starts (initial/reference state), ζ can be seen as a chemical softening parameter [see also [START_REF] Nova | A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation[END_REF]Hu and Hueckel, 2007b]. Assuming compression negative, Figure 3. describes qualitatively the strength domain of the geomaterial in the q p′ plane due to chemical softening, i.e. for decreasing ζ . The scalars p′ and q are respectively the Terzaghi effective mean stress (i.e. the difference between the total mean stress and the pore pressure) and the shearing stress intensity. The shearing stress intensity q is defined as the square root of the second invariant of the deviatoric part, ij s , of the stress tensor:

1 2 ij ji q s s = .
The Einstein summation convention is adopted. In order to preserve the generality of the approach we consider a general yield surface of the form:

( ) , 0 , c f f q p p′ ′ = ≡ (1)
where c p′ is a material parameter (namely the yield stress under isotropic loading) which is assumed to decrease from 0 p′ (initial reference state) to R p′ (residual yield stress once the chemical reaction is completed) according to the following law ( ) 3). κ is an exponent that can be experimentally determined for the material and the chemical process at hand. Figure 3. Chemical isotropic softening due to dissolution of a constituent. ζ describes the ratio of the residual mass of the constituent in the REV over its initial (reference) mass before the dissolution process. Compression is taken negative. β>0 corresponds to dilatancy and β<0 to contractancy (decrease of porosity).
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In the frame of a small strain theory, the strain may be separated into elastic and plastic parts as follows:

and
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where ε denotes the volumetric deformation and γ the shearing strain intensity
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with ij e being the deviatoric strain tensor.

The elasto-plastic incremental stress-strain relationships are given by: where p q
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the elasticity matrix. ( ) Τ i denotes the transpose of ( )

i . K and G are respectively the elastic bulk and the elastic shear moduli of the geomaterial. g is the plastic potential which can be identified to the yield surface, f , in case of associate plasticity. For a general plastic constitutive law, we can write:
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where β is the dilatancy angle ( 0 β > for dilatant materials) and µ is the internal friction of the geomaterial that depend on the actual state of stress. Using Eq.( 4) we obtain:
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It is worth mentioning, that under constant loading, chemical softening would result in the gradual accumulation of plastic deformations, which are controlled by the dissolution reaction kinetics. This accumulation of deformations under constant loading can be seen as a creep behavior induced by the chemical process of dissolution. Creep phenomena due to reactive fluids injection are observed in laboratory tests on porous rocks [START_REF] Le Guen | Enhanced deformation of limestone and sandstone in the presence of high P co 2 fluids[END_REF][START_REF] Liteanu | Influence of pore fluid salt content on compaction creep of calcite aggregates in the presence of supercritical CO2[END_REF][START_REF] Shin | Mineral Dissolution and the Evolution of k0[END_REF][START_REF] Brantut | Time-dependent cracking and brittle creep in crustal rocks: A review[END_REF][START_REF] Croizet | Compaction and porosity reduction in carbonates: A review of observations, theory, and experiments[END_REF].

Mass balance

The dissolution of minerals is described by appropriate chemical reactions. According to the reaction's stoichiometry the minerals of a rock may be degraded and transformed to amorphous solid or liquid. For example the dissolution/precipitation of quartz in water is described by the following chemical equation: )

(R1)
3 2 3 3 2
CaCO (solid)+H CO (aqueous solution) Ca HCO (aqueous solution) ⇌ This equation represents a set of consecutive reactions that take place and are responsible for the dissolution of carbonate rocks [START_REF] Grgic | Influence of CO 2 on the long-term chemomechanical behavior of an oolitic limestone[END_REF].

Here we consider any dissolution process of the form:

(R3) ( ) ( ) ( ) 3 1 2 solid + solvent solution ⇌
The reaction kinetics of this general equation will be analyzed in the next section.

At the macro-scale, the REV can be seen as a porous medium. The mass of the solid phase is 3 M (e.g.

2 SiO ) and the mass of the fluid phase is

1 2 f M M M = +
, where 1 M is the mass of the solvent (e.g. 2 H O ) and 2 M the mass of the dissolution product (e.g. 4 4 H SiO ).

Following the notation of [START_REF] Coussy | Poromechanics[END_REF] the mass balance equations hold:
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where d dt χ is the particle derivative, χ ρ is the density and n χ is the Eulerian porosity referring to particle χ ( f for fluid and s for solid species), r χ ψ → represents the rate of mass of χ transformed to ψ and t dΩ is the material volume in the current configuration. By definition:

1 1 2 2 f f f n n n ρ ρ ρ + = (11) 
where f ρ is the density of the solution, which depends on the reactant's concentrations, the pressure f p and the temperature. Equations ( 8) and ( 9) lead to:

( ) 2 3 f f t t d nd r d dt ρ → Ω = Ω (12)
Considering isothermal conditions and constant density for the solid phase, Eqs.( 10) and ( 12) become:
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)
where the Nabla operator refers to the initial configuration ( X is the position vector of the solid particles in the initial configuration), s V and f V are respectively the velocities of the solid phase and fluid particles, f p the fluid pressure and

2 2 M f w M M =
the average dissolution product to fluid mass fraction over the REV (macro-scale). Adding Eqs. ( 13) and ( 14) and using the chain rule, the pore pressure diffusion-generation equation is obtained:

2 2 , 1 f hy f p ch p w c p c t t t ε β * ∂ ∂ ∂ = ∇ - - ∂ ∂ ∂ X ( 15 
)
where hy c is the hydraulic diffusivity and

f n β β * = with 1 f f f f p ρ β ρ ∂ = ∂
is the compressibility of the fluid [see also [START_REF] Ghabezloo | Stress dependent thermal pressurization of a fluid-saturated rock[END_REF]. For plastic incompressibility of the solid phase and of the fluid, 1 K β * = . For the derivation of the pore pressure diffusion-generation equation, the Darcy law was assumed and the gradient of the density of the fluid was ignored as being negligible compared to the other terms of the equation. The deformation of the solid skeleton, i.e.

the term

s t ε ∂ ∇ = ∂ X V
, is responsible for the hydro-mechanical coupling. In the right hand side of the equation the last term expresses the pore pressure change due to dissolution/precipitation process and , p ch c is the chemical pressurization coefficient, which depends on the evolution of the fluid density because of the reaction process. Herein, we neglect this effect as it does not affect the stability of the system and generally its influence is limited [START_REF] Stefanou | Chemical degradation and compaction instabilities in geomaterials[END_REF]. Finally, for small strains ∇ ≈ ∇ Χ x , where x is the position vector of the solid particles in the current configuration.

