Thick periodic plates homogenization, application to sandwich panels including chevron folded core

Arthur Lebée, Karam Sab

Laboratoire Navier (UMR CNRS 8205) Université Paris-Est - Ecole des Ponts ParisTech - IFSTTAR

May 10, 2011

A. Lebée (Laboratoire Navier)

Shear forces effects in heterogeneous plates?

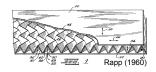
- Raises many difficulties in laminated plates:
 - wrong shear deflection (transverse shear correction factors in laminates)
 - no accurate estimate of local stress generated ("free faces" effect)
- Almost no simple method when the plate is periodic
- \Rightarrow apply a homogenization scheme derived from a new plate theory (Lebée and Sab, 2010) to a sandwich panel including a folded core

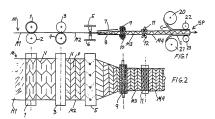
Folded Cores for sandwich panels The classical approach for sandwich panels Basics of the Bending-Gradient theory (Lebée and Sab, 2010) Application to sandwich panels

Folded Cores for sandwich panels The classical approach for sandwich panels Basics of the Bending-Gradient theory (Lebée and Sab, 2010) Application to sandwich panels

Folded Cores for sandwich panels

Folded Cores for sandwich panels





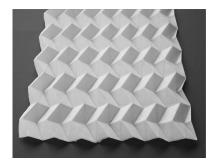
A cheaper substitute to honeycomb:

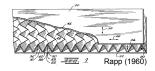
- Many possible materials (if foldable...: paper, metals...)
- Continuous process (Kehrle, 2004)

Navier

Folded Cores for sandwich panels

Folded Cores for sandwich panels





A cheaper substitute to honeycomb:

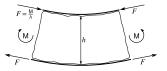
- Many possible materials (if foldable...: paper, metals...)
- Continuous process (Kehrle, 2004)
- ⇒ the chevron pattern is investigated: assessment?

Folded Cores for sandwich panels The classical approach for sandwich panels Sandwich panel simplified model Closed-form bounds for shear forces stiffness Finite Element bounds for shear forces stiffness Basics of the Bending-Gradient theory (Lebée and Sab, 2010) Application to sandwich panels

Navier

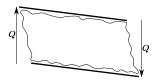
Folded Cores for sandwich panels The classical approach for sandwich panels Sandwich panel simplified model Closed-form bounds for shear forces stiffness Finite Element bounds for shear forces stiffness Basics of the Bending-Gradient theory (Lebée and Sab, 2010) Application to sandwich panels

- Relevant loadings
 - Skins involved in bending:
 - traction/compression of the skins

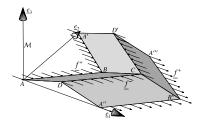


- Relevant loadings
 - Skins involved in bending:
 - traction/compression of the skins
 - Core involved with shear forces: quantity of interest

- Relevant loadings
 - Skins involved in bending:
 - traction/compression of the skins
 - Core involved with shear forces: quantity of interest
- Implicit contrast assumption:
 "skins are stiff compared to the core"



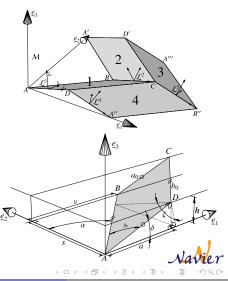
- Relevant loadings
 - Skins involved in bending:
 - traction/compression of the skins
 - Core involved with shear forces: quantity of interest
- Implicit contrast assumption:
 "skins are stiff compared to the core"
- Bounds from Kelsey et al. (1958) for shear forces stiffness
 - Apply uniform stress/displacement on a unit cell of the core, replacing skins.



Folded Cores for sandwich panels The classical approach for sandwich panels Sandwich panel simplified model Closed-form bounds for shear forces stiffness Finite Element bounds for shear forces stiffness Basics of the Bending-Gradient theory (Lebée and Sab, 2010) Application to sandwich panels

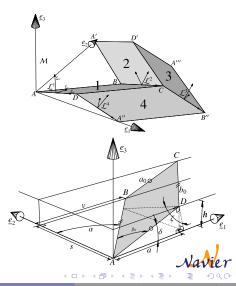
Closed-form bounds for shear forces stiffness

