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CAPITAL DISTRIBUTION AND PORTFOLIO PERFORMANCE IN THE

MEAN-FIELD ATLAS MODEL

BENJAMIN JOURDAIN AND JULIEN REYGNER

Abstract. We study a mean-field version of rank-based models of equity markets such as
the Atlas model introduced by Fernholz in the framework of Stochastic Portfolio Theory. We
obtain an asymptotic description of the market when the number of companies grows to infinity.
Then, we discuss the long-term capital distribution. We recover the Pareto-like shape of capital
distribution curves usually derived from empirical studies, and provide a new description of
the phase transition phenomenon observed by Chatterjee and Pal. Finally, we address the
performance of simple portfolio rules and highlight the influence of the volatility structure on
the growth of portfolios.

1. Introduction

1.1. Rank-based models. Rank-based models of equity markets were introduced by Fernholz
within the framework of Stochastic Portfolio Theory [8, 11] as first-order approximations of asymp-
totically stable markets. In such models, the capitalization of a stock is described by the exponential
of a diffusion process, the drift and variance of which depend only on the rank of the stock among
the whole market. A simple but celebrated instance of such a model is the Atlas model [8, 1, 11, 17],
where all the stocks have the same variance and the smallest stock is responsible for the growth of
the whole market.

In the long-term, the Atlas model was proven to capture the actual distribution of the total
capital [8]. This gave rise to a large amount of mathematical studies on rank-based models [14,
15, 10, 9]; in particular, concerning the shape of capital distribution curves [1, 5, 11, 26] as well
as the selection of optimal investment strategies (portfolios) on the market [1, 11]. Both the
capital distribution and the performance of portfolios depend on the long time behaviour of the
market, which was described in [1, 22, 18, 16, 17]. In order to study large markets, asymptotic
properties, when the number of stocks grows to infinity, of long-term rank-based models were
derived in [1, 5, 26].

In this article, we introduce a rank-based model that we call mean-field Atlas model, where the
drift and variance of the capitalization processes depend on empirical quantiles. This particular
shape for the characteristics of the market, that we shall discuss below, allows us to:

(1) derive an asymptotic description of the evolution of the market when its size grows to
infinity, through a functional law of large numbers;

(2) obtain closed form expressions for the long time behaviour of this asymptotic market;
(3) recover capital distribution curves similar to those empirically observed;
(4) carry out a detailed analysis of the performance of a portfolio rule.

Before providing more insight into these issues in Subsection 1.2 and giving a proper definition
of our model in Subsection 1.3, let us insist on the following particularity of our approach. In
all the works cited above, the authors focus on the study of the long time behaviour of market
models with a fixed number of stocks. The steady states for these markets are not so easy to
handle as the underlying stationary distribution is generically not known, see §1.2.1 below for a
more detailed review. As a consequence, the asymptotic behaviour of these steady states for large
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markets is all the more difficult to understand, although there have been remarkable results in this
direction [1, 5].

In the present paper, we somehow take the opposite path and first obtain an asymptotic descrip-
tion of the evolution of the whole market when the number of stocks grows to infinity. This limit
shall be referred to as the asymptotic market. Then, we address the long time behaviour of this
asymptotic market and get an explicit description of the steady states of large markets, which is
widely based on the theoretical results of [19]. To our knowledge, this is the first study proceeding
in this way. Reassuringly, we essentially observe the same phenomena as in previous works, which
gives an a posteriori account for this novel approach.

1.2. Context and motivations. We now provide a general introduction to the issues we shall
address in the context of the mean-field Atlas model; namely, the long-term stability of rank-based
models, the description of capital distribution curves and the analysis of portfolio performance.

1.2.1. Long-term stability of rank-based models. The framework of Stochastic Portfolio Theory [8,
11] is described as follows. For a market containing a fixed number n ≥ 1 of stocks, with respec-
tive capitalizations X1

n(t), . . . , X
n
n (t) > 0 at time t, the log-capitalizations Y i

n(t) := logX i
n(t) are

assumed to satisfy the relation

(1) ∀i ∈ {1, . . . , n}, dY i
n(t) = γin(t)dt+ σi

n(t)dB
i(t),

where the growth rate process (γ1n(t), . . . , γ
n
n(t))t≥0 and the volatility process (σ1

n(t), . . . , σ
n
n(t))t≥0

in R
n are adapted to a given filtration (F(t))t≥0 on some probability space (Ω,F ,P), and the

processes (Bi(t))t≥0, i ≥ 1 are independent (F(t))t≥0-Brownian motions.
The model is said to be rank-based whenever the growth rate process and volatility process write

(2) γin(t) =

n∑

j=1

1
{Y i

n(t)=Y
(j)
n (t)}

γjn, σi
n(t) =

n∑

j=1

1
{Y i

n(t)=Y
(j)
n (t)}

σj
n,

for given growth rate coefficients γ1n, . . . , γ
n
n ∈ R and volatility coefficients σ1

n, . . . , σ
n
n ∈ R, where

Y
(1)
n (t) ≤ · · · ≤ Y

(n)
n (t) refer to the increasing reordering of Y 1

n (t), . . . , Y
n
n (t). In other words, the

dynamics of each stock is determined by its rank among the whole market.
Let us emphasize the fact that we use the notation (j) to refer to the increasing reordering,

following the usual convention for order statistics. However it is sometimes convenient to use the
decreasing reordering [8, 11, 22, 5]. In such situations, we shall use the notation [k]. In other words,
if (y1, . . . , yn) ∈ R

n, then ((1), . . . , (n)) is the permutation of (1, . . . , n) such that y(1) ≤ · · · ≤ y(n),
while ([1], . . . , [n]) is the permutation of (1, . . . , n) such that y[1] ≥ · · · ≥ y[n]. Note that one may
always choose [k] = (n− k + 1).

As soon as, for all j ∈ {1, . . . , n}, (σj
n)

2 > 0, then the stochastic differential equation (1, 2)
admits a unique weak solution [2], and almost surely, dt-almost everywhere, the random variables
Y 1
n (t), . . . , Y

n
n (t) are pairwise distinct. Then, we define the capitalization of the i-th stock by

X i
n(t) := expY i

n(t).
A first mathematical study of rank-based models was carried out by Banner, Fernholz and

Karatzas [1]. There, the emphasis was laid on the particular choice for the growth rate coefficients

(3) γ1n = ng, γ2n = · · · = γnn = 0,

where g > 0. With this choice of coefficients, the smallest stock is responsible for the growth
of the whole market, therefore, analogically to the ancient Greek myth, this model is called the
Atlas model. Various generalizations of this model were introduced later, such as hybrid Atlas

models by Ichiba, Papathanakos, Banner, Karatzas and Fernholz [17] (see also Fernholz, Ichiba
and Karatzas [12]), in which the growth rate and volatility processes depend both on the rank and
on the index i of a stock.

As far as the long time behaviour of the solution to (1, 2) is concerned, Banner, Fernholz and
Karatzas [1] described the marginal distribution of each stock in the long-term. Pal and Pitman [22]
and Jourdain and Malrieu [18] described their joint distribution in the long-term for models in which
all the stocks are assigned the same variance, and Ichiba, Papathanakos, Banner, Karatzas and
Fernholz [17] extended these results to the case of a linearly decreasing variance coefficient with
respect to the rank. Rates of convergence were provided by Ichiba, Pal and Shkolnikov [16].
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Generically, a necessary and sufficient condition ensuring the long-term stability of rank-based
models (1, 2) is that

(4) ∀k ∈ {1, . . . , n− 1},

k∑

j=1

(γjn − gn) > 0,

where gn := (1/n)
∑n

j=1 γ
j
n is the mean growth rate of the processes (Y 1

n (t))t≥0, . . . , (Y
n
n (t))t≥0.

This condition somehow expresses the fact that the growth rate of small stocks is larger than the
mean growth rate of the market, while the growth rate of large stocks is smaller than the mean
growth rate of the market. This is known as the size effect, see [8, p. 86]. From the economic
point of view, this effect is a natural consequence of rebalancing, that is, the fact that investors
buy stocks when their prices are low and sell stocks with large prices.

Similarly to the size effect on growth rates, the variance of small stocks is also empirically
observed to be larger than the variance of large stocks. Throughout this article, we shall refer to
this phenomenon as the volatility size effect. As an example, in [11, Figure 13.6], the variance is
observed to be linearly decreasing with respect to the rank, which motivates the stability result
of [17].

Several models have been introduced to capture the growth rate and volatility size effects, see for
instance the so-called Volatility-Stabilized Model by Fernholz and Karatzas [11, Section 12], which
was later on discussed by Pal [21], Shkolnikov [29] and Sarantsev [27]. As we shall see below, both
rebalancing and the volatility size effect play a key role in the analysis of portfolio performance.

1.2.2. Capital distribution curves. For all i ∈ {1, . . . , n}, the market weight at time t ≥ 0 of the
i-th stock is defined by

µi
n(t) :=

X i
n(t)

X1
n(t) + · · ·+Xn

n (t)
.

The capital distribution curve is the logarithmic representation of the market weights rearranged

by decreasing order, namely the curve log k 7→ logµ
[k]
n (t), where we recall that [k] refers to the

index of the stock with k-th largest capitalization at time t; that is to say, X
[1]
n (t) ≥ · · · ≥ X

[n]
n (t).

The actual capital distribution curves for the stocks traded on the NYSE, the AMEX and
the NASDAQ stock market between 1929 and 1999 were described by Fernholz [8, Figure 5.1,
p. 95]. They exhibit a remarkable stability over time, and indicate, at least for the largest stocks, a
Pareto-like distribution of the capital, which is a common observation in the economic literature [8,
Section 5.6].

This Pareto-like distribution was recovered for the Atlas model (3) by Fernholz [8, Example 5.3.3,
pp. 103-104]. In the case of rank-based models (1, 2) with constant variance coefficients, Chat-
terjee and Pal [5] adressed the asymptotic behaviour, when n grows to infinity, of the stationary

distribution of (µ
[1]
n (t), . . . , µ

[n]
n (t))t≥0. They observed the following phase transition phenomenon:

depending on the growth rate coefficients,

• either the largest stock dominates the market and monopolizes all the capital,
• or most of the capital is spread among a few leading stocks,
• or the market weight of every stock vanishes.

In the second case above, the distribution of the capital between the few leading stocks was also
proven to exhibit a Pareto-like distribution.

1.2.3. Portfolio performance. A portfolio rule on an equity market is a strategy prescribing the
proportion of wealth to be invested in each stock. In particular, the equally weighted portfolio

assigns the same weight to all stocks, while the market portfolio is given by market weights.
Due to the fact that these two strategies can easily be implemented, they are of importance for
practitioners and have aroused many empirical and theoretical studies.

From the empirical point of view, it has been observed that the equally weighted portfolio
generally outperforms the market portfolio (‘beats the market’) under various indicators; we refer
to the work by Plyakha, Uppal and Vilkov [24] for a study of the major U.S. equity indices over
the last four decades. From the theoretical point of view, it is commonly believed that the equally
weighted portfolio beating the market is due to rebalancing: indeed, the market portfolio tends
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to invest more capital in large stocks, while the equally weighted portfolio is insensitive to this
effect; see the preprint by Pal and Wong [23] and the references therein. As far as the Atlas
model is concerned, the performance of the equally weighted portfolio and the market portfolio
was addressed by Banner, Fernholz and Karatzas [1], who essentially confirmed that the equally
weighted portfolio beats the market.

1.3. Model and results. We complete this introduction by giving a proper definition of the
mean-field Atlas model and providing an overview of our results.

1.3.1. The mean-field Atlas model. Let γ, σ : [0, 1] → R be continuous functions; γ is the growth

rate function, σ is the volatility function. The function σ2 shall be called the variance function.
The mean-field Atlas model consists of the rank-based model (1, 2), with growth rate and volatility
coefficients given by, for all n ≥ 1,

(5) ∀j ∈ {1, . . . , n}, γjn = γ(j/n), σj
n = σ(j/n);

and initial log-capitalizations Y 1
n (0), . . . , Y

n
n (0) i.i.d. according to a given probability distribution

m on R. It is well defined as soon as σ2(u) > 0 for all u ∈ [0, 1], which we shall refer to as the
uniform ellipticity assumption (UE) in the sequel.

For all j ∈ {1, . . . , n}, for all t ≥ 0, Y
(j)
n (t) is the empirical quantile of order j/n of the vector

(Y 1
n (t), . . . , Y

n
n (t)), so that the growth rate and volatility of the log-capitalization process Y

(j)
n

is a function of j/n. From the point of view of economical modelling, we argue that mean-field
coefficients (5) are reasonable choices for large rank-based models as they describe weak interactions

between the stocks, in the sense that the larger the market is, the smaller the individual influence
of a stock on another is.

Remark 1.1. Let us emphasize that the mean-field Atlas model is not a generalization of the
genuine Atlas model (3): formally, to recover (in the large size limit) the growth rate coefficients (3)
from the mean-field coefficients (5), one should replace the growth rate function γ with gδ0, where δ0
is the Dirac distribution in 0. Of course, this is not a function and therefore the Atlas model cannot
be rigorously described in terms of mean-field coefficients. However, mean-field approximations of
the Atlas model can be introduced by using the growth rate function

γα(u) := g(α+ 1)(1 − u)α, g > 0,

where α > 0 is the Atlas index: the larger it is, the more the growth rate concentrates on small
stocks.

1.3.2. Results and outline of the article. Section 2 is dedicated to the description of the asymptotic
behaviour of the mean-field Atlas model in the large size limit. This issue was first addressed
by Shkolnikov [28] for stationary initial distributions, and then by the authors [19] for generical
initial distributions (see also the recent article by Dembo, Shkolnikov, Varadhan and Zeitouni [6]).
The following propagation of chaos phenomenon was observed: when n grows to infinity, the
log-capitalization processes asymptotically behave like independent copies of a stochastic process
(Y (t))t≥0, such that, for all t ≥ 0,

(6) E(Y (t)) = E(Y (0)) + gt,

where

(7) g :=

∫ 1

u=0

γ(u)du

is the market mean growth rate. We first recall this result, and then describe the long time
behaviour of the fluctuation Ỹ (t) of Y (t) around gt. Under a size effect assumption of the same

nature as (4), we prove that the law of Ỹ (t) converges toward an explicit equilibrium distribution.
We also discuss the shape of the tails of this equilibrium distribution in −∞ and +∞.