Momentum balance under oedometric conditions

Under oedometric conditions the stress equilibrium is expressed as follows:

,

0 zz z σ = (16) where ij ij f ij p σ σ δ ′ = - , ij δ is the Kronecker delta, 2 3 zz p q σ = - , 2 3 zz γ ε = - , zz ε ε = , , zz z z u ε = 0 rr θθ ε ε = = (for axisymmetric conditions).
Using Eq.( 3) we obtain:
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where 
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Micro-scale

Cataclasis, solid skeleton damage and evolution of the effective grain size

A rock can be seen as an assemblage of bonded grains, which during deformation may break into smaller grains with rupture of bonds. Following [START_REF] Lade | Significance of Particle Crushing in Granular Materials[END_REF] the grain size reduction is related to the total energy input. In this sense, at least part of the mechanical energy is dissipated through various micro-mechanisms for the creation of new surfaces in the medium (grain fracturing). "Hertzian cracks" at the grain contacts (intergranular fracturing, grain crushing, grain attrition etc.), "microcracking" of the cementitious matrix [START_REF] Aydin | Bed-parallel compaction bands in aeolian sandstone: Their identification, characterization and implications[END_REF]Cilona et al., 2012] and grain debonding [START_REF] Castellanza | Oedometric Tests on Artificially Weathered Carbonatic Soft Rocks[END_REF] are some important mechanisms that lead to the reduction of the effective grain size of the geomaterial and consequently to the increase of the dissolution front.

Under this framework, it is convenient to define an effective grain size, D , whose evolution reflects the effect of grain damage. According to [START_REF] Lade | Significance of Particle Crushing in Granular Materials[END_REF], for a given grain size distribution, this effective grain size is commonly taken equal to 10 D (10% of the system weight consists of grains below 10 D diameter). Generally, the choice of the appropriate effective grain size depends on the exact grain size distribution and the material at hand. For instance in the case of shear bands created in the laboratory 10 D seems a good measure for the effective grain size reduction [START_REF] El Bied | Microstructure of shear zones in Fontainebleau sandstone[END_REF]. On the other hand, in the case of compaction bands observed in the field, 50 D seems a better choice [START_REF] Cilona | Deformation bands in porous carbonate grainstones: Field and laboratory observations[END_REF]. [START_REF] Lade | Significance of Particle Crushing in Granular Materials[END_REF] proposed the following expression for the evolution of grain crushing of a granular material in terms of the mechanical work input:

0 T a D D a E   =   +   (18)
where 0 D is the effective grain size of the initial gradation and T E is the total energy input per specimen unit volume (including the energy due to isotropic compression and shearing). a is a fitting parameter, which will be called here grain damage sensitivity parameter that expresses the extent of the grain size change due to energy input. For large values of parameter a, as compared to E T , the grain size is constant. As discussed by [START_REF] Lade | Significance of Particle Crushing in Granular Materials[END_REF], the total energy seems to be a more relevant parameter for describing grain breakage compared to the effective mean stress or the void ratio. As an example, for Cambria sand 0.747MPa a = [START_REF] Lade | Significance of Particle Crushing in Granular Materials[END_REF]. For a rock, the parameter a should also depend on the grain size distribution [cf. [START_REF] Cheung | Effect of grain size distribution on the development of compaction localization in porous sandstone[END_REF].

Considering that the specific effective surface of a grain S (effective grain surface area to volume ratio) is inversely proportional to the grain diameter, it is natural to assume the same type of relationship:

0 1 T E S S a   = +     (19) 
It is worth emphasizing that the grains of rocks are often cemented together and that the consideration of the rock as a granular material, with well-defined grain to pore fluid interactions is rather an idealization of reality. Nevertheless, as it was mentioned above, the dissipation during mechanical loading is mainly attributed to internal friction mechanisms (reorganization of grains, grain dislocation/disclination) and microcracking of both the grains and of the cementitious matrix (Hertzian cracking, microcracking, debonding etc.). In this sense, Eq.( 19), could also be used in order to describe the increase of the specific surface of the grains of a cemented granular material like a porous rock. Parameter a may be calibrated either through appropriate micromechanical models that take into account the micro-cracking of the matrix and grain breakage [e.g. [START_REF] Das | Compaction bands due to grain crushing in porous rocks: A theoretical approach based on breakage mechanics[END_REF] or through adequate experimental tests. More specifically, the value of the grain damage parameter may be determined experimentally through acoustic emissions, X-ray tomography or other experimental techniques [START_REF] Wong | The brittle-ductile transition in porous rock: A review[END_REF] that will correlate the effective grain size due to grain damage and the mechanical energy input.

Finally, it should be mentioned that grain crushing results in a reduction of porosity and generally to a reduction of permeability [START_REF] Walsh | The effect of pressure on porosity and the transport properties of rock[END_REF][START_REF] Sulem | Shear banding in drained and undrained triaxial tests on a saturated sandstone: Porosity and permeability evolution[END_REF]. Moreover, due to dissolution, the specific area of the grains at the microscale is increased and the existing microcracks propagate further (subcritical growth, stress corrosion cracking). Therefore, the grain crushing sensitivity parameter, a , is not necessarily constant in time and may depend on the reaction kinetics, the stress level and the nature of the saturating fluid. However, in the linear stability analysis presented in the next section, the permeability change due to porosity reduction is of second order and can be neglected for the onset of strain localization. Nevertheless, for performing numerical simulations of rocks with the proposed chemo-poro-mechanical model it is possible to determine the evolution of these parameters based on empirical and/or theoretical models.