- Parameters (pattern reduced to a tilted parallelogram):
 - Facet thickness t_f
 - ► Shape ratio a₀/b₀
 - ▶ 2 orientation angles δ et ζ



Closed-form bounds for shear forces stiffness

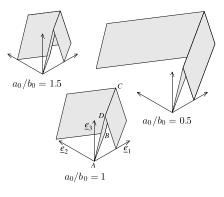
- Parameters (pattern reduced to a tilted parallelogram):
 - Facet thickness t_f
 - Shape ratio a₀/b₀
 - ▶ 2 orientation angles δ et ζ
- Assumptions:
 - Plane-stress in facets
 - Piecewise uniform fields



Closed-form bounds for shear forces stiffness Results

- Manufactured cores (Nguyen et al., 2005):
 - $\delta = 72^{\circ}$ and $\zeta = 34^{\circ}$
 - Shape ratio: $0.5 < a_0/b_0 < 1.5$
- Normalized bounds $\mathcal{E} = F_{11}/\rho G_m h$:
 - $\blacktriangleright~0.23 < \mathcal{E} < 0.71$: very loose

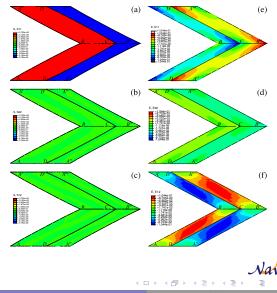
 $0 < \mathcal{E} < 1$ $ho G_m h$: Voigt upper bound

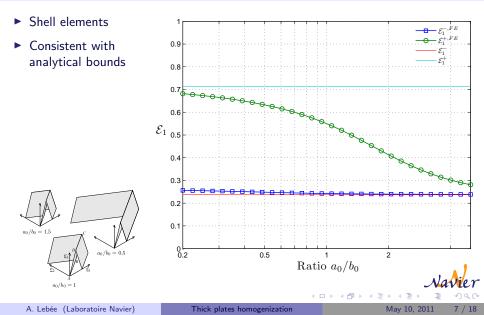


May 10, 2011 6 / 18

Folded Cores for sandwich panels The classical approach for sandwich panels Sandwich panel simplified model Closed-form bounds for shear forces stiffness Finite Element bounds for shear forces stiffness Basics of the Bending-Gradient theory (Lebée and Sab, 2010) Application to sandwich panels

Shell elements

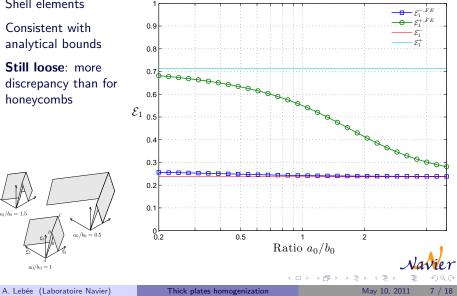




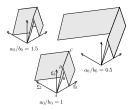
Shell elements

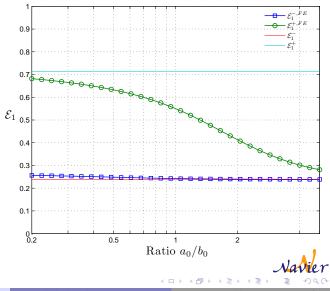
 $a_0/b_0 = 1.5$

- Consistent with analytical bounds
- ► Still loose: more discrepancy than for honeycombs



- Shell elements
- Consistent with analytical bounds
- Still loose: more discrepancy than for honeycombs
- Engineers often refer to the upper bound (rigid skins)





Folded Cores for sandwich panels The classical approach for sandwich panels Basics of the Bending-Gradient theory (Lebée and Sab, 2010) From 3D to a plate model Reissner's approach for a homogeneous plate The Bending-Gradient plate theory Application to sandwich panels

Folded Cores for sandwich panels The classical approach for sandwich panels Basics of the Bending-Gradient theory (Lebée and Sab, 2010) From 3D to a plate model Reissner's approach for a homogeneous plate The Bending-Gradient plate theory Application to sandwich panels

The 3D problem

$$\begin{cases} \sigma_{ij,j} = 0 \quad \text{on } \Omega. \\ \sigma_{ij} = \mathcal{C}_{ijkl}(x_3)\varepsilon_{kl} \quad \text{on } \Omega. \\ \sigma_{i3} = T_i^{\pm} \quad \text{on } \omega^{\pm}. \\ \varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i}) \quad \text{on } \Omega. \\ u_i = 0 \quad \text{on } \partial\omega \times] - h/2, h/2[\end{cases}$$