In Section 3, we define the weighted capital measure Πp
n(t) by

(8) Πp
n(t) :=

n∑

j=1

(X
(j)
n (t))p

(X1
n(t))

p + · · ·+ (Xn
n (t))

p
δj/n,
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for all diversity index p ≥ 0. When p = 1, we drop the superscript notation and only refer to Πn(t)
as the capital measure.

The weighted capital measure is a random probability measure on [0, 1]. Our study of capital
distribution curves and portfolio performance is based on the analysis of Πp

n(t) when n→ +∞ and
t → +∞. We first use our propagation of chaos result to derive a law of large numbers for Πp

n(t);
namely, we prove that

lim
n→+∞

Πp
n(t) = Πp(t),

where the asymptotic weighted capital measure Πp(t) is a deterministic probability distribution on
[0, 1], with an explicit expression in terms of the law of Y (t). Then, we address the long time
behaviour of Πp(t), and prove that there exists a critical diversity index pc ≥ 0 such that:

• if p ∈ [0, pc), then

lim
t→+∞

Πp(t) = Π̄p,

where the long-term asymptotic weighted capital measure Π̄p is a probability distribution
on [0, 1], with an explicit expression in terms of the equilibrium distribution introduced
above,

• if p > pc, then
lim

t→+∞
Πp(t) = δ1.

We shall refer to the fact that the model behave differently whether p ∈ [0, pc) or p > pc as a
phase transition phenomenon, and the case p ∈ [0, pc) (resp. p = pc and p > pc) shall be called the
subcritical phase (resp. criticality and the supercritical phase).

In Section 4, we study the distribution of the capital for the long-term asymptotic market.
This relies on the analysis of the capital measure as follows. Recall from §1.2.2 that the capital
distribution curve describes the repartition of capital with respect to the rank of companies, ordered
by size. For the sake of coherence with the works by Fernholz [8] and Chatterjee and Pal [5], the

companies are ranked with respect to the decreasing order of their size: µ
[1]
n (t) ≥ · · · ≥ µ

[n]
n (t). We

recall that [k] = (n− k + 1).
For u, v ∈ [0, 1] with u ≤ v, the proportion of capital held by companies ranked between nu and

nv is roughly
∑

nu≤k≤nv

µ[k]
n (t) =

∑

nu≤k≤nv

µ(n−k+1)
n (t) ≃

∑

n(1−v)≤j≤n(1−u)

µ(j)
n (t) =

〈
1{1−v≤·≤1−u},Πn(t)

〉
,

which explicits the link between the capital distribution curves and the capital measure Πn(t). In
order to describe the long-term capital distribution on large markets, we use the results of Section 3
on the long time behaviour of the asymptotic capital measure Π(t).

Interestingly, the phase transition for the asymptotic weighted capital measure derived in Sec-
tion 3 results in the same phenomenon as was observed by Chatterjee and Pal [5] (see §1.2.2 above).
Yet we provide a different, and complementary, description. In particular, in the case where the
market weight of every stock vanishes, we introduce the capital density µ̄ : [0, 1] → [0,+∞) such
that the proportion of capital held by the companies ranked between nu and n(u+du) is given by
µ̄(u)du in the long-term asymptotic market. The study of the capital density allows us to recover
the Pareto-like shape of capital distribution curves, similar to the ones obtained by Fernholz.

We finally address the performance of portfolio rules in Section 5. We first introduce a family
of portfolio rules, called p-diversity weighted portfolios, interpolating between the equally weighted
and the market portfolio. The performance of such portfolios is described in terms of the weighted
capital measures. Therefore, based on the results of Section 3, we obtain a law of large numbers for
the growth rates of these portfolios. Then, we analyse the long time behaviour of these asymptotic
growth rates.

As far as the discussion led in §1.2.3 is concerned, we draw the following conclusions: in the
limit of a large market, the relative performance of the equally weighted portfolio with respect to
the market portfolio only depends on the volatility structure of the market model, and no longer
on the growth rate. In particular, if the variance of a stock is a nonincreasing function of its
capitalization, which matches the volatility size effect described in §1.2.1, then we recover the fact
that the equally weighted portfolio beats the market. However, we also provide an example of
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a model, where large stocks have large variance, in which the market portfolio outperforms the
equally weighted portfolio, in spite of rebalancing.

2. The mean-field Atlas model

In this section, we give a general description of the limit of the mean-field Atlas model when the
number of companies n grows to infinity, laying particular emphasis on the long time behaviour of
the market. Our analysis is based on the theoretical study [19], the main results of which shall be
recalled whenever needed. Notations and conventions are set up in Subsection 2.1. The description
of the large market asymptotics is made in Subsection 2.2, and its long time behaviour is discussed
in Subsection 2.3.

2.1. Preliminaries. We first set up some notations and conventions.

2.1.1. Assumptions. Let us introduce and discuss the various assumptions that we shall use on the
initial distribution m and the coefficients γ and σ of the mean-field Atlas model.

Following [2], a sufficient condition for the system (1) to be defined in the mean-field Atlas
model is the following uniform ellipticity assumption

(UE) ∀u ∈ [0, 1], σ2(u) > 0.

A weakening of this assumption, allowing degeneracies in 0 and 1, is discussed in §3.2.3.
The law of large numbers for the weighted capital measure requires integrability conditions on

the powers of the capitalization processes. These conditions are propagated from integrability
conditions on the powers of initial capitalizations, therefore we shall assume that the common
probability distribution m of the initial log-capitalizations Y 1

n (0), . . . , Y
n
n (0) satisfies

(H) ∀p ≥ 0,

∫

y∈R

epym(dy) < +∞.

We now define the function Γ on [0, 1] by, for all u ∈ [0, 1],

Γ(u) :=

∫ u

v=0

γ(v)dv.

Then, the long-term stability of large markets is ensured by the following equilibrium assump-
tions (E1) and (E2). The first one is the continuous equivalent of (4), namely

(E1) ∀u ∈ (0, 1), Γ(u)− gu > 0,

where we recall that g is the market mean growth rate defined in (7). Note that (E1) together
with the continuity of γ imply that γ(0) ≥ g ≥ γ(1), which is the continuous translation of the size
effect: in average, small stocks grow faster than the market, while large stocks grow slower than the
market. In particular, if the growth rate function γ is decreasing on [0, 1], then Assumption (E1)
is satisfied.

The second equilibrium condition writes

(E2)

∫ 1/2

u=0

u

|Γ(u)− gu|
du+

∫ 1

u=1/2

1− u

|Γ(u)− gu|
du < +∞,

and ensures integrability properties for the equilibrium distribution. Note that under Assump-
tion (E1) and because of the continuity of γ, a sufficient condition for (E2) to hold is γ(0) > g >
γ(1).

Let us finally note that the growth rate function corresponding to the mean-field approximation
of the Atlas model introduced in Remark 1.1 satisfies the equilibrium conditions (E1) and (E2) for
all α > 0.
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2.1.2. Notations. For all T > 0, the space of continuous sample-paths C([0, T ],R) is endowed with
the sup norm || · ||∞, and the space C([0,+∞),R) is provided with the topology of the locally
uniform convergence. For all k ≥ 1, the set of probability distributions on C([0,+∞),Rk) is
denoted by P(C([0,+∞),Rk)). The marginal distribution of P ∈ P(C([0,+∞),R)) at time t ≥ 0
is denoted by Pt. The cumulative distribution function of Pt is denoted by Ft := H ∗ Pt, where
H ∗ · refers to the convolution with the Heaviside function H(y) := 1{y≥0}. For all nonincreasing

function a : R → R, the pseudo-inverse of a is defined by a−1(u) := inf{y ∈ R : a(y) > u}.
For all q ∈ [1,+∞), the q-Wasserstein distance between two cumulative distribution functions

F and G on R is defined by

(9) Wq(F,G) := inf
(X,Y )∈Coupl(F,G)

(E(|X − Y |q))
1/q

,

where Coupl(F,G) refers to the set of random pairs (X,Y ) with marginal cumulative distribution
functions F and G, see Rachev and Rüschendorf [25]. The right-hand side above can actually be
rewritten in terms of the pseudo-inverse functions F−1 and G−1 as follows: given a uniform random
variable U on [0, 1], an optimal coupling is provided by the random pair (F−1(U), G−1(U)) ∈
Coupl(F,G) [25, Theorem 3.1.2, p. 109], so that

(10) Wq(F,G) =

(∫ 1

u=0

|F−1(u)−G−1(u)|qdu

)1/q

.

Finally, if Π refers to a probability distribution on [0, 1], for all measurable and bounded function
f : [0, 1] → R, we denote

〈f,Π〉 :=

∫ 1

u=0

f(u)Π(du).

2.2. Propagation of chaos and nonlinear log-capitalization process. We first recall the fol-
lowing propagation of chaos result from [19, Corollary 2.13]. For an introduction to the propagation
of chaos phenomenon, we refer to the lecture notes by Sznitman [31].

Theorem 2.1. Let us assume that the variance function σ2 satisfies the uniform ellipticity con-

dition (UE), and that the probability distribution m admits a finite first order moment.

• There exists a unique weak solution (Y (t))t≥0 to the stochastic differential equation, non-

linear in the sense of McKean,

(11)

{
dY (t) = γ(Ft(Y (t)))dt + σ(Ft(Y (t)))dB(t),

Ft = H ∗ Pt is the cumulative distribution function of Y (t),

where Y (0) is distributed according to m and (B(t))t≥0 is a standard brownian motion in

R independent of Y (0). Let P ∈ P(C([0,+∞),R)) denote the law of (Y (t))t≥0.

• For any finite set {i1, . . . , ik} of distinct indices, the joint law of (Y i1
n (t), . . . , Y ik

n (t))t≥0

converges weakly, in P(C([0,+∞),Rk)), to the law P⊗k of k independent copies of the

process (Y (t))t≥0.

• Finally, dt-almost everywhere, the probability distribution Pt is absolutely continuous with

respect to the Lebesgue measure on R.

Nonlinearity in the sense of McKean has to be understood as the fact that the coefficients in
the stochastic differential equation (11) depend on the entire law of the random variable Y (t)
through its cumulative distribution function Ft. Therefore, the process (Y (t))t≥0 shall be called
the nonlinear log-capitalization process.

Remark 2.2. The following remarks on the nonlinear log-capitalization process can be formulated.

• The equality (11) rewrites

Y (t) = Y (0) +

∫ t

s=0

γ(Fs(Y (s)))ds +

∫ t

s=0

σ(Fs(Y (s)))dB(s).

On the one hand, since σ is bounded, then the stochastic integral is a centered martingale.
On the other hand, by Theorem 2.1, ds-almost everywhere, the probability distribution Ps

does not weight points so that Fs(Y (s)) has a uniform distribution on [0, 1]. As a conse-
quence, taking the expectation of the equality above yields (6), i.e. E(Y (t)) = E(Y (0))+gt.
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• Theorem 2.1 rewrites as a law of large numbers for the empirical distribution νn of
the process of log-capitalizations (Y 1

n (t), . . . , Y
n
n (t))t≥0, defined as a random variable in

P(C([0,+∞),R)) by

νn :=
1

n

n∑

i=1

δ(Y i
n(t))t≥0

.

Indeed, following [31, Proposition 2.2, p. 177], the statement of Theorem 2.1 combined with
the exchangeability of the processes (Y 1

n (t))t≥0, . . . , (Y
n
n (t))t≥0 imply that νn converges in

probability, in P(C([0,+∞),R)), to P .

2.3. Long time behaviour of the nonlinear log-capitalization process. We now describe
the long time behaviour of the nonlinear log-capitalization process (Y (t))t≥0. Because of (6), it is

necessary to introduce a shift by defining Ỹ (t) := Y (t)− gt, for all t ≥ 0. The process (Ỹ (t))t≥0 is

called the fluctuation process. We first note that (Ỹ (t))t≥0 satisfies the same nonlinear stochastic
differential equation (11) as (Y (t))t≥0, with shifted growth rate γ̃(u) := γ(u)− g.

Lemma 2.3. Under the assumptions of Theorem 2.1, the fluctuation (Ỹ (t))t≥0 solves the nonlinear

stochastic differential equation
{
dỸ (t) = γ̃(F̃t(Ỹ (t)))dt + σ(F̃t(Ỹ (t)))dB(t),

F̃t is the cumulative distribution function of Ỹ (t),

where Ỹ (0) is distributed according tom and (B(t))t≥0 is a standard brownian motion in R indepen-

dent of Ỹ (0). Moreover, weak uniqueness holds for this nonlinear stochastic differential equation.

Proof. Weak uniqueness for the nonlinear stochastic differential equation follows from the appli-
cation of Theorem 2.1 with γ replaced with γ̃. We now check that (Ỹ (t))t≥0 is a solution. By
definition,

dỸ (t) = dY (t)− gdt

= γ(Ft(Y (t)))dt + σ(Ft(Y (t)))dB(t) − gdt

= γ̃(Ft(Ỹ (t) + gt))dt+ σ(Ft(Ỹ (t) + gt))dB(t).

Moreover, since, for all y ∈ R, Ft(y) = P(Y (t) ≤ y), then Ft(y + gt) = P(Y (t) − gt ≤ y) = F̃t(y),

where F̃t is the cumulative distribution function of Ỹ (t). As a consequence,

dỸ (t) = γ̃(F̃t(Ỹ (t)))dt + σ(F̃t(Ỹ (t)))dB(t),

and the proof is completed. �

To describe the long time behaviour of the fluctuation (Ỹ (t))t≥0, we now assume that the
uniform ellipticity condition (UE) and the equilibrium condition (E1) hold. This enables us to
define the continuous, increasing function Ψ on (0, 1) by

∀u ∈ (0, 1), Ψ(u) :=

∫ u

v=1/2

σ2(v)

2(Γ(v)− gv)
dv.