Reaction kinetics

According to [START_REF] Rimstidt | The kinetics of silica-water reactions[END_REF] the rate of reaction between the fluid and solid phase during quartz dissolution (or precipitation, R1) is directly proportional to the interfacial area between the solid and the liquid phase. The dissolution rate is commonly assumed to be proportional to the mineral surface area exposed to the aqueous solution [START_REF] Cubillas | Experimental determination of the dissolution rates of calcite, aragonite, and bivalves[END_REF].

Here we generalize this idea for any dissolution process of the form of R3. The rate of production (or consumption) of moles of the dissolution product is considered to obey the following rate equation:

( )

2 1 n Ak t ∂ = -Ω ∂ (20)
where 2 n is the number of moles of the product of the dissolution process (e.g. the 4 4 H SiO or the ( )

3 2
Ca HCO ), A the available interfacial area of the solid with the solution, k the dissolution rate constant per unit area of the interface and Ω is the degree of saturation. If

1

Ω = the reaction 17/50 is at equilibrium, if 1 Ω < dissolution takes place and if 1 Ω > precipitation happens. Ω is
expressed in terms of the reaction quotient, Q , and the equilibrium constant, eq K , as follows:

eq Q K Ω = (21)
It is worth mentioning that in order to account for the intergranular dissolution-diffusion micromechanisms that take place in the thin aqueous film that is developed at the grain contacts, a chemical potential that depends on the stress state is often considered (pressure solution [START_REF] Rutter | Pressure solution in nature, theory and experiment[END_REF]). As a result, the reaction kinetics (i.e. Eq. ( 20), equilibrium constant, reaction rate) might be functions of the stress state. However, intense cataclasis (stress induced cracking, grain breakage, microcracking, debonding etc.) is often observed inside the zone of deformation bands [START_REF] Baud | Compaction and Failure in High Porosity Carbonates: Mechanical Data and Microstructural Observations[END_REF][START_REF] Cilona | Deformation bands in porous carbonate grainstones: Field and laboratory observations[END_REF]. Therefore, in the stability analysis performed in the next section, the reaction kinetics will not directly depend on the stress state, but will be a function of the available interaction surface of the reactants (dissolution of grains), which depends on the stress state because of grain damage.

Assuming that the reaction activity coefficients for the reactants are close to unity and that 2 1 w ≪ , Eq.( 20) and ( 21) give (Appendix A.1):

2 2 2 1 eq w S w k t e w *   ∂ = -   ∂   (22) 
where

2 f k k µ ρ * = , 1 n e n = -
is the void ratio and 2 eq w the mass fraction of dissolution product to the fluid mass at chemical equilibrium. It should be emphasized that Eq.( 22) is written at the microscale and that 2 w , S and e represent local quantities, which are not necessarily homogeneous over the REV (Figure 2). On the other hand, the constitutive law and the mass balance represent quantities defined over the REV and therefore the aforementioned local quantities have to be upscaled from the micro-to the macro-level.

Chemical softening and upscaling

At the macroscale the rate of the chemical softening parameter ζ holds for 2 1 w ≪ (Appendix

A.2): 3 2 2 f s M w e t t ρ ζ µ ζ µ ρ = ∂ - ∂ ∂ ∂ (23) 
The average mass fraction of the dissolution product over the REV (macro-level) is related to the local mass fraction 2 w (Figure 2) as follows:

2 2 1 T M T V w w dV V = ∫ (24) Assuming that ( ) 2 2 
, w w z t = (oedometric conditions) is a function that can be expanded into

Taylor series up to the second order in z :

( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 , , 1 , , 2 
l l l z z w z t w z t w z t w z t z z z z ∂ ∂ ≈ + + ∂ ∂ (25) 
where l z is the coordinate in a local coordinate system with origins at the center of the REV, z , injecting equation (25) to equation ( 24) and integrating over the REV we obtain: 

2 2 2 2 2 2 M c w w w z ∂ ≈ + ∂ ℓ (26) 

Compaction band formation

Equations ( 15), ( 16) and ( 22) describe the evolution of the system under oedometric conditions, while equation ( 26) links the macro-and micro-scale. Introducing the dimensionless quantities: 

( ) ( ) ( ) 2 2 2 50 0 2 50 50 50 0 0 0 , , , , , , , ˆˆ, , , , , 
M M f ij T f ij T n eq n n n n n n i i hy hy H O p w p q E a w p p q E a K u L t T u L S S D t c c D D T D χ χ σ σ β β σ σ σ σ σ σ σ ρ ρ ρ * * = = = = = = = = = = = = = = ( 
σ = (28) 2 2 , 2 ˆˆ1 ˆˆˆM f f hy p ch p p w c c t z t t ε β * ∂ ∂ ∂ ∂ = - - ∂ ∂ ∂ ∂ (29) 
( )

1 2 2 ˆˆ1 ŵ e S w t - ∂ = - ∂ (30) 2 2 2 2 2 2 M c w w w z ∂ ≈ + ∂ ℓ (31) 
In the following the hats over the variables will be dropped in order to simplify the notations.

It has to be mentioned that the application of the well-known localization (bifurcation) criterion of Issen & Rudnicki [Rudnicki and Rice, 1975; see also [START_REF] Rice | The localization of plastic deformation[END_REF][START_REF] Bigoni | Uniqueness and localization-I. Associative and nonassociative elastoplasticity[END_REF][START_REF] Issen | Conditions for compaction bands in porous rock[END_REF] is not straightforward in the present case where a chemo-poromechanical coupling takes place. For this reason a linear stability analysis is performed in the next section. 