- Clamped plate
- Only out-of-plane loading, per unit surface

$$T^{\pm}=rac{p_3}{2}oldsymbol{e}_3$$

$$\widehat{\sigma}^{3D} = \widetilde{\mathcal{C}}(x_3) : \widetilde{\varepsilon}^{3D}$$

١õ

May 10, 2011 8 / 18

Plate stress and equilibrium equations

Plate stresses

$$\begin{cases} \mathsf{M}_{\alpha\beta}\left(x_{1}, x_{2}\right) = \int_{-\frac{h}{2}}^{\frac{h}{2}} x_{3} \sigma_{\alpha\beta} dx_{3} \\ Q_{\alpha}\left(x_{1}, x_{2}\right) = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{\alpha3} dx_{3} \end{cases}$$

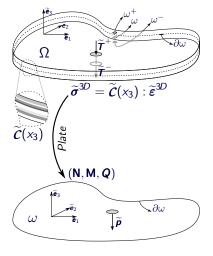


Plate stress and equilibrium equations

Plate stresses

4

$$\begin{cases} \mathsf{M}_{\alpha\beta}\left(x_{1}, x_{2}\right) = \int_{-\frac{h}{2}}^{\frac{h}{2}} x_{3} \sigma_{\alpha\beta} dx_{3} \\ Q_{\alpha}\left(x_{1}, x_{2}\right) = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{\alpha3} dx_{3} \end{cases}$$

Equilibrium equations:

$$\begin{cases} \int_{-\frac{h}{2}}^{\frac{\mu}{2}} \sigma_{\alpha3,3} dx_{3} \\ \int_{-\frac{h}{2}}^{\frac{h}{2}} x_{3} \sigma_{\alpha\beta,\beta} dx_{3} \end{cases} \begin{cases} Q_{\alpha,\alpha} + p_{3} = 0 \\ M_{\alpha\beta,\beta} - Q_{\alpha} = 0 \end{cases}$$

Boussinesq (1871); Mindlin (1951)...

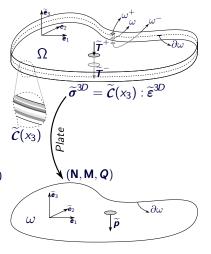


Plate stress and equilibrium equations

Plate stresses

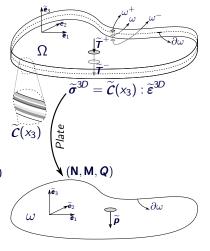
$$\begin{cases} \mathsf{M}_{\alpha\beta}\left(x_{1}, x_{2}\right) = \int_{-\frac{h}{2}}^{\frac{h}{2}} x_{3} \sigma_{\alpha\beta} dx_{3} \\ Q_{\alpha}\left(x_{1}, x_{2}\right) = \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{\alpha3} dx_{3} \end{cases}$$

Equilibrium equations:

$$\begin{cases} \int_{-\frac{h}{2}}^{\frac{\mu}{2}} \sigma_{\alpha3,3} dx_{3} \\ \int_{-\frac{h}{2}}^{\frac{h}{2}} x_{3} \sigma_{\alpha\beta,\beta} dx_{3} \end{cases} \begin{cases} Q_{\alpha,\alpha} + p_{3} = 0 \\ M_{\alpha\beta,\beta} - Q_{\alpha} = 0 \end{cases}$$

Boussinesq (1871); Mindlin (1951)...

σ^(M): asymptotic expansion
 σ^(Q): ??



Folded Cores for sandwich panels The classical approach for sandwich panels Basics of the Bending-Gradient theory (Lebée and Sab, 2010) From 3D to a plate model Reissner's approach for a homogeneous plate The Bending-Gradient plate theory Application to sandwich panels

Reissner's approach for a homogeneous plate

• Bending stress fields (asymptotic expansion: $\varepsilon_{\alpha\beta} = x_3 \kappa_{\alpha\beta}$):

$$\sigma^{(\mathsf{M})} = rac{12 x_3}{h^3} \left(egin{matrix} \mathsf{M}_{11} \ \mathsf{M}_{12} \ \mathsf{0} \ \mathsf{M}_{12} \ \mathsf{M}_{22} \ \mathsf{0} \ \mathsf{0} \ \mathsf{0} \ \mathsf{0} \ \mathsf{0} \ \mathsf{0} \end{array}
ight)$$