Note that the pseudo-inverse function Ψ−1 is a cumulative distribution function on R. Its first
order moment writes
∫ 0

y=−∞

Ψ−1(y)dy+

∫ +∞

y=0

(1−Ψ−1(y))dy =

∫ 1/2

u=0

u
σ2(u)

2(Γ(u)− gu)
du+

∫ 1

u=1/2

(1−u)
σ2(u)

2(Γ(u)− gu)
du,

and, because of Assumption (UE), it is finite if and only if Assumption (E2) holds.
The cumulative distribution function Ψ−1 is a weak solution to the stationary version of the

Cauchy problem (32) satisfied by Ft, see Appendix C. It actually describes the equilibrium of the
fluctuation process, which is made precise in the following theorem from [19, Section 4].

Theorem 2.4. Let us assume that:

• the function σ2 satisfies the uniform ellipticity condition (UE),
• the function γ satisfies the equilibrium conditions (E1) and (E2),



CAPITAL DISTRIBUTION AND PORTFOLIO PERFORMANCE IN THE MEAN-FIELD ATLAS MODEL 9

• the function σ2 is C2 on [0, 1], the function γ is C1 on [0, 1] and there exists β > 0 such

that the functions (σ2)′′ and γ′ are β-Hölder continuous,

• the probability distribution m has a finite first order moment, and, for all p ≥ 0, Wp(H ∗
m,Ψ−1) < +∞.

Then, the pseudo-inverse Ψ−1 of the function Ψ introduced above is the cumulative distribution

function of a probability distribution with positive density on R.

Let us now write F̃t for the cumulative distribution function of Ỹ (t), and define F̃∞ by F̃∞(y) =
Ψ−1(y + ȳ), where ȳ is chosen so that

∫

y∈R

yF̃ ′
∞(y)dy =

∫

y∈R

ym(dy).

Then, for all p ≥ 1,
lim

t→+∞
Wp(F̃t, F̃∞) = 0.

The probability distribution with density (Ψ−1)′ shall be referred to as the equilibrium distri-

bution. We discuss the shape of its tails in the following remark.

Remark 2.5. Describing the tail of the equilibrium distribution in +∞ amounts to describing
the behaviour of Ψ(u) when u ↑ 1. Let us recall that, under Assumptions (UE), (E1) and (E2),
γ(1) ≤ g; so that the critical diversity index pc defined by

(12) pc :=
2(g − γ(1))

σ2(1)

is nonnegative.

• If γ(1) < g, that is to say pc > 0, then writing

Γ(v)− gv = g(1− v)−

∫ 1

w=v

γ(w)dw

yields

Ψ(u) =

∫ u

v=1/2

σ2(v)

2(Γ(v)− gv)
dv ∼

u↑1

σ2(1)

2(g − γ(1))

∫ u

v=1/2

dv

1− v
∼
u↑1

−
1

pc
log(1− u),

so that the tail of the equilibrium distribution in +∞ is expected to be exponential with
parameter pc, that is to say, 1 − Ψ−1(y) is expected to decay to 0 at an exponential rate
of order pc.

• If γ(1) = g, that is to say pc = 0, then the tail of the equilibrium distribution in +∞ is
expected to be heavy, that is to say, 1−Ψ−1(y) is expected to decay to 0 slower than any
exponential rate.

Likewise, a symmetric phenomenon is observed for the tail of the equilibrium distribution in
−∞. The critical index qc defined by qc := 2(γ(0)− g)/σ2(0) is nonnegative, and if qc > 0, then

Ψ(u) ∼
u↓0

1

qc
log(u),

so that, when y → −∞, Ψ−1(y) is expected to decay to 0 at an exponential rate of order qc. If
qc = 0, then the tail of the equilibrium distribution in −∞ is expected to be heavy.

3. The weighted capital measure

For all p ≥ 0, t ≥ 0, the weighted capital measure Πp
n(t) is defined by (8). Recall that for

p = 1, we write Πn(t) instead of Π1
n(t), and refer to this measure as the capital measure. For all

measurable and bounded function f : [0, 1] → R,

〈f,Πp
n(t)〉 =

n∑

j=1

(X
(j)
n (t))p

(X1
n(t))

p + · · ·+ (Xn
n (t))

p
f

(
j

n

)
=

n∑

j=1

epY
(j)
n (t)

epY
1
n (t) + · · ·+ epY

n
n (t)

f

(
j

n

)
.

As is explained in Section 1, the capital measure is strongly related to the capital distribution
curves. Likewise, we shall describe in Section 5 below the link between the weighted capital
measures and the performance of a family of portfolio rules. Therefore, it is of interest to describe
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the asymptotic behaviour of the weighted capital measure when the size of the market grows to
infinity. This task is carried out in Subsection 3.1 by deriving a law of large numbers for Πp

n(t).
The corresponding limit Πp(t) is referred to as the asymptotic weighted capital measure, and its
long time behaviour is addressed in Subsection 3.2.

3.1. Law of large numbers. We first address the limit, when n grows to infinity, of Πp
n(t).

Proposition 3.1. Let us assume that the conditions of Theorem 2.1 are satisfied, and that the

probability distribution m satisfies the condition (H). Let us fix T > 0 and q ∈ [1,+∞). Then, for

all p ≥ 0,

• there exists Cp
T < +∞ such that

(13) ∀t ∈ [0, T ], Zp(t) :=

∫ 1

u=0

epF
−1
t (u)du = E

(
epY (t)

)
≤ Cp

T ,

• for all continuous function f : [0, 1] → R, the process (〈f,Πp
n(t)〉)t∈[0,T ] converges, in

Lq(C([0, T ],R)), to the deterministic process (〈f,Πp(t)〉)t∈[0,T ], where Πp(t) is the proba-

bility distribution with density exp(pF−1
t (u))/Zp(t) with respect to the Lebesgue measure

on [0, 1].

The proof of Proposition 3.1 is detailed in Appendix A. The probability distribution Πp(t) shall
be called the asymptotic weighted capital measure.

3.2. Long-term asymptotic capital measure. We now address the long time behaviour of the
asymptotic weighted capital measure Πp(t).

3.2.1. Heuristic derivation. Let us recall that the cumulative distribution function F̃t of the fluctu-
ation Ỹ (t) = Y (t)− gt writes F̃t(y) = Ft(y+ gt). As a consequence, the density of the asymptotic
weighted capital measure Πp(t) with respect to the Lebesgue measure on [0, 1] rewrites

epF
−1
t (u)

∫ 1

u=0

epF
−1
t (u)du

=
ep(F̃

−1
t (u)+gt)

∫ 1

u=0

ep(F̃
−1
t (u)+gt)du

=
epF̃

−1
t (u)

∫ 1

u=0

epF̃
−1
t (u)du

.

Under appropriate assumptions, Theorem 2.4 asserts that F̃t converges, in Wasserstein distance, to
F̃∞ defined by F̃∞(y) = Ψ−1(y+ȳ), where ȳ is chosen so that F̃∞ andm have the same expectation.
As a consequence, the asymptotic weighted capital measure Πp(t) is expected to converge to the
probability distribution Π̄p with density

epF̃
−1
∞ (u)

∫ 1

u=0

epF̃
−1
∞ (u)du

=
ep(Ψ(u)−ȳ)

∫ 1

u=0

ep(Ψ(u)−ȳ)du

=
epΨ(u)

∫ 1

u=0

epΨ(u)du

,

as long as

Z̄p :=

∫ 1

u=0

epΨ(u)du < +∞.

Following the first-order analysis of the equilibrium distribution carried out in Remark 2.5, this
should be the case for p ∈ [0, pc). On the contrary, if p > pc, then Z̄p is expected to be infinite,
and all the mass of Πp(t) should concentrates around 1 when t grows to infinity, so that Πp(t)
is rather expected to converge to the Dirac distribution δ1. This phase transition phenomenon is
made precise in §3.2.2 below.

3.2.2. Phase transition. Let us recall that the critical diversity index pc ≥ 0 was defined in (12).

Lemma 3.2. Let us assume that the uniform ellipticity condition (UE), that the equilibrium

condition (E1) hold, and that the critical diversity index pc is positive. Then, for all p ∈ [0, pc),
Z̄p < +∞, and we denote by Π̄p the probability distribution with density exp(pΨ(u))/Z̄p with

respect to the Lebesgue measure on [0, 1].
Moreover, for all continuous function f : [0, 1] → R, the function p 7→ 〈f, Π̄p〉 is continuous on

[0, pc), and:

• if Z̄pc = +∞, then limp↑pc〈f, Π̄
p〉 = f(1),
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• if Z̄pc < +∞, we denote by Π̄pc the probability distribution with density exp(pcΨ(u))/Z̄pc

with respect to the Lebesgue measure on [0, 1], and then limp↑pc〈f, Π̄
p〉 = 〈f, Π̄pc〉.

The proof of Lemma 3.2 is postponed to Appendix B. The probability distribution Π̄p shall be
called the long-term asymptotic weighted capital measure.

Example 3.3. We explicit the long-term asymptotic weighted capital measure for a constant
variance function σ2 and for γ(u) = 1 − 2u. For these coefficients, g = 0 and the equilibrium
distribution was computed in [18, Example 2.3]. In particular, the function Ψ writes

Ψ(u) =

∫ u

v=1/2

σ2

2v(1− v)
dv =

1

pc
log

(
u

1− u

)
,

so that, for p ∈ [0, pc), Π̄p is the Beta(1 + p/pc, 1 − p/pc) distribution. In addition, it is easily
checked that Z̄pc = +∞, so that Π̄p converges to the Dirac distribution in 1 when p approaches
the critical diversity index pc.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Figure 1. The density of Π̄p for a constant variance function σ2 and γ(u) = 1−2u.
The diversity index p varies between 0 and pc. The uniform density is recovered
for p = 0, while the mass concentrates on the point u = 1 when p approaches the
critical diversity index pc.

We now explicit the link between Π̄p and the long time behaviour of Πp(t).

Proposition 3.4. Let us assume that the conditions of Theorem 2.4 hold, and that the probability

distribution m satisfies the condition (H). Let pc ≥ 0 be defined by (12). Let f : [0, 1] → R be a

continuous function, and p ≥ 0.

• Subcritical phase: if p ∈ [0, pc), then

lim
t→+∞

〈f,Πp(t)〉 =
〈
f, Π̄p

〉
,

where the probability distribution Π̄p is defined in Lemma 3.2.
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• Supercritical phase: if p > pc, then

lim
t→+∞

〈f,Πp(t)〉 = f(1).

• Criticality: the long time behaviour of 〈f,Πpc(t)〉 is described as follows:

– if Z̄pc = +∞, by Lemma 3.2, limp↑pc〈f, Π̄
p〉 = f(1), and then

lim
t→+∞

〈f,Πpc(t)〉 = f(1),

– if Z̄pc < +∞, by Lemma 3.2, limp↑pc〈f, Π̄
p〉 = 〈f, Π̄pc〉, and then

(14) f(1) ∧
〈
f, Π̄pc

〉
≤ lim inf

t→+∞
〈f,Πpc(t)〉 ≤ lim sup

t→+∞
〈f,Πpc(t)〉 ≤ f(1) ∨

〈
f, Π̄pc

〉
.

The proof of Proposition 3.4 is postponed to Appendix B. The description of the long time
behaviour of Πp(t) is summarized on Figure 2. Note that, in the case Z̄pc = +∞, the function
p 7→ limt→+∞〈f,Πp(t)〉 is defined and continuous on [0,+∞).

p

pc

Subcritical phase Supercritical phase

〈

f, Π̄p
〉

f(1)

p

pc

Subcritical phase Supercritical phase

〈

f, Π̄p
〉

f(1)

Limits of 〈f, Πpc (t)〉

Figure 2. A schematic representation of the long time behaviour of 〈f,Πp(t)〉
according to Proposition 3.4. On the left-hand figure, limp↑pc〈f, Π̄

p〉 = f(1), so
that limt→+∞〈f,Πpc(t)〉 exists and its value is represented by the black dot. On
the right-hand figure, limp↑pc〈f, Π̄

p〉 6= f(1) and the limit points of 〈f,Πpc(t)〉 are

located inside the gap between limp↑pc〈f, Π̄
p〉 = 〈f, Π̄(pc)〉 and f(1).

3.2.3. Removing the phase transition. In order to describe all the possible situations for the equi-
librium distribution, it is natural to look for functions γ and σ such that pc = +∞, that is to say,
for which there is no phase transition and the tail in +∞ of the equilibrium distribution is lighter
than exponential. Partial results in this direction, that we now recall and complete, are provided
in [19].

To obtain pc = +∞, one can for instance remove the uniform ellipticity assumption (UE) on
the variance function σ2 and allow the latter to vanish in 1. Our analysis shall actually cover
both the tails in −∞ and +∞ of the equilibrium distribution, therefore we introduce the following
nondegeneracy assumption

(ND) ∀u ∈ (0, 1), σ2(u) > 0,

which allows the variance to vanish in 0 and 1, in contrast with Assumption (UE). Under this
assumption and suitable further assumptions on the initial distribution m, the propagation of
chaos result of Theorem 2.1 can be recovered, see Theorem C.1 in Appendix C. We still denote
by (Y (t))t≥0 the corresponding nonlinear log-capitalization process. Adding the condition (H) to
the assumptions of Theorem C.1, we easily extend the laws of large numbers obtained in Proposi-
tion 3.1.