Linear stability analysis

( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 , , , , , , h z z z h f f f h u z t u u z t p z t p p z t w z t w w z t = + = + = + ɶ ɶ ɶ (32) 
The spatial dependence of the perturbations is decomposed into Fourier modes with wavelength λ . Assuming zero fluid flux and no reaction evolution at the boundaries of the model:

( ) Introducing the above perturbations to Eqs.( 28)-( 30) and neglecting the higher order terms we obtain the system: , 0

, sin st z z u z t Ue   =     ɶ ℓ , ( ) , cos st f z p z t Pe   =     ɶ ℓ and 
( ) 2 , cos st z w z t We   =     ɶ ℓ ( 
zz z σ = ɶ (34) 2 2 1 f f hy p p c t z t ε β * ∂ ∂ ∂ = - ∂ ∂ ∂ ɶ ɶ ɶ (35) ( ) 2 2 2 2 1 1 1 h h h h h h w w S S w w t e e η ∂ -   = - + -   ∂ ɶ ɶ ɶ (36) 2 2 2 2 2 2 M c w w w z ∂ ≈ + ∂ ɶ ɶ ɶ ℓ (37) 
where

3 2 1 f h h s e ρ µ η µ ρ   = +    
. The superscript 'h' denotes the homogeneous state of the system. S ɶ represents the perturbation of the specific surface because of the perturbations introduced in Eq.( 32) and because of Eq.( 19). All the above quantities are dimensionless (the hats were dropped for simplicity).

Substituting Eqs.(33) in the above equations, we obtain the following system of equations in matrix form:

⋅ = Α Χ 0 (38) where 2 11 13 2 2 2 32 0 1 1 s 1 0 s c hy h h A A c s A S S ϕ β *     - -             = - +       - +     Α ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ , 11 2 2 1 1 3 3 1 A K K G β µ βµ    + +       = - + , 3 13 2 2 3 1 s h h f K G A K G f e ζ β ρ µ ρ µ βµ ζ   -     ∂ ∂ = - + , 32 1 h h e w A a - = , ( ) 
1 1 1 h h h e w ϕ η   = + -   and U P W     =       X .
The system has non trivial solutions when the determinant of A is zero, i.e.

[ ] 0

Det = A
, or equivalently:

2 1 0 0 s C s C + + = (39) with 2 11 13 3 0 2 2 2 11 1 1 c h hy A A c C A S A β β ϕ * *   + - =     - ℓ ℓ ℓ and 2 11 13 3 2 1 1 2 2 1 11 1 1 1 1 hy h h c A c A A S S A A C ϕ β β * *   + + -   - -  = ℓ ℓ ℓ .
If the real part of a root of the above quadratic equation (characteristic polynomial) is positive then the system is unstable.

Conditions for instability

The roots 1 s and 2 s of the above quadratic equation satisfy:

1 2 0 s s C = and 1 2 1 s s C + = - (40) 
Therefore if 0 0 C < then at least one root with positive real part exists. For 11 0 A < and 1 s w <

(start of the reaction), 0 0 C < gives: Ξ represents the effect of dissolution on the stability of the system due to grain damage. The bigger the value of Ξ is (i.e., high effect of dissolution due to grain damage) the more unstable the system becomes, as the instability condition ( 42) is satisfied for a larger spectrum of µ and β values (the instability region in the q p plane is larger). The role of Ξ will be explored in the next paragraph

2 11 13 32 2 1 0 c A A A ϕ   + - >     ℓ ℓ (41) or 2 2 1 c c h r f C ζ ζ ∂   - <     ∂ ℓ ℓ (42) 
In the special case where 0

cr C = ( 3 2 µ = - or 3 2 β = - leading to 0 Λ = ), Eq. (42) becomes: 2 1 0 c f ζ ∂   - <     ∂ ℓ ℓ (43)
and the system is unstable if Finally, the above sufficient condition for instability should be completed with the following condition in order to avoid the consideration of flutter instabilities, which are characterized by the fact that the roots of the characteristic polynomial have an imaginary part:

2 1 0 4 0 C C - ≥ (44) 
The reason for excluding this kind of oscillatory instabilities (blowing-up oscillations) is that they seem unphysical for the chemo-mechanical problem at hand.

Regions of stability and parameters sensitivity

As an example of a cap yield surface we consider a modified Cam-clay yield surface with an associate flow rule. Certainly, modified Cam-clay with associate flow rule is not the best constitutive model for rocks and in order to obtain quantitative results an extensive experimental research has to be conducted. Nevertheless, it is expected, that a general cap model, (Figure 3) will be overall appropriate [Baud et al., 2006; Wong and Baud, 2012]. Herein, we choose the modified Cam-clay plasticity model with associate flow rule due to its relatively simple form (i.e. elliptic yield cap). In particular the adopted yield surface is (Figure 4): In this way the qualitative behavior of the system may be studied pointing out the effects of chemical softening to compaction band formation. For the example at hand we consider the following dimensionless parameters: 0

1 p′ = -, 0.2 R p′ = -, 0.4 f p = , 1 M = , 1 κ = , 100 K G = = , 1 S = , 7 6 10 hy c = × , 3 2 0.6 µ µ = , 0.4 f s ρ ρ = .
In this paragraph we assume that

0 c = ℓ
, or in other words we consider that the rock microstructure is homogeneous (see section 3.3). This assumption does not influence the conditions for the onset of the compaction band formation (see Eqs. ( 42) or ( 43)), which is the purpose of the current paragraph. In the next paragraph the heterogeneity of the REV will be considered and its influence to compaction bands thickness/periodicity will be explored.

According to Eq.( 42) compaction band triggering depends on Ξ , which represents the tendency of the system for compaction band formation. With higher values of Ξ , the region of instability in q p plane becomes larger. 

β = - or 3 2 µ = -
. This is consistent with the Issen and Rudnicki condition for compaction bands [START_REF] Issen | Conditions for compaction bands in porous rock[END_REF]. The same holds when no grain damage occurs ( a → ∞ ) or when the medium is not porous ( 0 n → ), as no reaction takes place [2000] compaction band criterion (see Figure 7 to Figure 9) and its size depends on the grain damage parameter a . Moreover, compaction bands can be triggered even for 3 β µ + > -.