Image: A match a ma

Reissner's approach for a homogeneous plate

• Bending stress fields (asymptotic expansion: $\varepsilon_{\alpha\beta} = x_3 \kappa_{\alpha\beta}$):

$$\sigma^{(\mathsf{M})} = rac{12 x_3}{h^3} \left(egin{matrix} \mathsf{M}_{11} \ \mathsf{M}_{12} \ \mathsf{0} \ \mathsf{M}_{12} \ \mathsf{M}_{22} \ \mathsf{0} \ \mathsf{0} \ \mathsf{0} \ \mathsf{0} \ \mathsf{0} \ \mathsf{0} \end{array}
ight)$$

Volume force related to shear forces:

$$\boldsymbol{\sigma}_{ij,j}^{(\mathsf{M})} = \frac{12x_3}{h^3} \begin{pmatrix} \mathsf{M}_{1\alpha,\alpha} \\ \mathsf{M}_{2\alpha,\alpha} \\ 0 \end{pmatrix} = \frac{12x_3}{h^3} \begin{pmatrix} \mathsf{Q}_1 \\ \mathsf{Q}_2 \\ 0 \end{pmatrix} = f_i^{(Q)}$$

A. Lebée (Laboratoire Navier)

Image: A match a ma

Reissner's approach for a homogeneous plate

• Bending stress fields (asymptotic expansion: $\varepsilon_{\alpha\beta} = x_3 \kappa_{\alpha\beta}$):

$$\sigma^{(\mathsf{M})} = rac{12 x_3}{h^3} \left(egin{matrix} \mathsf{M}_{11} \ \mathsf{M}_{12} \ \mathsf{0} \ \mathsf{M}_{12} \ \mathsf{M}_{22} \ \mathsf{0} \ \mathsf{0} \ \mathsf{0} \ \mathsf{0} \ \mathsf{0} \ \mathsf{0} \end{array}
ight)$$

Volume force related to shear forces:

$$\boldsymbol{\sigma}_{ij,j}^{(\mathsf{M})} = \frac{12x_3}{h^3} \begin{pmatrix} \mathsf{M}_{1\alpha,\alpha} \\ \mathsf{M}_{2\alpha,\alpha} \\ 0 \end{pmatrix} = \frac{12x_3}{h^3} \begin{pmatrix} \mathsf{Q}_1 \\ \mathsf{Q}_2 \\ 0 \end{pmatrix} = f_i^{(Q)}$$

Transverse shear unit-load problem (Reissner, 1945):

$$\begin{cases} \sigma_{ij,j}^{(Q)} + f_i^{(Q)} = 0\\ \sigma_{i3}^{(Q)} = 0 \text{ on } x_3 = \pm h/2 \end{cases} \Rightarrow \sigma_{ij}^{(Q)} = \frac{3}{2h} \left(1 - \frac{4x_3^2}{h^2} \right) \begin{pmatrix} 0 & 0 & Q_1\\ 0 & 0 & Q_2\\ Q_1 & Q_2 & 0 \end{pmatrix}$$

Folded Cores for sandwich panels The classical approach for sandwich panels Basics of the Bending-Gradient theory (Lebée and Sab, 2010) From 3D to a plate model Reissner's approach for a homogeneous plate The Bending-Gradient plate theory Application to sandwich panels

Revisiting Reissner's approach

Building the body force imposes the introduction of the full bending gradient:

 $f^{(Q)}$ becomes $f^{(R)}$, where: $R_{\alpha\beta\gamma} = M_{\alpha\beta,\gamma}$

Image: A match a ma

Revisiting Reissner's approach

Building the body force imposes the introduction of the full bending gradient:

 $f^{(Q)}$ becomes $f^{(R)}$, where: $R_{\alpha\beta\gamma} = M_{\alpha\beta,\gamma}$

► We define the full bending gradient local stress field:

 $oldsymbol{\sigma}^{BG} = oldsymbol{\sigma}^{(\mathsf{N})} + oldsymbol{\sigma}^{(\mathsf{M})} + oldsymbol{\sigma}^{(\mathsf{R})}$

• • • • • • • • • • • • •

Revisiting Reissner's approach

Building the body force imposes the introduction of the full bending gradient:

 $f^{(Q)}$ becomes $f^{(R)}$, where: $R_{\alpha\beta\gamma} = M_{\alpha\beta,\gamma}$

We define the full bending gradient local stress field:

 $\sigma^{BG} = \sigma^{(\mathsf{N})} + \sigma^{(\mathsf{M})} + \sigma^{(\mathsf{R})}$

Mechanical meaning of R

$$\left\{ \begin{array}{l} Q_1 = R_{111} + R_{122} = M_{11,1} + M_{12,2} \\ Q_2 = R_{121} + R_{222} = M_{21,1} + M_{22,2} \end{array} \right.$$

Thus:

$$\begin{split} &R_{111} = M_{11,1} \text{: Cylindrical Bending part of } Q_1 \\ &R_{221} = M_{22,1} \text{: Pure warping} \\ &R_{121} = M_{12,1} \text{: Torsion part of } Q_2 \\ &R_{112} = M_{11,2} \text{: Pure warping} \\ &R_{222} = M_{22,2} \text{: Cylindrical Bending part of } Q_2 \\ &R_{122} = M_{12,2} \text{: Torsion part of } Q_1 \end{split}$$

< ロト < 同ト < ヨト < ヨト

Major features of the Bending-Gradient theory



The exact extension of RM model to laminated plates:

- ▶ If the plate is homogeneous, BG is turned into RM model
- The restriction of the BG to a RM model is not unique (except if homogeneous)

► A successful application to highly anisotropic laminated plates

- Excellent estimate of transverse shear fields and deflection
- Local fields converge with slenderness (St Venant Solution)

Contents

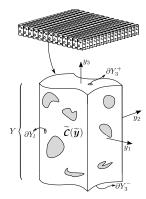
Folded Cores for sandwich panels The classical approach for sandwich panels Basics of the Bending-Gradient theory (Lebée and Sab, 2010) Application to sandwich panels Extension to periodic plates Justification of the classical approach for sandwich panels Application to the chevron pattern

Contents

Folded Cores for sandwich panels The classical approach for sandwich panels Basics of the Bending-Gradient theory (Lebée and Sab, 2010) Application to sandwich panels Extension to periodic plates Justification of the classical approach for sandwich panels Application to the chevron pattern

Extension to periodic plates

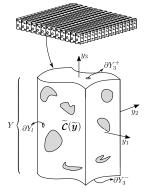
Unit-cell and average estimates



Extension to periodic plates

- Unit-cell and average estimates
- Bending auxiliary problem (Caillerie, 1984)

$$\mathcal{P}^{(\kappa)} \begin{cases} \widetilde{\boldsymbol{\sigma}}^{(\kappa)} \cdot \widetilde{\boldsymbol{\nabla}} = 0\\ \widetilde{\boldsymbol{\sigma}}^{(\kappa)} = \widetilde{\boldsymbol{C}} \left(\widetilde{\boldsymbol{y}} \right) : \widetilde{\boldsymbol{\varepsilon}}^{(\kappa)}\\ \widetilde{\boldsymbol{\varepsilon}}^{(\kappa)} = y_3 \widetilde{\boldsymbol{\kappa}} + \widetilde{\boldsymbol{\nabla}} \otimes^s \widetilde{\boldsymbol{u}}^{per}\\ \widetilde{\boldsymbol{\sigma}}^{(\kappa)} \cdot \widetilde{\boldsymbol{e}}_3 = 0 \text{ on free faces } \partial Y_3^{\pm}\\ \widetilde{\boldsymbol{\sigma}}^{(\kappa)} \cdot \widetilde{\boldsymbol{n}} \text{ skew-periodic on lateral edge } \partial Y_l\\ \widetilde{\boldsymbol{u}}^{per}(\widetilde{\boldsymbol{y}}) \left(y_1, y_2 \right) \text{-periodic on lateral edge } \partial Y_l \end{cases}$$



 \rightarrow gives:

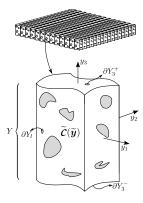
Localization related to curvature $\pmb{\kappa}$ Bending compliance tensor: $\pmb{\textit{d}}$

ightarrow enable the derivation of $m{f}^{(\mathtt{R})}$

Extension to periodic plates

- Unit-cell and average estimates
- Bending auxiliary problem (Caillerie, 1984)
- Shear auxiliary problem

$$\mathcal{P}^{(\mathsf{R})} \begin{cases} \widetilde{\boldsymbol{\sigma}}^{(\mathsf{R})} \cdot \widetilde{\boldsymbol{\nabla}} + \widetilde{\boldsymbol{f}}^{(\mathsf{R})}(\widetilde{\boldsymbol{y}}) = 0 \\ \widetilde{\boldsymbol{\sigma}}^{(\mathsf{R})} = \widetilde{\boldsymbol{\mathcal{C}}}(\widetilde{\boldsymbol{y}}) : \left(\widetilde{\boldsymbol{\nabla}} \otimes^{s} \widetilde{\boldsymbol{u}}^{(\mathsf{R})}\right) \\ \widetilde{\boldsymbol{\sigma}}^{(\mathsf{R})} \cdot \widetilde{\boldsymbol{e}}_{3} = 0 \text{ on free faces } \partial Y_{3}^{\pm} \\ \widetilde{\boldsymbol{\sigma}}^{(\mathsf{R})} \cdot \widetilde{\boldsymbol{n}} \text{ skew-periodic on lateral edge } \partial Y_{l} \\ \widetilde{\boldsymbol{u}}^{(\mathsf{R})}(\widetilde{\boldsymbol{y}}) (y_{1}, y_{2}) \text{-periodic on lateral edge } \partial Y_{l} \end{cases}$$



 \rightarrow gives:

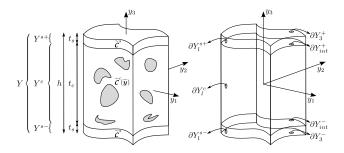
Localization related to ${\bf R}$ Shear compliance tensor: ${\rm I\!\!I}$

Contents

Folded Cores for sandwich panels The classical approach for sandwich panels Basics of the Bending-Gradient theory (Lebée and Sab, 2010) Application to sandwich panels Extension to periodic plates Justification of the classical approach for sandwich panels Application to the chevron pattern

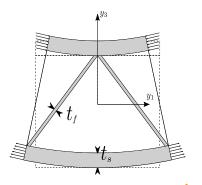
Justification of the classical approach (sandwich theory)

 Divide in 3 layers (homogeneous skins and heterogeneous core)



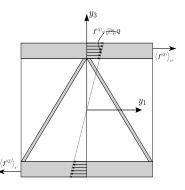
Justification of the classical approach (sandwich theory)

- Divide in 3 layers (homogeneous skins and heterogeneous core)
- Bending auxiliary problem
 - Contrast assumption $\Leftrightarrow t_f \ll t_s$:
 - $ightarrow t_s/t_f$ Contrast ratio
- $\Rightarrow \ {\sf Skins \ under \ traction}/{\sf compression}$
- \Rightarrow Core not involved in Bending stiffness



Justification of the classical approach (sandwich theory)

- Divide in 3 layers (homogeneous skins and heterogeneous core)
- Bending auxiliary problem
- Shear auxiliary problem
 - $\overbrace{\boldsymbol{f}}^{(R)} \text{ becomes } \widetilde{\boldsymbol{f}}^{(Q)}$
 - The BG is degenerated into RM model $\widetilde{\mathbf{f}}^{(Q)}$
 - confirms the classical intuition
 - Proof of the bounds from Kelsey et al. (1958)

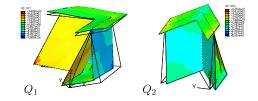


Contents

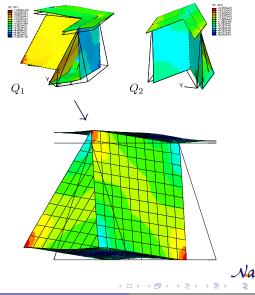
Folded Cores for sandwich panels The classical approach for sandwich panels Basics of the Bending-Gradient theory (Lebée and Sab, 2010) Application to sandwich panels Extension to periodic plates Justification of the classical approach for sandwich panels Application to the chevron pattern

Shear forces localization $\sigma^{(Q)}$

 Overall shearing of the core



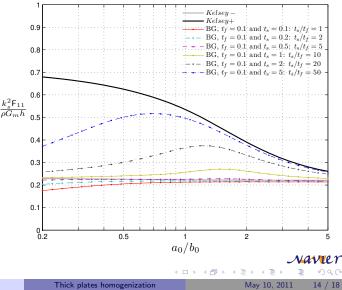
- Shear forces localization $\sigma^{(Q)}$
 - Overall shearing of the core
 - Out-of-plane skins distorsion



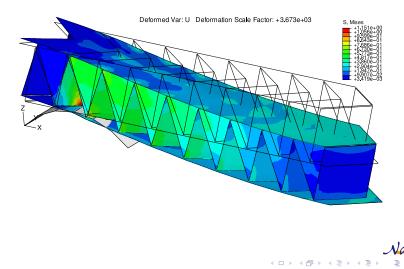
Shear forces localization $\sigma^{(Q)}$

- Overall shearing of the core
- Out-of-plane skins distorsion

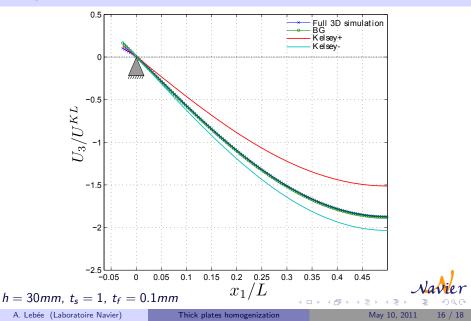
Critically influence shear force stiffness



Comparaison with full 3D simulation



Comparaison with full 3D simulation

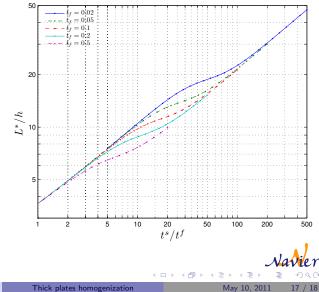


Is skin distorsion really critical?

mid-span deflection:

$$U_3 = U_3^{KL} \left(1 + \left(\frac{L^*}{L}\right)^2\right)$$

where $L^* = \pi \sqrt{\frac{\mathcal{D}_{1111}}{F_{11}}}$



A. Lebée (Laboratoire Navier)

Is skin distorsion really critical?

mid-span deflection:

$$U_3 = U_3^{KL} \left(1 + \left(\frac{L^*}{L} \right)^2 \right)$$

where
$$L^* = \pi \sqrt{\frac{\mathcal{D}_{1111}}{\mathsf{F}_{11}}}$$

 The shift "stiff/compliant skins" occurs for usual contrast ratios:

$$\frac{t_s}{t_f} = 20$$
 and $\frac{L}{h} = 20$

$$\Rightarrow 25\% < \left(rac{L^*}{L}
ight)^2 < 60\%$$

50 20 L^*/h 10 2 5 10 20 50 100 200 500 t^s/t^f

- ► Analytical bounds from Kelsey et al. (1958)
 - usefull (optimization, preliminary design)
 - but limited (loose bounds): neglects core/skin interaction

- ► Analytical bounds from Kelsey et al. (1958)
 - usefull (optimization, preliminary design)
 - but limited (loose bounds): neglects core/skin interaction
- ► Application of the Bending-Gradient theory to sandwich panels
 - Quantification of the contrast assumption
 - The Bending-Gradient is turned into a Reissner-Mindlin
 - Proof of Kelsey et al. (1958) bounds

- ► Analytical bounds from Kelsey et al. (1958)
 - usefull (optimization, preliminary design)
 - but limited (loose bounds): neglects core/skin interaction
- ► Application of the Bending-Gradient theory to sandwich panels
 - Quantification of the contrast assumption
 - The Bending-Gradient is turned into a Reissner-Mindlin
 - Proof of Kelsey et al. (1958) bounds
- Application to the chevron pattern
 - Brings out the critical effect of skin/core interaction

- ► Analytical bounds from Kelsey et al. (1958)
 - usefull (optimization, preliminary design)
 - but limited (loose bounds): neglects core/skin interaction
- ► Application of the Bending-Gradient theory to sandwich panels
 - Quantification of the contrast assumption
 - The Bending-Gradient is turned into a Reissner-Mindlin
 - Proof of Kelsey et al. (1958) bounds
- Application to the chevron pattern
 - Brings out the critical effect of skin/core interaction
- Outlooks
 - Strength analysis of sandwich panels under shear forces?