Let us now address the equilibrium distribution of the fluctuation (Ỹ (t))t≥0 defined by Ỹ (t) =
Y (t)−gt. Under Assumptions (ND) and (E1), the function Ψ can still be defined and the stationary

distributions of the fluctuation (Ỹ (t))t≥0 are exactly the translations of the probability distribution
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with cumulative distribution function Ψ−1 [19, Proposition 4.1]. However, the tails of the equilib-
rium distribution can now exhibit a wide range of behaviours. For instance, if σ2(u) = (1 − u)α

and Γ(u)− gu ∼u↑1 (1 − u)β , with α ≥ 0 and β ≥ 1, then the tail of the equilibrium distribution
in +∞ now depends on α− β as follows:

• if α − β > −1, then lim supu↑1 Ψ(u) < +∞, so that the support of the equilibrium
distribution is bounded from above,

• if α− β = −1, then the tail of the equilibrium distribution in +∞ is exponential,
• if α− β < −1, then the tail of the equilibrium distribution in +∞ is polynomial.

Thus, the stationary distributions of the fluctuation can be rigourously described without the
uniform ellipticity assumption (UE).

However, extending the results of Proposition 3.4 concerning the long time behaviour of Πp(t)
requires to establish convergence results for the fluctuation in the same way as Theorem 2.4. In
the proof of the latter (see [19, Theorem 4.6]), the uniform ellipticity assumption (UE) ensured the

regularity of the function (t, y) 7→ F̃t(y), which was a crucial technical point. Replacing Assump-
tion (UE) with the nondegeneracy assumption (ND), we were not able to obtain a similar result,
and therefore our proof could not be adapted. As a consequence, in the absence of convergence
results for the fluctuation, the conclusions of Proposition 3.4 can only be recovered at the heuristic
level, based on the analysis of the equilibrium distribution described above.

4. Capital distribution curves

We pursue the discussion of §1.3.2 in order to describe the capital distribution in the long-term
asymptotic mean-field Atlas model. If [k] refers to the index of the company with k-th largest
capitalization, we define the relative rank of this company by k/n ∈ [0, 1]. In the limit of large
markets, we shall be interested by the proportion of capital held by companies with relative rank
between u and u+ du, for u ∈ [0, 1].

4.1. Phase transition for the long-term asymptotic capital measure. We first recall the
following technical lemma, which is a straighforward consequence of the Portmanteau theorem [3,
Theorem 2.1, p. 11].

Lemma 4.1. Let (Πn)n≥1 be a sequence of probability distributions on R, such that Πn converges

weakly to a probability distribution Π on [0, 1]. If Π is absolutely continuous with respect to the

Lebesgue measure on [0, 1], then for all interval I ⊂ [0, 1], Πn(I) converges to Π(I).

We deduce from §1.3.2, Proposition 3.1 and Lemma 4.1, that for all t ≥ 0 and u, v ∈ [0, 1]
with u ≤ v, the proportion of capital held by the companies with relative rank between u and v
converges in probability to

〈
1{1−v≤·≤1−u},Π(t)

〉
=

1

Z(t)

∫ v

w=u

eF
−1
t (1−w)dw.

In particular, the proportion of capital held by the companies with relative rank between u and
u+du in a large market is roughly exp(F−1

t (1−u))du/Z(t). Then, the phase transition phenomenon
derived in Section 3 translates as follows.

(i) If pc > 1, then the asymptotic capital measure (with index p = 1) is subcritical, so that in
the long-term, the proportion of capital held by the companies with relative rank between
u and u+ du is roughly µ̄(u)du, where

µ̄(u) :=
eΨ(1−u)

Z̄

is the capital density.
(ii) If pc < 1, the asymptotic capital measure is supercritical, therefore Π(t) converges weakly

to the Dirac distribution δ1. As a consequence, all the capital concentrates on the relative
rank 0.

A detailed study of the capital density µ̄ is carried out in Subsection 4.2, and the Pareto-like
distribution empirically observed is recovered. We establish a comparison between our results and
the article by Chatterjee and Pal [5] in Subsection 4.3.
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4.2. Capital distribution curve in the subcritical case. Let us assume that pc > 1. Similarly
to Fernholz [8, Section 5], we call capital distribution curve the logarithmic plot of the function
u 7→ µ̄(u). For the coefficients introduced in Example 3.3, we draw the capital distribution curve
on Figure 3.

−4
10
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10

−2
10

−1
10

0
10

−2
10

−1
10

0
10

1
10

Figure 3. The logarithmic plot of the capital density µ̄(u) for the coefficients of
Example 3.3, with pc = 4.

Figure 3 has to be compared with the shape of the empirical curves obtained by Fernholz [8,
Figure 5.1, p. 95], which exhibit the following characteristics:

• they are almost linear for stocks with small ranks, which indicates a Pareto-like distribution
of the capital,

• they become concave for stocks with large ranks.

This behaviour is easily recovered for the long-term asymptotic capital measure.

Proposition 4.2. Let us assume that the conditions of Proposition 3.4 hold, with pc > 1. Then:

• for u ↓ 0, log µ̄(u) ∼ (−1/pc) log u, therefore the capital distribution curve is linear with

slope −1/pc ∈ (−1, 0),
• for u ↑ 1, log µ̄(u) → −∞ and, if the parameter qc defined in Remark 2.5 is positive, then

log µ̄(u) ∼ (1/qc) log(1 − u).

Proof. By the definition of the capital density, log µ̄(u) = Ψ(1− u)− log Z̄. Therefore, the asymp-
totic behaviour of log µ̄(u) in 0 and 1 is a straightforward consequence of Remark 2.5. �

4.3. The Chatterjee-Pal phase transition. We now describe the phase transition observed by
Chatterjee and Pal in [5], and discuss the relation with the long time behaviour of our asymptotic
capital measure.

Let us assume that, for all u ∈ [0, 1], σ(u) = 1, and that γ is decreasing and satisfies the equilib-
rium assumption (E1). Then, following [22], the process of market weights (µ1

n(t), . . . , µ
n
n(t))t≥0,
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defined by

µi
n(t) =

X i
n(t)

X1
n(t) + · · ·+Xn

n (t)
,

admits a unique stationary distribution. Let us sample (µ1
n, . . . , µ

n
n) from this distribution, and

denote by (µ
[1]
n , . . . , µ

[n]
n ) the decreasing reordering of (µ1

n, . . . , µ
n
n).

The set of sequences (mk)k≥1 such that 1 ≥ m1 ≥ m2 ≥ · · · ≥ 0 is endowed with the distance

d(m,m′) :=
∑+∞

k=1 2
−k(|mk −m′

k| ∧ 1). Then, Theorem 2 in [5] writes as follows:

• if pc = 0, then the sequence (µ
[1]
n , . . . , µ

[n]
n ) converges in probability to (1, 0, . . .),

• if pc ∈ (0, 1), then the sequence (µ
[1]
n , . . . , µ

[n]
n ) converges in distribution to a Poisson-

Dirichlet process with parameter pc,

• if pc ≥ 1, then the sequence (µ
[1]
n , . . . , µ

[n]
n ) converges in probability to (0, 0, . . .).

The Poisson-Dirichlet process, introduced by Kingman [20], is a random sequence (mk)k≥1 such

that, almost surely, 1 > m1 > m2 > · · · > 0 and
∑+∞

k=1mk = 1. In particular, mk converges to 0.

In the case pc < 1, let (mk)k≥1 refer to the limit, when n→ +∞, of the sequence (µ
[1]
n , . . . , µ

[n]
n ).

It is either (1, 0, . . .) or a Posson-Dirichlet process. Let us explain how to recover our conclusion
of the supercritical case (ii) in Subsection 4.1 from the result of Chatterjee and Pal. To this aim,

we fix u ∈ (0, 1]. For all ǫ > 0, there exists K ≥ 1 such that
∑K

k=1mk ≥ 1 − ǫ/2. Therefore, for n

large enough,
∑K

k=1 µ
[k]
n ≥ 1− ǫ. As a consequence, for n large enough and such that K/n ≤ u, we

obtain that the companies with rank k ≤ nu hold at least a proportion 1 − ǫ of the total capital.
Since u and ǫ are arbitrary, we conclude that, in the large market limit, the whole capital is held
by companies with relative rank around 0.

In the case pc ≥ 1, all the market weights vanish. This is coherent with (i) in Subsection 4.1,
since the measure µ̄(u)du does not weight points, so that no company holds a positive proportion of
capital when n grows to infinity. However, our study of the capital density µ̄ provides informations
on the capital distribution that are not available from Chatterjee and Pal’s results.

As a conclusion, although we observe the very same phenomenon as Chatterjee and Pal, we
depict it differently. In particular, they give detailed informations on the supercritical phase that
our study cannot recover, while we provide a more precise description the capital distribution in
the subcritical phase.

5. Performance of diversity weighted portfolios

We finally address the analysis of the performance of diversity weighted portfolios. The math-
ematical framework of Stochastic Portfolio Theory is briefly recalled in Subsection 5.1, where we
also introduce a family of portfolios, called diversity weighted portfolios. This family is indexed
by a diversity parameter and interpolates between the equally weighted portfolio and the market
portfolio.

The performance of a portfolio rule is measured by its long-term asymptotic growth rate and
excess growth rate, that we define in Subsection 5.2. The monotonicity of these quantities with
respect to the diversity index is addressed in Subsection 5.3, and a reduction formula providing
simple expressions is derived in Subsection 5.4.

We use these results to explicit the long-term asymptotic growth rate of the equally weighted
portfolio and the market portfolio in Subsection 5.5, and state global conclusions in Subsection 5.6.

5.1. Stochastic portfolio theory in a nutshell. We first provide a short overview of Stochastic
Portfolio Theory [8, 11].

5.1.1. Portfolio. A portfolio rule, or portfolio for short, is an adapted process

πn = (π1
n(t), . . . , π

n
n(t))t≥0

such that, for all t ≥ 0, for all i ∈ {1, . . . , n}, πi
n(t) ≥ 0 and π1

n(t)+ · · ·+πn
n(t) = 1. It describes the

proportion of wealth that one invests in each stock. We assume that portfolios are self-financing,
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that is to say, there is no exogenous infusion or withdrawal of money after the initial time. Then,
the wealth process (Zπn

n (t))t≥0 associated with a portfolio πn satisfies

dZπn
n (t)

Zπn
n (t)

=

n∑

i=1

πi
n(t)

dX i
n(t)

X i
n(t)

,

and the initial wealth is normalized to Zπn
n (0) = 1. By Itô’s formula,

d(logZπn

n (t)) = γπn

n (t)dt+

n∑

i=1

πi
n(t)σ

i
n(t)dB

i(t),

where the processes

γπn

n (t) :=

n∑

i=1

πi
n(t)γ

i
n(t) + γπn

∗,n(t), γπn

∗,n(t) :=
1

2

n∑

i=1

πi
n(t)(1 − πi

n(t))(σ
i
n(t))

2,

are respectively called the growth rate and the excess growth rate of the portfolio.
Clearly, the growth rate of the portfolio writes as the average of the growth rates of the stocks

contained in the portfolio, with weights given by the portfolio, plus the excess growth rate. The
latter rewrites as the average of the variances of the stocks contained in the portfolio, minus the
variance of the wealth process. Since γπn

∗,n(t) ≥ 0, the variance of the wealth process is lower than
the average of the variances of the stocks contained in the portfolio. Thus, the variance reduction
due to diversification in the portfolio is exactly measured by the excess growth rate.

5.1.2. Diversity weighted portfolios. For all p ≥ 0, we now define the p-diversity weighted portfolio
πp
n = (πp,1

n (t), . . . , πp,n
n (t))t≥0 by

∀t ≥ 0, ∀i ∈ {1, . . . , n}, πp,i
n (t) :=

(X i
n(t))

p

(X1
n(t))

p + · · ·+ (Xn
n (t))

p
.

The associated wealth process is denoted by (Zp
n(t))t≥0 and the growth rate and excess growth

rate processes of the portfolio are respectively denoted by (γpn(t))t≥0, (γ
p
∗,n(t))t≥0. The parameter

p is called the diversity index.
Certainly, the choice p = 0 corresponds to the equally weighted portfolio, while the choice p = 1

is the market portfolio. For 0 < p < 1, the p-diversity weighted portfolio interpolates between the
equally weighted portfolio and the market portfolio, and it is functionally generated by a measure

of diversity in the sense of Fernholz [8, Section 3.4]. Let us also mention that diversity weighted
portfolios, with p = 0.76, were used in actual portfolio managing strategies for the S&P 500
Index [8, Section 7.2].

5.1.3. Long-term growth rate and performance. Following [8, Section 1.3], the growth rate of a
portfolio measures its long-term performance, in the sense that

lim
T→+∞

1

T

(
logZπn

n (T )−

∫ T

t=0

γπn

n (t)dt

)
= 0, almost surely.

As a consequence, the study of the long time behaviour of the processes (γπn
n (t))t≥0 and (γπn

∗,n(t))t≥0

arises as a natural question with respect to practical situations. As far as the asymptotic behaviour
of portfolio rules in large markets is concerned, previous studies such as [1] measured the perfor-
mance of a sequence of portfolio rules {(πn(t))t≥0, n ≥ 1} by analyzing the asymptotic long-term
growth rate

Γ := lim
n→+∞

lim
t→+∞

γπn
n (t).

The latter was computed for the Atlas model (3), with constant variance coefficients (σ1
n)

2 = · · · =
(σn

n)
2 > 0, or linearly decreasing coefficients (σj

n)
2 = a+ s2(n − j), a > 0, s2 > 0, which matches

the empirical observation of [11, Figure 13.6]. For the equally weighted portfolio and the market
portfolio, exact expressions were derived. For p-diversity weighted portfolios with p ∈ (0, 1), the
long-term growth rate and excess growth rate were explicited in terms of the stationary distribution
of the market portfolio. At that time, very little was known about this stationary distribution, so
that the authors had to resort to the so-called certainty-equivalent approximation to describe the
large market limit of the long-term growth rate and excess growth rate. Still, in all cases, it was
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observed that, for large markets, the equally weighted portfolio outperforms diversity weighted
portfolios, and in particular, beats the market.