Figure 10 shows the growth coefficient s as a function of the wavelength of the perturbation for

2 10 a - = , 2 0 h w = , 0.25 n = , 1.2 p = , 0.4 q =
and 1 ζ = . s is positive and the system is unstable. . The more crushable the grains are, i.e.

a small, the bigger the coefficient Ξ and the larger the region of instability is in q p plane.

Figure 6. Tendency for compaction bands for 0.1 a =

. The more porous the geomaterial is, the bigger the coefficient Ξ and the larger the region of instability in q p plane are. . The growth coefficient is positive and the system is unstable.

Wave length selection

Figure 10 shows that the perturbation that travels fastest (maximum growth coefficientdominant wave length) has zero wavelength. In other words, the dominant wavelength, max λ , is zero. This means that the deformation would be localized in a zone of an infinitesimal thickness as time increases (see Eq.( 33)) or equivalently that the compaction bands would be infinitesimally close to each other ( 

L L = N → ∞ ).
However, experimental evidence shows that this is hardly the case. Due to the heterogeneous microstructure of geomaterials, compaction is localized to a thin band of finite thickness (several grains). Consequently, the evolution of the reaction cannot be homogeneous over the REV ( In the literature, field and laboratory observations show that the thickness of deformation bands is variable. [START_REF] Tondi | Nucleation, development and petrophysical properties of faults in carbonate grainstones: Evidence from the San Vito Lo Capo peninsula (Sicily, Italy)[END_REF] presents the example of a quite thick compactive shear band of the order of 300 grains. On the contrary, in [START_REF] Baud | Compaction localization in porous sandstones: spatial evolution of damage and acoustic emission activity[END_REF], the thickness of the compaction band observed is of the order of two grains. In the present analysis the compaction band thickness depends on the chemo-mechanical properties of the material and of the heterogeneity of the microstructure. However, it should be mentioned that the present model should not be considered as predictive and that the calculated compaction band thickness has only a qualitative character.

0 c ≠ ℓ , Eq.( 26 
In particular, the derived compaction band thickness corresponds to the thickness of the compacting zone at the onset of the localization. This process zone may decrease further during compaction. For example, strain softening because of grain crushing/fracturing and pore collapse, which was excluded here in order to isolate the effects of dissolution, can decrease further the compaction band thickness. In order to simulate the evolution of the compaction band thickness, a post-bifurcation analysis is necessary which exceeds the scope of the present paper.

The dominant wavelength, max λ , depends on the hydraulic diffusivity of the rock. In Figure 12 we trace the Lyapunov exponent, s, versus the wavelength λ for different orders of magnitude of the hydraulic diffusivity. The lowest considered value of the dimensionless hydraulic diffusivity Figure 12 shows that a lower permeability of the material leads to a smaller dominant wavelength. In other words, the present model leads to thinner compaction bands for more impermeable materials. From the physical point of view, at the onset of the instability, chemical dissolution leads locally to an abrupt increase of the plastic deformations and an abrupt reduction of the effective vertical stress. In oedometric conditions, this drop of the 

Case studies

Compaction banding of a sandstone reservoir

The scenario of water flooding of a sandstone reservoir at 4km depth is studied in this paragraph. This example could reflect the conditions of enhanced oil recovery by injecting water into the reservoir to maintain the pore pressure. In offshore operations the injected water is commonly seawater, which is different from the formation water. The injection of water can trigger the dissolution of the quartz-based rock (R1) which in turn may trigger compaction band instabilities.

At this depth it is assumed that the water pressure is 40MPa f p ≃ and the total vertical stress is 100MPa n σ ≃

. Some typical values for sandstone are given in Table 1. 

-8 mol s -1 m -2 ( k * ≃ 10 -12 m/s)
Before the reaction takes place the stress state is represented by the point A in the q p plane (Figure 15). Elastic loading under oedometric conditions is assumed for the initial stress state, i.e.

point A (stress path line no. 1) and 100MPa

zz n σ σ = -= -. At time 0 t = the reservoir is flooded with water. The water injected in the reservoir is continuously renewed in such a way that practically open flow conditions hold ( ( ) 2 0 0 w t > = ). As a result the system is not in chemical equilibrium and dissolution occurs. Consequently, the material is progressively degraded due to chemical softening and the chemical softening parameter decreases from its initial value 0 1 ζ = . When 0.9

ζ ζ Α = ≃
the material yields, plastic strains are accumulated and grain damage occurs (Eq.( 19)). By neglecting in this phase the influence of the dissolution on the increase of the specific area of the grains of the rock (i.e. effective grain surface area to grain volume ratio, S , is assumed quasi-constant) an estimation of the time needed for yielding is possible. Equations ( 22) and ( 23) are combined to give, for sub-spherical grains:

1 2 3 1 ln 3.5 months

s f t S k µ ρ ζ µ ρ - Α Α * ≈ ≈ (46) 
It should be mentioned that if closed flow conditions were considered ( ( )

2 0 0 w t = = , (
) 2 0 0 w t > ≠ ) then the dissolution would be slower and several injection cycles would be needed for yielding as the solution saturates quite quickly (equilibrium constant: log eq K ≃ -3.15 at 80°C) without provoking significant chemical softening. After reaching point A, the yield surface continues to contract due to dissolution and the stress state evolves until point B. At point B the system becomes unstable and compaction band instabilities are triggered. The minimum thickness of the compaction bands is equal to c π ℓ (Eq.( 42)), but this can be larger depending on the exact stress path, the chemo-mechanical parameters (paragraph 4.4) and the nonlinear behavior of the system in the post bifurcation regime. Contrary to the post bifurcation regime, where the deformations are abruptly localized and the conditions can be considered undrained, drained conditions can be assumed from point A to point B if we consider that the time scale of the pore fluid diffusion is much faster than the time scale of the chemical softening process. Therefore, we can admit that the stress path after yielding follows Path 2 (Figure 15). This path is derived from the fact that the vertical stress is kept constant zz n σ σ =under oedometric conditions (see Eq.( 16)).

The instability happens when The stress path 1 represents the elastic loading of the material under oedometric conditions, while the stress path 2 represents the path that the material follows after yielding.

