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Shear forces effects in heterogeneous plates?

I Raises many difficulties in laminated plates:
I wrong shear deflection (transverse shear correction factors in laminates)
I no accurate estimate of local stress generated (“free faces“ effect)

I Almost no simple method when the plate is periodic

⇒ apply a homogenization scheme derived from a new plate theory
(Lebée and Sab, 2010) to a sandwich panel including a folded core
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Folded Cores for sandwich panels

Folded Cores for sandwich panels

Rapp (1960)

A cheaper substitute to honeycomb:

I Many possible materials
(if foldable...: paper, metals...)

I Continuous process
(Kehrle, 2004)

⇒ the chevron pattern is
investigated: assessment?
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The classical approach for sandwich panels simplified model

Sandwich panel simplified model

I Relevant loadings
I Skins involved in bending:

- traction/compression of the skins

I Core involved with shear forces:
quantity of interest

I Implicit contrast assumption:

I Bounds from Kelsey et al. (1958) for
shear forces stiffness

I Apply uniform stress/displacement on a
unit cell of the core, replacing skins.
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The classical approach for sandwich panels Closed-form bounds

Closed-form bounds for shear forces stiffness

I Parameters (pattern reduced to a
tilted parallelogram):

I Facet thickness tf
I Shape ratio a0/b0

I 2 orientation angles δ et ζ

I Assumptions:

I Plane-stress in facets
I Piecewise uniform fields
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The classical approach for sandwich panels Closed-form bounds

Closed-form bounds for shear forces stiffness
Results

I Manufactured cores (Nguyen et al.,
2005):

I δ = 72◦ and ζ = 34◦

I Shape ratio: 0.5 < a0/b0 < 1.5

I Normalized bounds E = F11/ρGmh:

I 0.23 < E < 0.71: very loose

0 < E < 1

ρGmh : Voigt upper bound
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The classical approach for sandwich panels Finite Element bounds

Finite Element bounds for shear forces stiffness

I Shell elements

I Consistent with
analytical bounds

I Still loose: more
discrepancy than for
honeycombs

I Engineers often refer
to the upper bound
(rigid skins)
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Finite Element bounds for shear forces stiffness

I Shell elements
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discrepancy than for
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Basics of the Bending-Gradient theory (Lebée and Sab, 2010) From 3D to a plate model

The 3D problem



σij,j = 0 on Ω.

σij = Cijkl(x3)εkl on Ω.

σi3 = T±
i on ω±.

εij =
1

2
(ui,j + uj,i ) on Ω.

ui = 0 on ∂ω×]− h/2, h/2[

I Laminated plate

I Clamped plate

I Only out-of-plane loading, per
unit surface

TTT± =
p3

2
eee3

C̃CC(x3)

Ω T̃TT
+

T̃TT
−

ω+

ω ω−

σ̃σσ3D = C̃CC(x3) : ε̃εε3D

∂ω

ẽee3

ẽee2

ẽee1
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Basics of the Bending-Gradient theory (Lebée and Sab, 2010) From 3D to a plate model

Plate stress and equilibrium equations

I Plate stresses
Mαβ (x1, x2) =

∫ h
2

− h
2

x3σαβdx3

Qα (x1, x2) =
∫ h

2

− h
2

σα3dx3

I Equilibrium equations:
∫ h

2

− h
2

σα3,3dx3∫ h
2

− h
2

x3σαβ,βdx3

⇒
{

Qα,α + p3 = 0

Mαβ,β − Qα = 0

Boussinesq (1871); Mindlin (1951)...

I σσσ(M): asymptotic expansion
σσσ(Q): ??

C̃CC(x3)

Ω T̃TT
+

T̃TT
−

ω+

ω ω−

σ̃σσ3D = C̃CC(x3) : ε̃εε3D

ω

ẽee3

ẽee2

ẽee1

P
la
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(NNN,MMM,QQQ)

∂ω

p̃pp

∂ω

ẽee3
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ẽee1
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Basics of the Bending-Gradient theory (Lebée and Sab, 2010) Reissner’s approach for a homogeneous plate

Reissner’s approach for a homogeneous plate

I Bending stress fields (asymptotic expansion: εαβ = x3καβ):

σσσ(M) =
12x3

h3

(
M11 M12 0
M12 M22 0

0 0 0

)

I Volume force related to shear forces:

σσσ
(M)
ij,j =

12x3

h3

(
M1α,α

M2α,α

0

)
=

12x3

h3

(
Q1

Q2
0

)
= f

(Q)
i

I Transverse shear unit-load problem (Reissner, 1945):{
σ

(Q)
ij ,j + f

(Q)
i = 0

σ
(Q)
i3 = 0 on x3 = ±h/2

⇒ σ
(Q)
ij =

3

2h

(
1− 4x2

3

h2

)(
0 0 Q1
0 0 Q2
Q1 Q2 0

)
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Basics of the Bending-Gradient theory (Lebée and Sab, 2010) The Bending-Gradient plate theory

Revisiting Reissner’s approach

I Building the body force imposes the introduction of the full bending
gradient:

f (Q) becomes f (R), where: Rαβγ = Mαβ,γ

I We define the full bending gradient local stress field:

σσσBG = σσσ(N) + σσσ(M) + σσσ(R)

I Mechanical meaning of RRR{
Q1 = R111 + R122 = M11,1 +M12,2

Q2 = R121 + R222 = M21,1 +M22,2

Thus:
R111 = M11,1: Cylindrical Bending part of Q1

R221 = M22,1: Pure warping

R121 = M12,1: Torsion part of Q2

R112 = M11,2: Pure warping

R222 = M22,2: Cylindrical Bending part of Q2

R122 = M12,2: Torsion part of Q1
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Basics of the Bending-Gradient theory (Lebée and Sab, 2010) The Bending-Gradient plate theory

Major features of the Bending-Gradient theory

I Enables the distinction between each component of Rαβγ :
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I The exact extension of RM model to laminated plates:
I If the plate is homogeneous, BG is turned into RM model
I The restriction of the BG to a RM model is not unique (except if

homogeneous)
I A successful application to highly anisotropic laminated plates

I Excellent estimate of transverse shear fields and deflection
I Local fields converge with slenderness (St Venant Solution)
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Application to sandwich panels Extension to periodic plates

Extension to periodic plates

I Unit-cell and average estimates

I Bending auxiliary problem (Caillerie, 1984)

I Shear auxiliary problem
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Application to sandwich panels Extension to periodic plates

Extension to periodic plates

I Unit-cell and average estimates

I Bending auxiliary problem (Caillerie, 1984)

P(κ)



σ̃σσ
(κ) · ∇̃∇∇ = 0

σ̃σσ
(κ) = C̃CC (ỹyy) : ε̃εε(κ)

ε̃εε
(κ) = y3κ̃κκ+ ∇̃∇∇⊗s ũuu

per

σ̃σσ
(κ) · ẽee3 = 0 on free faces ∂Y±

3

σ̃σσ
(κ) · ñnn skew-periodic on lateral edge ∂Yl

ũuu
per

(ỹyy) (y1, y2)-periodic on lateral edge ∂Yl

→ gives:

Localization related to curvature κκκ
Bending compliance tensor: ddd

→ enable the derivation of fff (R)

I Shear auxiliary problem
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I Unit-cell and average estimates

I Bending auxiliary problem (Caillerie, 1984)

I Shear auxiliary problem

P(R)
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(R)
)

σ̃σσ
(R) · ẽee3 = 0 on free faces ∂Y±

3
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(R) · ñnn skew-periodic on lateral edge ∂Yl
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(R)

(ỹyy) (y1, y2)-periodic on lateral edge ∂Yl

→ gives:

Localization related to RRR

Shear compliance tensor: fff
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Justification of the classical approach (sandwich theory)

I Divide in 3 layers
(homogeneous skins and heterogeneous core)

I Bending auxiliary problem
I Contrast assumption ⇔ tf � ts :
→ ts/tf Contrast ratio

⇒ Skins under traction/compression
⇒ Core not involved in Bending stiffness

I Shear auxiliary problem
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Justification of the classical approach (sandwich theory)

I Divide in 3 layers
(homogeneous skins and heterogeneous core)

I Bending auxiliary problem
I Shear auxiliary problem

I f̃ff
(R)

becomes f̃ff
(Q)

I The BG is degenerated into RM model

I f̃ff
(Q)

confirms the classical intuition
I Proof of the bounds from Kelsey et al. (1958)
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Comparaison with full 3D simulation
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Is skin distorsion really critical?

I mid-span deflection:

U3 = UKL
3

(
1 +

(
L∗

L

)2
)

where L∗ = π
√

D1111

F11

I The shift
“stiff/compliant skins“
occurs for usual contrast
ratios:
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