5.1.4. Growth rates and capital measure. Unlike [1], we shall rather provide a detailed study of the
long-term asymptotic growth rate

Gp := lim
t→+∞

lim
n→+∞

γpn(t)

for p-diversity weighted portfolios. This brings forth results in a more synthetic fashion. To do so,
we remark that, by the definition of p-diversity weighted portfolios and due to (5) and (8), for all
p ≥ 0, the growth rate and excess growth rate of p-diversity weighted portfolios write

(15)

γpn(t) = 〈γ,Πp
n(t)〉+ γp∗,n(t),

γp∗,n(t) =
1

2

〈
σ2,Πp

n(t)
〉
−

1

2

n∑

j=1

(
epY

(j)
n (t)

epY
1
n (t) + · · ·+ epY

n
n (t)

)2

σ2

(
j

n

)
,

while the quadratic variation of (logZp
n(t))t≥0 writes

(16) 〈logZp
n〉(t) =

n∑

j=1

σ2

(
j

n

)∫ t

s=0

(
epY

(j)
n (s)

epY
1
n (s) + · · ·+ epY

n
n (s)

)2

ds.

We shall prove below that the quantity

n∑

j=1

(
epY

(j)
n (t)

epY
1
n (t) + · · ·+ epY

n
n (t)

)2

σ2

(
j

n

)

is of order 1/n, so that the analysis of the long-term asymptotic portfolio performance only relies
on the analysis of the long-term asymptotic weighted capital measure.

5.2. Long-term asymptotic growth rates. We first derive laws of large numbers for the pro-
cesses (γpn(t))t≥0, (γ

p
∗,n(t))t≥0 and (Zp

n(t))t≥0, based on Proposition 3.1.

Lemma 5.1. Let us assume that the conditions of Proposition 3.1 are satisfied. Let us fix T > 0
and q ∈ [1,+∞). Then, for all p ≥ 0, when n grows to infinity,

• the growth rate (γpn(t))t∈[0,T ] and excess growth rate (γp∗,n(t))t∈[0,T ] respectively converge,

in Lq(C([0, T ],R)), to the deterministic processes (γp(t))t∈[0,T ] and (γp∗(t))t∈[0,T ] defined

by

(17) ∀t ≥ 0, γp(t) = 〈b,Πp(t)〉 , γp∗(t) =
1

2

〈
σ2,Πp(t)

〉
,

where b is the rate of return function defined by

b(u) := γ(u) +
1

2
σ2(u);

• the wealth process (Zp
n(t))t∈[0,T ] converges, in Lq(C([0, T ],R)), to the deterministic process

(Zp(t))t∈[0,T ] defined by

(18) ∀t ≥ 0, logZp(t) =

∫ t

s=0

γp(s)ds.

Proof. We first address the laws of large numbers (17) for the growth rate and excess growth rate.
On account of (15) and Proposition 3.1, it suffices to prove that

n∑

j=1

(
epY

(j)
n (t)

epY
1
n (t) + · · ·+ epY

n
n (t)

)2

σ2

(
j

n

)

converges to 0 in Lq(C([0, T ],R)). To this aim, we remark that, using the notations of Lemma A.1
in Appendix A, for all t ≥ 0,

n∑

j=1

(
epY

(j)
n (t)

epY
1
n (t) + · · ·+ epY

n
n (t)

)2

σ2

(
j

n

)
=

1

n

σ̂2
(2p)

n (t)

(1̂p
n(t))2

,
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where 1 refers to the the constant function equal to 1. By the same arguments as in Appendix A and

with the notations of Lemma A.1, we obtain that σ̂2
(2p)

n (t)/(1̂p
n(t))

2 converges, in Lq(C([0, T ],R)),

to σ̂2
(2p)

(t)/(1̂p(t))2, therefore the right-hand side above converges to 0 and (17) follows.
In addition, we deduce from the argument above and (16) that the process (〈logZp

n〉(t))t∈[0,T ]

converges in probability, in C([0, T ],R), to 0, and that the process (logZp
n(t))t∈[0,T ] converges in

probability, in C([0, T ],R), to the process (logZp(t))t∈[0,T ] defined by (18). Using the continuity
of the mapping

(y(t))t∈[0,T ] 7→
(
ey(t)

)
t∈[0,T ]

on C([0, T ],R), we deduce that the process (Zp
n(t))t∈[0,T ] converges in probability, in C([0, T ],R),

to the process (Zp(t))t∈[0,T ]. Let q ∈ [1,+∞). To conclude that the convergence also holds in
Lq(C([0, T ],R)) we prove that, for r > q,

sup
n≥1

E

(
sup

t∈[0,T ]

|Zp
n(t)|

r

)
< +∞.

This proof of this latter fact is based on Doob’s inequality in a similar fashion as at the end of the
proof of Lemma A.1. Uniformity in n follows from the fact that

〈logZp
n〉(t) ≤ ||σ2||∞

∫ t

s=0

∑n
i=1 e

2pY i
n(s)

(∑n
i=1 e

pY i
n(s)
)2 ds ≤ ||σ2||∞t.

This completes the proof. �

The deterministic processes (γp(t))t≥0, (γp∗(t))t≥0 and (Zp(t))t≥0 shall be respectively called
the asymptotic growth rate, the asymptotic excess growth rate and the asymptotic wealth pro-
cess associated with p-diversity weighted portfolios. Their long time behaviour is determined by
Proposition 3.4 as follows.

Lemma 5.2. Let us assume that the conditions of Proposition 3.4 hold, and recall the defini-

tion (12) of the critical diversity index pc ≥ 0.

• For all p ∈ [0, pc),

Gp := lim
t→+∞

γp(t) =
〈
b, Π̄p

〉
, Gp := lim

t→+∞
γp∗(t) =

1

2

〈
σ2, Π̄p

〉
.

• For all p > pc,

Gp := lim
t→+∞

γp(t) = b(1), Gp := lim
t→+∞

γp∗(t) =
1

2
σ2(1).

Proof. This result follows from a straighforward application of Proposition 3.4 and Lemma 5.1. �

The quantities Gp and Gp
∗ shall be respectively called the long-term asymptotic growth rate and

the long-term asymptotic excess growth rates. When p = pc, the limits of γpc(t) and γpc
∗ (t) when

t→ +∞ may not exist, therefore we define

Gpc := lim sup
t→+∞

γpc(t), Gpc
∗ := lim sup

t→+∞
γpc
∗ (t).

Proposition 3.4 ensures that the functions p 7→ Gp and p 7→ Gp
∗ are continuous on [0, pc), constant

on (pc,+∞), and satisfy

lim inf
p→pc

Gp ≤ Gpc ≤ lim sup
p→pc

Gp, lim inf
p→pc

Gp
∗ ≤ Gpc

∗ ≤ lim sup
p→pc

Gp
∗.

Following Subsection 5.1, the performance of the p-diversity weighted portfolio is measured by
its long-term asymptotic growth rate Gp, therefore we shall look for optimal values of the diversity
index p for which Gp is maximal.
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5.3. Montonicity criterion. We first address the monotonicity of the functions p 7→ Gp and
p 7→ Gp

∗, based on the following lemma.

Lemma 5.3. Let us assume that the conditions of Proposition 3.1 hold and fix a continuous

function f : [0, 1] → R. If f is monotonic on [0, 1], then, for all t ≥ 0, the function p 7→ 〈f,Πp(t)〉
has the same monotonicity on [0,+∞).

Proof. Let us fix a continuous function f : [0, 1] → R. By (6) and the Leibniz integral rule, for all
t ≥ 0, the function

p 7→

∫ 1

u=0

epF
−1
t (u)f(u)du

is C1 on [0,+∞), and its derivative writes

d

dp

∫ 1

u=0

epF
−1
t (u)f(u)du =

∫ 1

u=0

F−1
t (u)epF

−1
t (u)f(u)du,

from which it easily follows that the function p 7→ 〈f,Πp(t)〉 is C1 on [0,+∞) and

d

dp
〈f,Πp(t)〉 =

〈
F−1
t f,Πp(t)

〉
−
〈
F−1
t ,Πp(t)

〉
〈f,Πp(t)〉 = Cov(F−1

t (U), f(U)),

where the random variable U ∈ [0, 1] is distributed according to Πp(t).
Let us now assume that f is nondecreasing, and let U , V be independent random variables in

[0, 1] distributed according to Πp(t). Since both F−1
t and f are nondecreasing, then

(F−1
t (U)− F−1

t (V ))(f(U)− f(V )) ≥ 0,

and taking the expectation of this inequality yields

d

dp
〈f,Πp(t)〉 = Cov(F−1

t (U), f(U)) ≥ 0,

so that the function p 7→ 〈f,Πp(t)〉 is nondecreasing on [0,+∞).
If f is nonincreasing, then we replace f with −f in the argument above and the proof is

completed. �

We can now derive the following monotonicity criterion for the long-term asymptotic growth
rate and excess growth rate.

Corollary 5.4. Let us assume that the conditions of Proposition 3.4 hold.

• If the rate of return function b is monotonic on [0, 1], then the function p 7→ Gp has the

same monotonicity on [0,+∞).
• If the variance function σ2 is monotonic on [0, 1], then the function p 7→ Gp

∗ has the same

monotonicity on [0,+∞).

5.4. The reduction formula. We complete the monotonicity criterion of Corollary 5.4 by the
following reduction formula expressing the long-term asymptotic growth rate in terms of the long-
term asymptotic excess growth rate in the subcritical phase.

Proposition 5.5. Let us assume that the conditions of Proposition 3.4 hold, and that pc > 0.
Then, for all p ∈ [0, pc),

Gp = (1− p)Gp
∗ + g.

Proof. Let us assume that pc > 0 and fix p ∈ [0, pc). Using Lemma 5.2, we first write

Gp =
〈
γ, Π̄p

〉
+

1

2

〈
σ2, Π̄p

〉
=
〈
γ̃, Π̄p

〉
+ g +Gp

∗,

where we recall that γ̃(u) = γ(u) − g. Thanks to the first-order analysis of Ψ carried out in
Remark 2.5,

lim
u↓0

epΨ(u)(Γ(u)− gu) = 0, lim
u↑1

epΨ(u)(Γ(u)− gu) = lim
u↑1

(g − γ(1))(1− u)1−p/pc = 0,

so that integrating by parts yields
∫ 1

u=0

epΨ(u)γ̃(u)du = −

∫ 1

u=0

pΨ′(u)epΨ(u)(Γ(u)− gu)du = −
p

2

∫ 1

u=0

epΨ(u)σ2(u)du,
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hence 〈γ̃, Π̄p〉 = −pGp
∗. �

Remark 5.6. In the supercritical phase, elementary algebra allows to derive a similar reduction
formula, where p has to be replaced with pc, namely Gp = (1 − pc)G

p
∗ + g, for all p > pc. Both

formulas rewrite in a compact form as

∀p 6= pc, Gp = (1− p ∧ pc)G
p
∗ + g,

and this also holds true for p = pc as soon as at least one of the functions p 7→ Gp or p 7→ Gp
∗ is

continuous at pc.

5.5. Performance of the equally weighted and the market portfolio. Let us apply the
results of Proposition 5.5 to describe the performance of the equally weighted and the market
portfolio.

Equally weighted portfolio: the long-term asymptotic growth rate writes

G(0) = G
(0)
∗ + g =

1

2

∫ 1

u=0

σ2(u)du+ g > g,

so that the equally weighted portfolio grows faster than the market mean growth rate g, by a factor
depending only on the volatility structure of the market.

Market portfolio: if pc > 1, then the long-term asymptotic growth rate writes G(1) = g, so that
the market portfolio grows at the market mean growth rate. If pc < 1, then

G(1) = (1− pc)
σ2(1)

2
+ g > g,

so that the market portfolio grows faster than the market mean growth rate, by a factor depending
on both the growth rate function and the variance function of the market.

5.6. Optimal selection of portfolios and volatility structure. We now combine the results of
Corollary 5.4 and Proposition 5.5 to select the portfolio rule with best performance, depending on
the volatility structure of the market. We sum up our results in Conclusions (C1), (C2) and (C3).

Let us first assume that the variance function σ2 is nonincreasing, which matches the volatility
size effect. Then, Corollary 5.4 implies that the long-term asymptotic excess growth rate Gp

∗ is
nonincreasing on [0,+∞). Using the reduction formula of Proposition 5.5, we deduce that the
long-term asymptotic growth rate Gp is nonincreasing on [0,+∞), therefore it is maximal for
p = 0.

(C1) If the variance function is nonincreasing, then the equally weighted portfolio is optimal
among p-diversity weighted portfolios.

A particular case of a nonincreasing variance function is the case of a constant variance function.
Then, by Remark 5.6, for all p 6= pc,

(19) Gp = (1 − p ∧ pc)
σ2

2
+ g.

The expression above has the same right and left limits in pc, so that, by Remark 5.6, the for-
mula (19) is actually valid for all p ∈ [0,+∞).

(C2) If the variance function is constant, then, for all p ≥ 0, the long-term asymptotic growth
rate of the p-diversity weighted portfolio is given by the formula (19).

We finally look for conditions on the market model to produce a situation in which the equally
weighted portfolio is not optimal among p-diversity weighted portfolios. On account of Corol-
lary 5.4, this is the case if the rate of return function b is increasing on [0, 1]. In such a situation,
and under Assumptions (UE) and (E1),

b(1) = γ(1) +
1

2
σ2(1) > γ(0) +

1

2
σ2(0) > g,

so that pc < 1. Then, using the results of Subsection 5.5,

G(0) =

∫ 1

u=0

b(u)du < b(1) = G(1),
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that is to say, the market portfolio outperforms the equally weighted portfolio — and it is actually
optimal among all p-diversity weighted portfolios.