Compaction banding induced by CO 2 injection in carbonate grainstones

The formation of compaction bands in carbonate rocks is hardly evidenced both in field and in laboratory [START_REF] Baud | Compaction and Failure in High Porosity Carbonates: Mechanical Data and Microstructural Observations[END_REF]. Nevertheless, more recently, [START_REF] Cilona | Deformation bands in porous carbonate grainstones: Field and laboratory observations[END_REF] observed compaction bands in porous carbonate grainstones both in field and in laboratory. Their observations extend the previous evidence of compaction bands in porous carbonate rocks by [START_REF] Baxevanis | Compaction bands and induced permeability reduction in Tuffeau de Maastricht calcarenite[END_REF] and [START_REF] Tondi | The role of deformation bands, stylolites and sheared stylolites in fault development in carbonate grainstones of Majella Mountain, Italy[END_REF]. In the aforementioned works, Hertzian cracks at grain contacts, microcracking, debonding and pore collapse that result in an overall effective grain size reduction were shown to develop inside compaction bands. As it was 18), ( 19)).

In this paragraph we attempt to explore the possibility of compaction bands formation in carbonate grainstones because of CO 2 injection at 1.8 km depth. The set of reactions that take place because of the CO 2 injection are summarized through the stoichiometry of equation R2. In Table 2 we present some typical values for the chemo-mechanical parameters of a porous carbonate rock. At this depth, we assume that the water pressure is 18MPa Under open flow conditions, an estimation for the time needed for reaching point B is B 5 days t ≈ (Eq.( 46) assuming a constant value for S until the instability and sub-spherical grains). Notice, that this period of time is far smaller as compared to the previous example due to the faster dissolution rate of calcite.

For CO 2 , injection open flow conditions would correspond to a zone outside the gas plume where the formation fluid is saturated with CO 2 , but is not in chemical equilibrium with the rock so that carbonate dissolution occurs continuously ( 2 2 eq w w <

). [START_REF] Rohmer | Coupled Large Scale Hydromechanical Modelling for Caprock Failure Risk Assessment of CO 2 Storage in Deep Saline Aquifers[END_REF], using an hydro-mechanical model on a reservoir case study, show that the dissolution front might extend few kilometers around the injection well after 10 years of continuous injection. Dissolution rate, k 10 -6 mol s -1 m -2 ( k * ≃ 1.6 10 -10 m/s) Figure 16. Instability region (shaded) for compaction bands under oedometric conditions for a carbonate grainstone at 1.8 km depth. Different yield surfaces are drawn for different levels of chemical degradation, ζ . The stress path line no. 1 represents the elastic loading of the material under oedometric conditions, while the stress path line no. 2 represents the path that the material follows after yielding.

Conclusions

Grain fracturing and attrition, "microcracking" of the cementitious matrix, debonding and pore collapse are some important micro-mechanisms that lead to the reduction of the effective grain size of a geomaterial and consequently to the increase of the dissolution front in reactive environments. The proposed chemo-poro-mechanical model accounts for the aforementioned mechanisms. Part of the mechanical energy supplied to the system is dissipated through various micro-mechanisms for the creation of new surfaces in the microstructure. In this sense, a phenomenological approach based on the work of [START_REF] Lade | Significance of Particle Crushing in Granular Materials[END_REF] is used to relate the effective grain specific surface and the total energy input per specimen unit volume. Following this approach, which describes the above dissipative mechanisms through a single parameter, and in the frame of dissolution process, the chemo-poro-mechanical model presented herein provides a strong coupling between mechanics and reaction kinetics (Figure 1).

The purpose of the present paper was to explore the possibility of chemically induced compaction band instabilities. Therefore, in order to isolate the chemical effects, mechanical softening Due to the existing heterogeneity of the microstructure (e.g. different grain sizes and constituents in the REV) the dissolution rate may not be homogeneous over the REV. The size of the REV is a finite statistical quantity that depends upon the geomaterial at hand. Therefore, a rock is characterized by at least one characteristic length, which by appropriately up-scaling the microlevel to the macro-level (separation of scales and averaging) can be adequately expressed at the macroscale, i.e. incorporated into the proposed chemo-poro-mechanical model. The linear stability analysis shows that because of this characteristic length, the deformation is localized into narrow bands of finite thickness and that these bands are periodically distributed in space. This is in accordance with many field and laboratory observations where there is evidence that compaction bands are localized into a thin band (several grains thickness) and are quasiperiodically arranged in space. In field and laboratory observations, the thickness of compaction bands is variable. In the present analysis the compaction band thickness depends on the chemoporo-mechanical properties of the material and the heterogeneity of the microstructure.

According to the present model, the thickness and the periodicity of compaction bands are related to the grain damage parameter, the hydraulic diffusivity and the dissolution rate. The more crushable the grains are, the lower the permeability is and the higher the dissolution rate is, the narrower the compaction band is. Nevertheless, the results presented here have a qualitative character. The study of the precise evolution of the system and of the compaction band thickness after the onset of localization (post-bifurcation regime) exceeds the scope of the present paper

2 2 f m w m = or 2 2 2 f f w n V µ ρ = (A1)
where f m is the mass of the fluid phase and 2 m is the mass of the dissolution product at the microscale. Assuming that 2 1 w ≪ or equivalently that the density of the fluid, f ρ , remains practically constant during the reaction process, we obtain that:

2 2 2 f s n w eV t t ρ µ ∂ ∂ ≈ ∂ ∂ (A2)
Furthermore, assuming that the activity coefficients for the reactants are close to unity the reaction quotient is expressed in terms of the reaction activities of the reactants as follows:

2 1 a Q a ≈ or 2 1 n Q n ≈ (A3)
Assuming again that 2 1 w ≪ , we obtain:

1 2 2 Q w µ µ ≈ (A4)
Consequently the mass fraction at equilibrium is related to the equilibrium constant as follows:

2 1 2 eq eq w K µ µ ≈ (A5)
Using the above expressions, Eq.( 20) yields: and using the stoichiometry of the dissolution reaction we obtain:

2 2 2 2 1 f eq w S w k t e w µ ρ   ∂ ≈ -   ∂   ( 
s 2 0 3 s 0 s 1 M t M t M t n ζ µ = ∂ ∂ ∂ = - ∂ ∂ ∂ (A7)
Using Eq.(A2) at the macroscale (REV) we get for 2 1 M w ≪ : ............................................................................................................................ 27 

2 2 s 3 2 0 s 3 0 2 M M f f s s M w M w t M t M t e ζ µ µ µ µ ρ ρ ∂ ∂ ∂ - = - ∂ ≈ ∂ ∂ (A8) or 3 2 2 M f s e w t t ζ µ ρ µ ρ ζ ∂ ∂ ∂ ≈ - ∂ ( 

Figure 1 .

 1 Figure 1. Positive feedback process due to dissolution and solid skeleton damage (e.g. intergranular fracturing, breakage of the porous network, matrix cracking, grain-matrix debonding etc.)

(

  

  characteristic internal length and REV ℓ is the size of the REV in the z direction. Note that if the mass fraction is homogeneous all over the REV,

  equal to an integer satisfying the zero fluid flux and reaction evolution at the boundary 2 z L = ± , and s is the growth coefficient of the perturbation (Lyapunov exponent). 0 s > means local instability.

  Consequently, Λ is positive and cr C is negative. Λ expresses the increase of the effective compressive stress because of compaction (see Eq.(17)). contraction of the elastic domain (chemical softening) because of dissolution.

  ℓ ) resulting in a compaction band of finite thickness. This will be further investigated in the next paragraphs. Notice that in the absence of mechanical the condition derived by[START_REF] Issen | Conditions for compaction bands in porous rock[END_REF].

Figure 4 .

 4 Figure 4. Modified Cam-clay model with chemical softening. Compression negative. CSL stands for the critical state line, which is assumed constant.

  Figure5and Figure6show the dependency of Ξ on the

  is impossible. According to Figure6, in the case of layered materials, compaction bands would preferentially develop in the more porous layers.

Figure 7 ,

 7 Figure 7, Figure 8 and Figure 9 show the region of instability in the q p plane for various values of the grain damage coefficient, a , for 2 0 h w = and for 0.25 n = . If at a certain time the stress state in the q-p plane is inside this instability region then compaction bands instabilities are triggered. Notice that because of the strong chemo-mechanical coupling of the proposed model, the instability manifold is larger than the instability manifold defined by the Issen & Rudnicki

Figure 5 .

 5 Figure 5. Tendency for compaction bands for 0.25 n =. The more crushable the grains are, i.e.

Figure 7 .Figure 8 .

 78 Figure 7. Instability region (shaded) for compaction bands under oedometric conditions for 3 10 a -= ( 200 Ξ = ). The points (in blue) represent the Issen & Rudnicki criterion for compaction band instabilities. Different yield surfaces are drawn for different levels of chemical degradation ζ .

Figure 9 .

 9 Figure 9. Instability region (shaded) for compaction bands under oedometric conditions for 1 a =

Figure 10 .

 10 Figure 10. Instability growth coefficient s in terms of the perturbation wavelength λ for 0 c = ℓ . The growth coefficient is positive and the system is unstable.

  )). For example, assuming, that the REV has a The size of the REV is rather a statistical quantity and depends on the material at hand. For the aforementioned characteristic length, the linear stability analysis shows that the perturbation that travels fastest has a wave length equal to approximately max 160 λ = grains (Figure11) leading to a thickness of 80 grains for the compaction band ( derived compaction band thickness refers to the compressive part of the perturbation which is half of the wavelength.

Figure 13 .

 13 Figure 13. Dominant wave length (wave length selection) in terms of the grain damage parameter a . As the grains become less crushable, max λ tends to infinity and therefore the

Figure 14 .

 14 Figure 14. Dominant wave length (wave length selection) in terms of the grain damage parameter a for various values of the dissolution rate ( k * in m/s). The faster the reaction is the narrower the compaction band zone is.

  A to point B the specific surface of the grains is smoothly increased as microcracking, debonding and grain crushing take place (homogeneous accumulation of plastic deformations, Eq.(19)). Assuming for simplicity that B are localized into a zone of finite thickness (Eq.(42)) and excessive grain damage occurs (onset of instability -compaction band formation).

Figure 15 .

 15 Figure 15. Instability region (shaded) for compaction bands under oedometric conditions for a sandstone at 4 km depth. Different yield surfaces are drawn for different levels of chemical degradation, ζ . The stress path 1 represents the elastic loading of the material under oedometric conditions, while the stress path 2 represents the path that the material follows after yielding.

  3.2, these mechanisms are essentially taken into account in the proposed model through the hyperbolic fit of the evolution of the effective grain size with the mechanical energy input into the system (Eqs. (

.

  The instability region, the elastic and plastic oedometric stress paths as well as the initial stress state (Point A) are shown in Figure16. Following the same reasoning as in the previous case study, a CO 2 solution is injected in the rock mass. The rock dissolves and its mechanical strength diminishes (open fluid flow conditions)to yield and a homogeneous plastic strain field is developed. This phase of deformation under constant applied loading (i.e. the overburden) corresponds to the creep behavior that is observed due to CO 2 injection[START_REF] Le Guen | Enhanced deformation of limestone and sandstone in the presence of high P co 2 fluids[END_REF][START_REF] Liteanu | Influence of pore fluid salt content on compaction creep of calcite aggregates in the presence of supercritical CO2[END_REF][START_REF] Rutqvist | The Geomechanics of CO2 Storage in Deep Sedimentary Formations[END_REF]. At point B (Figure16formed. Again the minimum thickness (or spacing) of the compaction bands is equal to c πℓ (Eq.(42)), but this can be different depending on the stress path, the chemo-mechanical parameters and the nonlinear behavior of the system in the post bifurcation regime (mechanical softening).

  damage was not considered in the present form of the proposed chemo-poromechanical model. The stability of the system is studied through a linear stability analysis, which revealed the critical parameters for which compaction bands may occur in quartz-and carbonatebased rocks. Porosity and grain damage sensitivity (parameter a ) are important parameters that considerably influence the triggering of compaction band instabilities due to dissolution. For a specific rock, the determination of the exact value of the grain damage sensitivity parameter is possible and may include classical mechanical tests, grain-size analyses and/or microstructural observations and measurements (e.g. X-ray tomography, acoustic emissions). The other parameters of the model (elastic constants, yield surface, chemical softening factor and reaction kinetics) can also be determined experimentally.
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Table 1 .