Example 5.7. Let us specify an example of a model where the market portfolio is optimal. We
use the growth rate function introduced in the mean-field approximation of the Atlas model of
Remark 1.1, γ(u) = γα(u) = g(α+ 1)(1 − u)α, with α > 0 to be specified below. Recall that this
growth rate function satisfies Assumptions (E1) and (E2). We now choose the variance function
σ2 in order to satisfy the uniform ellipticity assumption (UE) and to ensure that the rate of return
function b = γ + σ2/2 is increasing; for instance, we let

σ2(u) = 2 (C + u− γα(u)) ,

with C = 1 + g(α + 1), see Figure 4. Then, for all α > 0, b(u) = C + u is increasing and σ2

satisfies the uniform ellipticity assumption (UE). We now take α > 2 to ensure that the regularity
assumptions on γ and σ2 required in Theorem 2.4 are fulfilled. This completes the construction
of our model, and effectively provides an instance of a mean-field Atlas market model where the
market portfolio outperforms the equally weighted portfolio.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

Figure 4. The variance function σ2 for g = 1 and α taking integer values ranging
from 3 (lowest curve) to 8 (highest curve).

Example 5.7 leads to the following conclusion.

(C3) One can exhibit an example of a model where the market portfolio is optimal among all
p-diversity weighted portfolios. It is necessary that, in such a model, small stocks have a
smaller variance than large stocks, so that the volatility size effect is violated.

Appendix A. Proof of Proposition 3.1

This appendix is dedicated to the proof of Proposition 3.1. We first prove (13).
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Proof of (13). Let us fix T > 0 and p ≥ 0. By Theorem 2.1, for all t ∈ [0, T ],

Zp(t) :=

∫ 1

u=0

epF
−1
t (u)du = E

(
epY (t)

)
= E

(
epY (0)+p

∫
t

s=0
γ(Fs(Y (s)))ds+p

∫
t

s=0
σ(Fs(Y (s)))dB(s)

)

≤ ep||γ||∞T
E

(
epY (0)

E

(
ep

∫
t

s=0
σ(Fs(Y (s)))dB(s)

∣∣∣Y (0)
))

≤ ep||γ||∞T+(p2/2)||σ2||∞T

∫

y∈R

epym(dy) =: Cp
T ,

and Assumption (H) ensures that the right-hand side above is finite. �

We now address the second part of Proposition 3.1. In this purpose, we first state the following
auxiliary lemma.

Lemma A.1. Under the assumptions of Proposition 3.1, for all T > 0 and p ≥ 0, for all continuous

function f : [0, 1] → R,

lim
n→+∞

E

(
sup

t∈[0,T ]

∣∣∣f̂p
n(t)− f̂p(t)

∣∣∣
)

= 0,

where, for all t ≥ 0,

f̂p
n(t) :=

1

n

n∑

j=1

epY
(j)
n (t)f

(
j

n

)
, f̂p(t) :=

∫ 1

u=0

epF
−1
t (u)f(u)du.

Before giving the proof of Lemma A.1, let us explain how to complete the proof of Proposi-
tion 3.1: let us fix a continuous function f : [0, 1] → R, p ≥ 0 and T > 0. Then, for all t ∈ [0, T ],

〈f,Πp
n(t)〉 =

f̂p
n(t)

1̂
p
n(t)

,

where we denote by 1 the constant function equal to 1. Combining Lemma A.1 with the Slutsky
theorem, and using the continuity of the mapping

(
(x(t))t∈[0,T ], (y(t))t∈[0,T ]

)
7→

(
x(t)

y(t)

)

t∈[0,T ]

at all point ((x(t))t∈[0,T ], (y(t))t∈[0,T ]) ∈ (C([0, T ],R))2 such that, for all t ∈ [0, T ], y(t) 6= 0, we
deduce that the sequence of processes (〈f,Πp

n(t)〉)t∈[0,T ] converges in probability, in C([0, T ],R),
to the process (〈f,Πp(t)〉)t∈[0,T ] introduced in Proposition 3.1. Thanks to the elementary bound

∀t ≥ 0, |〈f,Πp
n(t)〉| ≤ ||f ||∞,

we conclude that the convergences above also hold in Lq(C([0, T ],R)), for all q ∈ [1,+∞).

Proof of Lemma A.1. Let us fix T > 0 and p ≥ 0. The key observation is that, for all t ∈ [0, T ],

the reordered vector (Y
(1)
n (t), . . . , Y

(n)
n (t)) writes

∀j ∈ {1, . . . , n}, ∀u ∈ [(j − 1)/n, j/n), Y (j)
n (t) = (H ∗ νnt )

−1(u),

where (H ∗ νnt )
−1 refers to the pseudo-inverse of the empirical cumulative distribution function of

Y 1
n (t), . . . , Y

n
n (t). Therefore, for all continuous function f : [0, 1] → R, for all t ∈ [0, T ],

∣∣∣f̂p
n(t)− f̂p(t)

∣∣∣ =

∣∣∣∣∣∣

n∑

j=1

∫ j/n

u=(j−1)/n

(
ep(H∗νn

t )−1(u)f

(
j

n

)
− epF

−1
t (u)f(u)

)
du

∣∣∣∣∣∣

≤ ||f ||∞

∫ 1

u=0

∣∣∣ep(H∗νn
t )−1(u) − epF

−1
t (u)

∣∣∣du+

n∑

j=1

∫ j/n

u=(j−1)/n

epF
−1
t (u)

∣∣∣∣f
(
j

n

)
− f(u)

∣∣∣∣du.

Combining the uniform continuity of f with (13) yields

(20) lim
n→+∞

sup
t∈[0,T ]

n∑

j=1

∫ j/n

u=(j−1)/n

epF
−1
t (u)

∣∣∣∣f
(
j

n

)
− f(u)

∣∣∣∣du = 0.
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We now fix M > 0 and write
∫ 1

u=0

∣∣∣ep(H∗νn
t )−1(u) − epF

−1
t (u)

∣∣∣du = IMn (t) + JM
n (t),

where

IMn (t) :=

∫ 1

u=0

(∣∣∣ep(H∗νn
t )−1(u) − epF

−1
t (u)

∣∣∣ ∧M
)
du,

JM
n (t) :=

∫ 1

u=0

[∣∣∣ep(H∗νn
t )−1(u) − epF

−1
t (u)

∣∣∣−M
]+

du,

with [x]+ := x ∨ 0. In Step 1 below, we shall establish that

(21) ∀M > 0, lim
n→+∞

E

(
sup

t∈[0,T ]

IMn (t)

)
= 0,

while Step 2 is dedicated to the proof of

(22) lim
M→+∞

sup
n≥1

E

(
sup

t∈[0,T ]

JM
n (t)

)
= 0.

Then, it follows from (20) and (21) that, for all M > 0,

lim sup
n→+∞

E

(
sup

t∈[0,T ]

∣∣∣f̂p
n(t)− f̂p(t)

∣∣∣
)

≤ sup
n≥1

E

(
sup

t∈[0,T ]

JM
n (t)

)
,

and the conclusion stems from (22).
Step 1. Let us first note that, by Remark 2.2, for all t ∈ [0, T ],

lim
n→+∞

E
(
IMn (t)

)
= 0,

so that, by the Slutsky theorem, the continuous process (IMn (t))t∈[0,T ] converges, in finite di-
mensional distribution, to 0. Taking for granted that the sequence of the laws of the processes
(IMn (t))t∈[0,T ], n ≥ 1 is tight, the Prohorov theorem [3, Theorem 8.1, p. 54] implies that this
sequence converges to 0 in probability in C([0, T ],R). Then, (21) follows from the uniform bound-
edness of the process (IMn (t))t∈[0,T ] with respect to n.

To complete this step, it remains to prove that the sequence of the laws of the processes
(IMn (t))t∈[0,T ], n ≥ 1 is tight. First, the sequence {IMn (0), n ≥ 1} is bounded by M , and therefore

the sequence of the laws of IMn (0), n ≥ 1 is tight. Thus, by the Kolmogorov criterion [3, Theo-
rem 12.3, p. 95], it now suffices to exhibit α ≥ 0, δ > 0 and C ≥ 0 such that, for all t, s ∈ [0, T ],

∀n ≥ 1, E
(
|IMn (t)− IMn (s)|α

)
≤ C|t− s|1+δ.

We first use the chain of elementary inequalities

∀x1, x2, y1, y2 ∈ R,
∣∣|x1 − y1| ∧M − |x2 − y2| ∧M

∣∣ ≤
∣∣|x1 − y1| − |x2 − y2|

∣∣
≤ |x1 − x2|+ |y1 − y2|

to rewrite, for all t, s ∈ [0, T ] such that s ≤ t,

|IMn (t)− IMn (s)| ≤

∫ 1

u=0

∣∣∣ep(H∗νn
t )−1(u) − ep(H∗νn

s )−1(u)
∣∣∣ du+

∫ 1

u=0

∣∣∣epF
−1
t (u) − epF

−1
s (u)

∣∣∣du.

Let us now fix α > 2. By the Jensen inequality, the inequality above yields

(23)

|IMn (t)− IMn (s)|α

≤ 2α−1

(∫ 1

u=0

∣∣∣ep(H∗νn
t )−1(u) − ep(H∗νn

s )−1(u)
∣∣∣
α

du+

∫ 1

u=0

∣∣∣epF
−1
t (u) − epF

−1
s (u)

∣∣∣
α

du

)
.
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Let us address the first term in the right-hand side of (23). Using the Jensen inequality again,
∫ 1

u=0

∣∣∣ep(H∗νn
t )−1(u) − ep(H∗νn

s )−1(u)
∣∣∣
α

du =
1

n

n∑

i=1

∣∣∣epY i
n(t) − epY

i
n(s)
∣∣∣
α

≤ 2α−1

(
1

n

n∑

i=1

∣∣∣∣
∫ t

r=s

epY
i
n(r)

(
pγin(r) +

p2

2
(σi

n(r))
2

)
dr

∣∣∣∣
α

+
1

n

n∑

i=1

∣∣∣∣
∫ t

r=s

pepY
i
n(r)σi

n(r)dB
i(r)

∣∣∣∣
α
)
.

On the one hand,

E

(∣∣∣∣
∫ t

r=s

epY
i
n(r)

(
pγin(r) +

p2

2
(σi

n(r))
2

)
dr

∣∣∣∣
α
)

≤

(
p||γ||∞ +

p2

2
||σ2||∞

)α

(t− s)α−1

∫ t

r=s

E

(
eαpY

i
n(r)
)
dr,

and by the same arguments as in the proof of (13),

∀r ∈ [0, T ], E

(
eαpY

i
n(r)
)
≤ C

(αp)
T ,

where the constant C
(αp)
T does not depend on n. As a consequence,

E

(
1

n

n∑

i=1

∣∣∣∣
∫ t

r=s

epY
i
n(r)

(
pγin(r) +

p2

2
(σi

n(r))
2

)
dr

∣∣∣∣
α
)

≤ C
(αp)
T

(
p||γ||∞ +

p2

2
||σ2||∞

)α

(t− s)α.

On the other hand, the Burkholder-Davis-Gundy inequality implies that there exists K ≥ 0
depending only on α such that

E

(∣∣∣∣
∫ t

r=s

pepY
i
n(r)σi

n(r)dB
i(r)

∣∣∣∣
α
)

≤ KE

(∣∣∣∣
∫ t

r=s

p2e2pY
i
n(r)(σi

n(r))
2dr

∣∣∣∣
α/2
)

≤ Kp2||σ2||∞(t− s)α/2−1

∫ t

r=s

E

(
eαpY

i
n(r)
)
dr

≤ Kp2||σ2||∞(t− s)α/2C
(αp)
T .

As a conclusion, there exists C′ ≥ 0 such that

E

(∫ 1

u=0

∣∣∣ep(H∗νn
t )−1(u) − ep(H∗νn

s )−1(u)
∣∣∣
α

du

)
≤ C′|t− s|α/2.

The second term of (23) rewrites
∫ 1

u=0

∣∣∣epF
−1
t (u) − epF

−1
s (u)

∣∣∣
α

du = E

(∣∣∣epF
−1
t (U) − epF

−1
s (U)

∣∣∣
α)

,

where U is a uniform random variable on [0, 1]. Note that epF
−1
t (U) has the same marginal distri-

bution as epY (t), and epF
−1
s (U) has the same marginal distribution as epY (s). By (9) and (10),

∫ 1

u=0

∣∣∣epF
−1
t (u) − epF

−1
s (u)

∣∣∣
α

du ≤ E

(∣∣∣epY (t) − epY (s)
∣∣∣
α)

,

and the same arguments as for the first term in the right-hand side of (23) allow us to conclude
that the right-hand side above is bounded by C′(t− s)α/2. As a conclusion,

E
(
|IMn (t)− IMn (s)|α

)
≤ 2α−1C′(t− s)α/2,

therefore the sequence of the laws of (IMn (t))t≥0, n ≥ 1 is tight.
Step 2. Using the chain of elementary inequalities

∀x, x′ ∈ R, [|x− x′| −M ]+ ≤ |x− x′|1{|x−x′|≥M}

≤ |x− x′|1{|x|≥|x′|∨M/2} + |x− x′|1{|x′|≥|x|∨M/2}

≤ 2|x|1{|x|≥M/2} + 2|x′|1{|x′|≥M/2},
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we obtain

JM
n (t) ≤

∫ 1

u=0

ep(H∗νn
t )−1(u)

1
{ep(H∗νn

t
)−1(u)≥M/2}

du+

∫ 1

u=0

epF
−1
t (u)

1
{epF

−1
t

(u)≥M/2}
du.

By the Markov inequality,

∫ 1

u=0

epF
−1
t (u)

1
{epF

−1
t

(u)≥M/2}
du ≤

2

M

∫ 1

u=0

e2pF
−1
t (u)du,

so that (13) applied with 2p leads to

lim
M→+∞

sup
t∈[0,T ]

∫ 1

u=0

epF
−1
t (u)

1
{epF

−1
t

(u)≥M/2}
du = 0.

We complete this step by proving that

(24) lim
M→+∞

sup
n≥1

E

(
sup

t∈[0,T ]

∫ 1

u=0

ep(H∗νn
t )−1(u)

1
{ep(H∗νn

t
)−1(u)≥M/2}

du

)
= 0.

To this aim, we first write

sup
t∈[0,T ]

∫ 1

u=0

ep(H∗νn
t )−1(u)

1
{ep(H∗νn

t
)−1(u)≥M/2}

du = sup
t∈[0,T ]

1

n

n∑

j=1

epY
j
n (t)

1
{epY

j
n(t)≥M/2}

= sup
t∈[0,T ]

1

n

n∑

i=1

epY
i
n(t)1

{epY
i
n(t)≥M/2}

≤
1

n

n∑

i=1

sup
t∈[0,T ]

epY
i
n(t)1

{epY
i
n(t)≥M/2}

,

so that, owing to the exchangeability of the processes (Y 1
n (t))t∈[0,T ], . . . , (Y

n
n (t))t∈[0,T ],

E

(
sup

t∈[0,T ]

∫ 1

u=0

ep(H∗νn
t )−1(u)

1
{ep(H∗νn

t
)−1(u)≥M/2}

du

)
≤ E

(
sup

t∈[0,T ]

epY
1
n (t)

1
{epY

1
n(t)≥M/2}

)

≤ E
(
Mn(T )1{Mn(T )≥M/2}

)
,

where Mn(T ) := supt∈[0,T ] e
pY 1

n (t). Hence, to obtain (24), it suffices to prove the uniform inte-

grability of the sequence of random variables (Mn(T ))n≥1; thus, it suffices to exhibit q > p such
that

(25) sup
n≥1

E

(
sup

t∈[0,T ]

eqY
1
n (t)

)
< +∞.

To carry this task out, we fix q > p. Proceeding as in the proof (13), we write

E

(
sup

t∈[0,T ]

eqY
1
n (t)

)
≤ eq||γ||∞T

E

(
eqY

1
n (0) sup

t∈[0,T ]

eq
∫

t

s=0
σ1
n(s)dB1(s)

)

= eq||γ||∞T
E

(
eqY

1
n (0)

E

(
sup

t∈[0,T ]

eq
∫

t

s=0
σ1
n(s)dB1(s)

∣∣∣Y 1(0)

))
.

For all t ∈ [0, T ],

eq
∫

t

s=0
σ1
n(s)dB

1(s) ≤ E(t)2e(q
2/4)||σ2||∞T ,

where (E(t))t≥0 is the exponential martingale defined by

∀t ≥ 0, E(t) := e(q/2)
∫

t

s=0
σ1
n(s)dB

1(s)−(q2/8)
∫

t

s=0
(σ1

n(s))
2ds.
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By Doob’s inequality,

E

(
sup

t∈[0,T ]

E(t)2
∣∣∣Y 1(0)

)
≤ 4E

(
E(T )2

∣∣∣Y 1(0)
)

= 4E
(
eq

∫
T

s=0
σ1
n(s)dB1(s)−(q2/4)

∫
T

s=0
(σ1

n(s))2ds
∣∣∣Y 1(0)

)

≤ 4E
(
eq

∫
T

s=0
σ1
n(s)dB1(s)−(q2/2)

∫
T

s=0
(σ1

n(s))2ds
∣∣∣Y 1(0)

)
e(q

2/4)||σ2||∞T

= 4e(q
2/4)||σ2||∞T .

As a consequence,

E

(
sup

t∈[0,T ]

eq
∫

t

s=0
σ1
n(s)dB

1(s)
∣∣∣Y 1(0)

)
≤ 4e(q

2/2)||σ2||∞T ,

so that, finally,

E

(
sup

t∈[0,T ]

eqY
1
n (t)

)
≤ 4eq||γ||∞T+(q2/2)||σ2||∞T

E

(
eqY

1
n (0)

)

= 4eq||γ||∞T+(q2/2)||σ2||∞T

∫

y∈R

eqym(dy).

By Assumption (H), the right-hand side above is finite and does not depend on n. Therefore, (25)
is satisfied and the proof of (22) is completed. �

Appendix B. Long time behaviour of the asymptotic capital measure

This appendix is dedicated to the proof of Lemma 3.2 and Proposition 3.4. We first discuss the
finiteness of

Z̄p =

∫ 1

u=0

epΨ(u)du.

Lemma B.1. Let us assume that the uniform ellipticity condtion (UE) and the equilibrium con-

dition (E1) hold, and recall the definition (12) of the critical diversity index pc ≥ 0.

• if pc > 0, then for all p ∈ [0, pc), Z̄
p < +∞;

• for all p ∈ (pc,+∞), Z̄p = +∞.

Proof. We shall distinguish between the exponential case pc > 0 and the heavy-tailed case pc = 0.
Exponential case, pc > 0: then γ(1) < g. Let η > 0 be small enough for the inequalities σ2(1) > η
and g − γ(1) > η to hold. Recall that σ2(1) > 0 due to Assumption (UE). Then, there exists
u∗ ∈ [0, 1) such that, for all v ∈ [u∗, 1],

σ2(1)− η ≤ σ2(v) ≤ σ2(1) + η,

g − γ(1)− η ≤
Γ(v)− gv

1− v
≤ g − γ(1) + η,

so that, for all u ∈ [u∗, 1),

σ2(1)− η

2(g − γ(1) + η)
log

(
1− u∗

1− u

)
≤ Ψ(u)−Ψ(u∗) ≤

σ2(1) + η

2(g − γ(1)− η)
log

(
1− u∗

1− u

)
.

As a consequence, for all p ≥ 0, for all u ∈ [u∗, 1),

(26) C−(η)

∫ u

v=u∗

(1− v)−β−(η)dv ≤

∫ u

v=u∗

epΨ(v)dv ≤ C+(η)

∫ u

v=u∗

(1− v)−β+(η)dv,

where

β−(η) := p
σ2(1)− η

2(g − γ(1) + η)
, C−(η) := epΨ(u∗)(1− u∗)β−(η),

β+(η) := p
σ2(1) + η

2(g − γ(1)− η)
, C+(η) := epΨ(u∗)(1− u∗)β+(η).



CAPITAL DISTRIBUTION AND PORTFOLIO PERFORMANCE IN THE MEAN-FIELD ATLAS MODEL 27

Certainly, Z̄p is finite if and only if the limit when u ↑ 1 of the central term in the inequality (26)
is finite.

• If p ∈ [0, pc), then for η small enough, β+(η) < 1, so that the right-hand side of (26) admits
a finite limit when u ↑ 1.

• If p > pc, then for η small enough, β−(η) > 1, so that the left-hand side of (26) grows to
+∞ when u ↑ 1.

This completes the proof in the case pc > 0.
Heavy-tailed case, pc = 0: then γ(1) = g. Note that we only have to address the case p > pc.

Let p > 0 and let η > 0 small enough for the inequality ap/(2η) ≥ 1 to hold, where a :=
infu∈[0,1] σ

2(u) > 0 due to Assumption (UE). Then, there exists u∗ ∈ [0, 1) such that, for all
v ∈ [u∗, 1],

Γ(v)− gv ≤ η(1− v),

so that, for all u ∈ [u∗, 1),

Ψ(u) = Ψ(u∗) +

∫ u

v=u∗

σ2(v)

2(Γ(v)− gv)
dv ≥ Ψ(u∗) +

a

2η
(log(1− u∗)− log(1− u)) .

As a consequence,

epΨ(u) ≥ epΨ(u∗)+a log(1−u∗)/(2η)(1 − u)−ap/(2η),

and the choice of η ensures that the integral of the right-hand side above diverges to +∞ in 1.
This completes the proof in the case pc = 0. �

Remark B.2. At the criticality, whether Z̄pc = +∞ or Z̄pc < +∞ cannot be a priori determined.
Indeed, on the one hand, for the choice of coefficients introduced in Example 3.3, it is easily checked
that Z̄pc = +∞. On the other hand, assume that pc > 0 and the coefficients γ and σ are chosen
so that the asymptotic expansion of Ψ writes

Ψ(u) =
1

pc
(− log(1 − u)− β log (− log(1− u))) + O

u↑1
(1), β > 1.

Then, it is straightforward to check that Z̄pc < +∞.

We now complete the proof of Lemma 3.2.

Proof of Lemma 3.2. By Lemma B.1, Z̄p < +∞ for all p ∈ [0, pc), so that the probability distri-
bution Π̄p is well-defined. We now fix a continuous function f : [0, 1] → R and prove that the
function p 7→ 〈f, Π̄p〉 is continuous on [0, pc). Certainly, it suffices to prove that, for all p ∈ [0, pc),

(27) lim
p′→p

∫ 1

u=0

ep
′Ψ(u)f(u)du =

∫ 1

u=0

epΨ(u)f(u)du.

Let us fix p ∈ [0,+∞). Then, for all u ∈ (0, 1),

lim
p′→p

ep
′Ψ(u)f(u) = epΨ(u)f(u),

while, taking q ∈ (p, pc), we write

∀p′ ∈ [0, q],
∣∣∣ep′Ψ(u)f(u)

∣∣∣ ≤ eq[Ψ(u)]+ ||f ||∞,

where we recall that [ψ]+ := ψ∨0. It easily follows from Lemma B.1 that the right-hand side above
is integrable on [0, 1], so that (27) stems from the dominated convergence theorem. Note that the
same arguments allow to prove that, if Z̄pc < +∞, then the function p 7→ 〈f, Π̄p〉 is continuous on
[0, pc].

To complete the proof, it remains to show that, if Z̄pc = +∞, then limp↑pc〈f, Π̄
p〉 = f(1). In

this purpose, we assume that Z̄pc = +∞. Then, Fatou’s lemma immediately yields

lim
p↑pc

∫ 1

u=0

epΨ(u)du = +∞.
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Let η > 0, then by the continuity of f , there exists u∗ ∈ [0, 1) such that, for all u ∈ [u∗, 1],
f(1)− η ≤ f(u) ≤ f(1) + η. Let us define, for all p ∈ [0, pc),

If (p) :=

∫ u∗

u=0

epΨ(u)f(u)du

∫ 1

u=0

epΨ(u)du

, I(p) :=

∫ u∗

u=0

epΨ(u)du

∫ 1

u=0

epΨ(u)du

,

and write

〈
f, Π̄p

〉
= If (p) +

∫ 1

u=u∗

epΨ(u)f(u)du

∫ 1

u=0

epΨ(u)du

,

so that

If (p) + (f(1)− η)(1 − I(p)) ≤
〈
f, Π̄p

〉
≤ If (p) + (f(1) + η)(1 − I(p)).

Observing that

lim sup
p↑pc

∣∣∣∣∣

∫ u∗

u=0

epΨ(u)f(u)du

∣∣∣∣∣ ≤ ||f ||∞

∫ u∗

u=0

epcΨ(u)du < +∞,

we deduce that If (p) and I(p) vanish when p ↑ pc. The conclusion is straightforward. �

We now prove Proposition 3.4. We shall use the following result regarding the convergence in
Wasserstein distance.

Lemma B.3. Let (Gt)t≥0 be a family of cumulative distribution functions on R and G∞ be a

cumulative distribution function on R, such that:

• there exists q ≥ 1 such that limt→+∞Wq(Gt, G∞) = 0,
• the probability distribution with cumulative distribution function G∞ admits a positive

density with respect to the Lebesgue measure on R, so that both G∞ and G−1
∞ are continuous,

respectively on R and (0, 1).

Then, for all y ∈ R, limt→+∞Gt(y) = G∞(y), and for all u ∈ (0, 1), limt→+∞G−1
t (u) = G−1

∞ (u).

Proof. Since the Wasserstein distance metrizes the weak convergence, Gt converges weakly to G∞.
This classically implies that Gt(y) converges to G∞(y) for all continuity point y ∈ R of G∞ [7,
Theorem 2.2, p. 86], and G−1

t (u) converges to G−1
∞ (u) for all continuity point u ∈ (0, 1) of G−1

∞ [7,
Theorem 2.1, p. 85]. Since G∞ is continuous on R and G−1

∞ is continuous on (0, 1), then the proof
is completed. �

Proof of Proposition 3.4. Let us assume that the conditions of Theorem 2.4 and Proposition 3.1
are satisfied. Recall that the critical diversity index pc ≥ 0 is defined in (12).

Subcritical case. Let us assume that pc > 0 and let p ∈ [0, pc). Following §3.2.1, it suffices to
prove that, for all continuous function f : [0, 1] → R,

(28) lim
t→+∞

∫ 1

u=0

epF̃
−1
t (u)f(u)du =

∫ 1

u=0

epF̃
−1
∞ (u)f(u)du,

where the cumulative distribution function F̃∞ is defined by Theorem 2.4. Combining the latter
with Lemma B.3, it is already known that, for all u ∈ (0, 1), limt→+∞ F̃−1

t (u) = F̃−1
∞ (u). As a

consequence, and since f is bounded, (28) follows if we exhibit q > p such that

(29) sup
t≥0

∫ 1

u=0

eqF̃
−1
t (u)du < +∞.

In this purpose, let us fix q ≥ 0 such that p < q < pc and remark that
∫ 1

u=0

eqF̃
−1
t (u)du = E

(
eqỸ (t)

)
.
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By Itô’s formula and (13),

d

dt
E

(
eqỸ (t)

)
= E

(
eqỸ (t)b̃q(F̃t(Ỹ (t)))

)
,

where b̃q(u) := qγ̃(u) + q2σ2(u)/2. It follows from a straightforward analysis of the function

q 7→ b̃q(1) that, since q < pc, then b̃q(1) < 0. Therefore, by the continuity of b̃q, there exist η > 0

and u∗ ∈ [0, 1) such that, for all u ∈ [u∗, 1], b̃q(u) ≤ −η. As a consequence, for all t ≥ 0,

E

(
eqỸ (t)b̃q(F̃t(Ỹ (t)))

)

= E

(
eqỸ (t)b̃q(F̃t(Ỹ (t)))1{F̃t(Ỹ (t))<u∗}

)
+ E

(
eqỸ (t)b̃q(F̃t(Ỹ (t)))1{F̃t(Ỹ (t))≥u∗}

)

≤ E

(
eqỸ (t)b̃q(F̃t(Ỹ (t)))1{F̃t(Ỹ (t))<u∗}

)
− ηE

(
eqỸ (t)

1{F̃t(Ỹ (t))≥u∗}

)

≤ (||b̃q||∞ + η)E
(
eqỸ (t)

1{F̃t(Ỹ (t))<u∗}

)
− ηE

(
eqỸ (t)

)
.

For all t ≥ 0, the definition of F̃−1
t and the right continuity of F̃t yield, for all u ∈ (0, 1),

F̃t(F̃
−1
t (u)) ≥ u. As a consequence,

E

(
eqỸ (t)

1{F̃t(Ỹ (t))<u∗}

)
=

∫ 1

u=0

eqF̃
−1
t (u)

1{F̃t(F̃
−1
t (u))<u∗}du ≤

∫ u∗

u=0

eqF̃
−1
t (u)du ≤ u∗eqF̃

−1
t (u∗),

and the right-hand side converges to u∗eqF̃
−1
∞ (u∗) < +∞ when t → +∞. As a consequence, there

exists C < +∞ such that
d

dt
E

(
eqỸ (t)

)
≤ C − ηE

(
eqỸ (t)

)
,

and (29) follows from Gronwall’s lemma.
Supercritical case. For p > pc ≥ 0, Theorem 2.4, Fatou’s lemma and Lemma B.1 yield

(30) lim
t→+∞

∫ 1

u=0

epF̃
−1
t (u)du = +∞.

Let η > 0. By the continuity of f , there exists u∗ ∈ [0, 1) such that, for all u ∈ [u∗, 1], f(1)− η ≤

f(u) ≤ f(1) + η. Besides, there exists M > 0 such that F̃∞(M) > u∗. Then, for all t ≥ 0,
∫ 1

u=0

epF̃
−1
t (u)f(u)du = E

(
epY (t)f(F̃t(Ỹ (t)))

)

= E

(
epỸ (t)f(F̃t(Ỹ (t)))1{Ỹ (t)<M}

)
+ E

(
epỸ (t)f(F̃t(Ỹ (t)))1{Ỹ (t)≥M}

)
.

On the one hand,

E

(
epỸ (t)f(F̃t(Ỹ (t)))1{Ỹ (t)<M}

)
≤ ||f ||∞epM ,

so that

lim
t→+∞

E

(
epỸ (t)f(F̃t(Ỹ (t)))1{Ỹ (t)<M}

)

E

(
epỸ (t)

) = 0.

On the other hand, since Lemma B.3 implies that limt→+∞ F̃t(M) = F̃∞(M), then for t large

enough one has, for all y ≥M , F̃t(y) ≥ F̃t(M) ≥ u∗. Therefore, for t large enough,

f(1)− η ≤
E

(
epỸ (t)f(F̃t(Ỹ (t)))1{Ỹ (t)≥M}

)

E

(
epỸ (t)1{Ỹ (t)≥M}

) ≤ f(1) + η,

while E

(
epỸ (t)

1{Ỹ (t)≥M}

)
/E
(
epỸ (t)

)
converges to 1. As a conclusion,

f(1)− η ≤ lim inf
t→+∞

∫ 1

u=0

epF̃
−1
t (u)f(u)du

∫ 1

u=0

epF̃
−1
t (u)du

≤ lim sup
t→+∞

∫ 1

u=0

epF̃
−1
t (u)f(u)du

∫ 1

u=0

epF̃
−1
t (u)du

≤ f(1) + η,
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and the proof of the supercritical case is completed.
Criticality, case Z̄pc = +∞. Note that the proof in the supercritical case above only requires

that p be such that (30) holds. As soon as Z̄pc = +∞, Fatou’s lemma implies that (30) holds with
p = pc, so that we similarly obtain that limt→+∞〈f,Πpc(t)〉 = f(1).

Criticality, case Z̄pc < +∞. We finally assume that Z̄pc < +∞ and prove (14). In this purpose,
we let ℓ ∈ [−||f ||∞, ||f ||∞] be the limit of a converging sequence (〈f,Πpc(tk)〉)k≥1, where tk grows
to infinity with k. We shall prove that

(31) f(1) ∧
〈
f, Π̄pc

〉
≤ ℓ ≤ f(1) ∨

〈
f, Π̄pc

〉
.

First, we deduce from Fatou’s lemma that there exists a subsequence of (tk)k≥1, that we still
index by k for convenience, such that

lim
k→+∞

∫ 1

u=0

epcF̃
−1
tk

(u)du = I ∈ [J,+∞],

where

J :=

∫ 1

u=0

epcF̃
−1
∞ (u)du < +∞.

Let us now fix η > 0. By the continuity of f , there exists u∗ ∈ [0, 1) such that, for all u ∈ [u∗, 1],

f(1) − η ≤ f(u) ≤ f(1) + η. Now let M ≥ 0 be large enough for the inequality F̃∞(M) > u∗ to
hold. Then, for all k ≥ 1,

〈f,Πpc(tk)〉 =

∫ 1

u=0

epcF̃
−1
tk

(u)f(u)1{F̃−1
tk

(u)≤M}du

∫ 1

u=0

epcF̃
−1
tk

(u)du

+

∫ 1

u=0

epcF̃
−1
tk

(u)f(u)1{F̃−1
tk

(u)>M}du

∫ 1

u=0

epcF̃
−1
tk

(u)du

.

On the one hand, since the equilibrium distribution does not weight points,

lim
k→+∞

∫ 1

u=0

epcF̃
−1
tk

(u)f(u)1{F̃−1
tk

(u)≤M}du =

∫ 1

u=0

epcF̃
−1
∞ (u)f(u)1{F̃−1

∞ (u)≤M}du =: JM
f ,

and the limit is finite. As a consequence,

lim
k→+∞

∫ 1

u=0

epcF̃
−1
tk

(u)f(u)1{F̃−1
tk

(u)≤M}du

∫ 1

u=0

epcF̃
−1
tk

(u)du

=
JM
f

I
,

where it is understood that the limit is null whenever I = +∞.
On the other hand, by Lemma B.3, for k large enough, Ftk(M) ≥ u∗ so that

(f(1)− η)

∫ 1

u=0

epcF̃
−1
tk

(u)
1{F̃−1

tk
(u)>M}du

≤

∫ 1

u=0

epcF̃
−1
tk

(u)f(u)1{F̃−1
tk

(u)>M}du ≤ (f(1) + η)

∫ 1

u=0

epcF̃
−1
tk

(u)
1{F̃−1

tk
(u)>M}du,

therefore

(f(1)− η)


1−

∫ 1

u=0

epcF̃
−1
tk

(u)
1{F̃−1

tk
(u)≤M}du

∫ 1

u=0

epcF̃
−1
tk

(u)du




≤

∫ 1

u=0

epcF̃
−1
tk

(u)f(u)1{F̃−1
tk

(u)>M}du

∫ 1

u=0

epcF̃
−1
tk

(u)du

≤ (f(1) + η)


1−

∫ 1

u=0

epcF̃
−1
tk

(u)
1{F̃−1

tk
(u)≤M}du

∫ 1

u=0

epcF̃
−1
tk

(u)du


 ,

As a consequence,

JM
f

I
+ (f(1)− η)

(
1−

JM

I

)
≤ ℓ ≤

JM
f

I
+ (f(1) + η)

(
1−

JM

I

)
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where

JM := lim
k→+∞

∫ 1

u=0

epcF̃
−1
tk

(u)
1{F̃−1

tk
(u)≤M}du =

∫ 1

u=0

epcF̃
−1
∞ (u)

1{F̃−1
∞ (u)≤M}du.

By the dominated convergence theorem,

lim
M→+∞

JM
f = Jf :=

∫ 1

u=0

epcF̃
−1
∞ (u)f(u)du, lim

M→+∞
JM = J,

so that
Jf
I

+ (f(1)− η)

(
1−

J

I

)
≤ ℓ ≤

Jf
I

+ (f(1) + η)

(
1−

J

I

)
,

and letting η vanish yields

ℓ =
Jf
I

+ f(1)

(
1−

J

I

)
.

We conclude by remarking that J/I ∈ [0, 1], while

Jf
I

=
Jf
J

J

I
=
〈
f, Π̄pc

〉 J
I
,

so that ℓ writes as a convex combination of 〈f, Π̄pc〉 and f(1) and therefore satisfies (31). �

Appendix C. Removing the uniform ellipticity assumption

This appendix is dedicated to the extension of Theorem 2.1 to the case of a non uniformly
elliptic variance function σ2.

For the process of log-capitalizations (Y 1
n (t), . . . , Y

n
n (t))t≥0 to remain defined under the non-

degeneracy assumption (ND), it is first necessary to modify the volatility coefficients in (5) as
follows:

∀j ∈ {1, . . . , n}, σj
n = cn + σ(j/n),

where (cn)n≥1 is a sequence of positive numbers such that limn→+∞ cn = 0. This modification
of the volatility coefficients does not affect neither the results of Section 2, nor the sequel of the
argument.

Theorem C.1. Let us define the process of log-capitalizations (Y 1
n (t), . . . , Y

n
n (t))t≥0 as is indicated

above. Assume that the variance function σ2 satisfies the nondegeneracy condition (ND), and

that the probability distribution m admits a finite first order moment, and satisfies the following

conditions:

• if σ2(0) = 0, then for all y ∈ R, m((−∞, y]) > 0,
• if σ2(1) = 0, then for all y ∈ R, m((y,+∞)) > 0.

Then, the conclusions of Theorem 2.1 and Remark 2.2 remain valid.

Proof. If σ2(1) > 0, then the result was proved in [19, Corollary 2.13]. Let us recall the sketch
of this proof and indicate how to modify it in order to take the possible degeneracy in 1 into
account. Under the assumptions (ND) and that m has a finite first order moment, the proof of [19,
Lemma 2.3] implies that the sequence of the laws of (νn)n≥1 is tight. Hence, one can extract a
subsequence (that we still denote by (νn)n≥1 for convenience) converging, in distribution, to a
random variable ν∞ ∈ P(C([0,+∞),R)). The conclusion of Theorem C.1 follows from the two
following assertions:

(1) almost surely, ν∞ is a weak solution to the nonlinear stochastic differential equation (11),
(2) there is at most one weak solution to the nonlinear stochastic differential equation (11).

In the case σ2(1) > 0, Assertion (1) was proved in [19, Lemma 2.10], while Assertion (2) was
proved in [19, Lemma 2.12].

The proof of [19, Lemma 2.10] essentially relies on the fact that, almost surely, dt-almost every-
where, the time marginal distribution ν∞t does not weight points. We prove that this statement
still holds true under the assumptions of Theorem C.1 and refer to the proof of [19, Lemma 2.10]
to deduce that Assertion (1) above holds. Following the proof of [19, Lemma 2.10], almost surely,
for all t ≥ 0, ν∞t = Pt, where the flow of probability distributions (Pt)t≥0 is characterized by [19,
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Proposition 2.1] as follows: the function (t, y) 7→ H ∗ Pt(y) is the unique weak solution Ft to the
nonlinear Cauchy problem

(32)




∂tFt(y) =

1

2
∂2y(A(Ft(y)))− ∂y(Γ(Ft(y))),

F0(y) = H ∗m(y),

where A is the antiderivative of the variance function σ2. Therefore it is enough to prove that,
dt-almost everywhere, the function y 7→ Ft(y) is continuous on R. In this purpose, we used in
the proof of [19, Lemma 2.10] the following argument: let us define the functions σ̄ and γ̄ on
[0,+∞)× R by

σ̄2(t, y) :=





σ2(Ft(y)) if Pt({y}) = 0,

A(Ft(y))−A(Ft(y
−))

Pt({y})
if Pt({y}) > 0,

and γ̄(t, y) is similarly defined replacing σ2 with γ and A with Γ. Then, using a result by Figalli [13],
we obtained that, for all t ≥ 0, Pt is the time marginal distribution of a weak solution (Ȳ (t))t≥0

to the stochastic differential equation

dȲ (t) = γ̄(t, Ȳ (t))dt + σ̄(t, Ȳ (t))dW̄ (t).

The representation above allowed us to use Krylov’s estimate [4] to conclude that, as soon as the
following condition holds: for all t ≥ 0,

(33) Pt({y ∈ R : σ̄2(t, y) = 0}) = 0,

then dt-almost everywhere, Pt does not weight points. Thus, to complete the proof of Assertion (1)
above, we now prove that (33) holds under the assumptions of Theorem C.1. Let t ≥ 0. First,
the nondegeneracy assumption (ND) implies that A is increasing, so that for all y ∈ R such that
Pt({y}) > 0, then σ̄2(t, y) > 0. As a consequence, for all y ∈ R, if σ̄2(t, y) = 0 then σ2(Ft(y)) = 0.
Due to the nondegeneracy assumption (ND), this implies that either Ft(y) = 0 or Ft(y) = 1.

On the one hand, since Ft is nothing but the cumulative distribution function of Pt, then
Pt({y ∈ R : Ft(y) = 0}) = 0. On the other hand, the set {y ∈ R : Ft(y) = 1} is either empty
or has the form [ȳ,+∞) with Pt({ȳ}) > 0, Pt((ȳ,+∞)) = 0. In both cases, Pt({y ∈ R : Ft(y) =
1, σ̄2(t, y) = 0}) = 0 and the proof of (33) is completed.

Let us now address the proof of Assertion (2) above; namely, that there is at most one weak
solution to the nonlinear stochastic differential equation (11). In [19, Lemma 2.12], this result relies
on a criterion by Stroock and Varadhan [30], that only requires the function (t, y) 7→ σ2(Ft(y))
to be uniformly positive on the compact sets of [0,+∞)× R. The adaptation of the proof of [19,
Lemma 2.12] is straightforward: under the nondegeneracy assumption (ND), the assumptions made
on the initial distribution m ensure that Ft(y) does not approach the possible degeneracy points 0
and 1 when (t, y) remains in a compact set of [0,+∞)× R. �
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