 1 Indicative material properties of the sandstone.

	Quantity	Value	Dimensionless value
	Hydraulic diffusivity, hy c	2 10 -3 m 2 s -1	6.25 10 11
	Grain diameter, 50 0 D	0.1 mm	1
	Effective grain surface area to volume ratio, S	50 mm -1	1
	Bulk modulus, K	10 GPa	100
	Shear modulus, G	7.5 GPa	75
	Porosity, n	0,20	-
	CSL slope, M	1	-
	Initial yield stress, 0 p′	60 MPa	0.60
	Residual yield stress, R p′	15 MPa	0.15
	Chemical Softening exponent, κ	2	-
	Grain damage parameter, a	0.5 MPa	0.005
	3 µ µ	2	0,6	-
	Fluid density, f ρ	1 g cm -3	1
	Solid density, s ρ	2.65 g cm -3	2.65
	Dissolution rate, k	10	

Table 2 .

 2 Indicative material properties of a carbonate grainstone.

	Quantity	Value	Dimensionless value
	Hydraulic diffusivity, hy c	10 -3 m 2 s -1	3 10 5
	Grain diameter, 50 0 D	0.2 mm	1
	Effective grain surface area to volume ratio, S	25 mm -1	1
	Bulk modulus, K	5 GPa	110
	Shear modulus, G	5 GPa	110
	Porosity, n	0.25	-
	CSL slope, M	0.9	-
	Initial yield stress, 0 p′	30 MPa	0.67
	p′ Residual yield stress, R Chemical Softening exponent, κ	0 MPa 1	0 -
	Grain crushing parameter, a	1 MPa	0.011
	3 µ µ	2	0.62	-
	Fluid density, f ρ	1 g cm -3	1
	Solid density, s ρ	2.65 g cm -3	2.65

vertical effective stress leads to a fast increase of the pore pressure inside the compaction band in order to equilibrate the total applied vertical stress, which is assumed constant. Therefore, the role of hydraulic diffusivity is crucial, as a more permeable material would need a larger zone in order for the pore pressure to rapidly increase and equilibrate the constant total vertical stress. On the contrary, in a less permeable material, this zone will be narrower leading to thinner compaction bands. Moreover, the faster the dissolution reaction is, the more rapidly the pore pressure has to build-up in order to equilibrate the total vertical stress. Consequently, for a given value of the hydraulic diffusivity parameter, the chemical softening rate controls the thickness of the localization zone.

The chemical softening rate depends on the grain damage parameter a and on the dissolution rate k * . Figure 13 shows the dependency of the compaction band thickness on the grain damage parameter for the numerical example presented in the previous section. As expected, stronger grain damage (i.e. lower values of parameter a ) leads to thinner bands (a higher specific surface leads to a higher chemical softening rate). It should be emphasized, though, that this is only a chemical softening effect and that the possible introduction of additional mechanical softening through grain breakage would enhance this trend. Similarly, in Figure 14 we present the dominant wavelength in terms of the grain damage parameter for various orders of magnitude of the dissolution rate coefficient. We observe that a faster reaction rate leads to a narrower compaction band at the onset of the localization. This is due to the fact that higher values of k * increase the chemical softening rate (Eq.( 22) and ( 23)). Alternatively, the impact of the dissolution rate to strain localization can be investigated through the non-dimensional expression of the hydraulic diffusivity parameter. According to equation ( 27) by increasing the dissolution rate (faster reaction) the non-dimensional hydraulic diffusivity decreases, which leads to thinner compaction bands as discussed above (Figure 12). These mathematical results have to be experimentally verified. In absence of experimental evidence, one could however remark that it is consistent with what is observed for shear bands where the localization zone decreases with increasing mechanical or chemical softening [START_REF] Vardoulakis | Bifurcation Analysis in Geomechanics[END_REF][START_REF] Sulem | Stability analysis of undrained adiabatic shearing of a rock layer with Cosserat microstructure[END_REF][START_REF] Brantut | Strain Localization and Slip Instability in a Strain-Rate Hardening, Chemically Weakening Material[END_REF][START_REF] Veveakis | Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms[END_REF][START_REF] Veveakis | Failure in shear bands for granular materials: thermo-hydro-chemo-mechanical effects[END_REF]. In the present case, the dissolution increases the chemical softening of the material.

The deformation rate is linked to the dissolution rate so that a faster dissolution induces a higher softening rate. and will be pursued further in a future work by integrating the non-linear chemo-poro-mechanical system of equations.

Finally, two scenarios of chemically induced compaction band instabilities were investigated.

The first one concerns the water flooding of a quartzic rock reservoir, while the second one concerns a carbonate grainstone in which a CO 2 solution is injected. The effect of open and closed flow conditions was discussed, the instability regions were determined and a rough estimation of the critical time for compaction band triggering was made. Two phases are distinguished. The first phase is characterized by a creep behavior of the rock, while in the second phase compaction band instabilities are triggered. The present study focused on pure compaction bands, but the concept of the present model can be extended to other types of deformation bands, such as shear bands. The formation of deformation bands in reservoirs due to chemical processes and other non-linearities can be related to important changes in permeability, to the creation of reinforced zones (compactive behavior) or, in the contrary, to the creation of new faults and fractures (shear behavior). However, in order to quantify the implications of such phenomena to the sustainability of reservoir projects, large scale simulations are necessary that will take into account the aforementioned phenomena and the precise injection characteristics.
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Appendix

Reaction kinetics in terms of mass fraction and specific area

At the microscale the mass fraction is: