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Abstract:

Rain gauges and weather radars do not measufallranhthe same scale; roughly 20
cm for the former and 1 km for the latter. Thisngiigant scale gap is not taken into account
by standard comparison tools (e.g. cumulative deptkies, normalized bias, RMSE) despite
the fact that rainfall is recognized to exhibitrexnhe variability at all scales. In this paper we
suggest to revisit the debate of the representads of point measurement by explicitly
modelling small scale rainfall variability with theelp of Universal Multifractals. First the
downscaling process is validated with the help afease networks of 16 disdrometers (in
Lausanne, Switzerland), and one of 16 rain gauBesdford, United Kingdom) both located
within a 1 knf area. Second this downscaling process is usedaloate the impact of small
scale (i.e.: sub - radar pixel) rainfall varialyilbn the standard indicators. This is done with
rainfall data from the Seine-Saint-Denis Countya(fée). Although not explaining all the
observed differences, it appears that this impastignificant which suggests changing some
usual practice.

Keywords: radar - rain gauge comparison, Unive¥daltifractals, downscaling

1) Introduction

The most commonly used rainfall measurement ds\ace tipping bucket rain gauges,
disdrometers, weather radars and (passive or aceresors onboard satellites. In this paper
we focus on the observation scale gap betweemthdrst devices which are considered here
as point measurements and weather radars. A raigeggpically collects rainfall at ground
level over a circular area with a diameter of 20 amd the sample area of operational
disdrometers is roughly 50 émwhereas a radar scans the atmosphere over a @alinose
projected area is roughly 1 Knffor standard C-band radar operated by most ofrbstern
Europe meteorological national services). Henceemfagion scales differ with a ratio of
approximately 10between the two devices. A basic consequence,{élson, 1979), is that
direct comparison of the outputs of the two sensoas least problematic.
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Standard comparison between rain gauge and raotdialt measurements are based on
scatter plots, rain rate curves, cumulative rainfEpth curves, and the computation of
various scores such as normalized bias, correlabeifficient, root mean square errors, Nash-
Sutcliffe coefficient etc. (see e.g., Diss et 2009; Emmanuel et al., 2012; Figueras | Ventura
et al., 2012; Krajewski et al., 2010; Moreau e2809). Despite usually being mentioned the
issue of the representativeness of point measute(hendisdrometer or rain gauge) with
regards to average measurements (i.e. radar) isabgsnot taken into account and its
influence on the standard scores is not assessetheFmore the authors who addressed it
either to separate instrumental errors from reprtes®eness errors (Ciach et al., 1999, Zhang
et al., 2007; Moreau et al. 2009), or to introdaceadditional score taking into account an
estimation of the representativeness error (Emmaetua., 2012; Jaffrain and Berne, 2012)
all rely on a geostatistical framework which magyde¢o underestimate rainfall variability and
especially the extremes. Indeed this frameworkrassuhat the rainfall field or a transform
of it is Gaussian, which does not enable to fudketinto account the fact that the extremes of
rainfalls exhibit a power law behaviour as it hagf shown by various authors (Schertzer et
al., 2010; Hubert, 2001; Ladoy et al., 1993; de diand Grassman, 1999; Schertzer and
Lovejoy, 1992).

In this paper we suggest to revisit how the regmegiveness issue is taken into account
in standard comparison tools between point measnerdevices (disdrometers or rain
gauges) and radar rainfall measurements by explinibdelling the small scale rainfall
variability with the help of Universal Multifractal(Schertzer and Lovejoy, 1987). They rely
on the physically based notion of scale-invariaand on the idea that rainfall is generated
through a multiplicative cascade process. They Hmen extensively used to analyse and
simulate geophysical fields extremely variable owegte range of scales (see Schertzer and
Lovejoy 2011 for a recent review). The issue otrimmental errors is not addressed in this
paper.

The standard comparison tools are first preseatedimplemented on 4 rainfall events
over the Seine-Saint-Denis County for which radad aain gauges measurements are
available (section 2). A downscaling process intheggested and validated with two dense
networks of point measurement devices (disdrometerain gauges) (section 3). Finally the
influence of small scale rainfall variability onettstandard scores is assessed and discussed
(section 5).

2) Standard comparison

2.1) Rainfall data in Seine-Saint-Denis (France)

The first data set used in this paper consistthénrainfall measured by 26 tipping
bucket rain gauges distributed over the 236 I8rine-Saint-Denis County (North-East of
Paris). The rain gauges are operated by the Dmediau et Assainissement (the local
authority in charge of urban drainage). The temipasolution is 5 minutes. For each rain
gauge the data is compared with the correspone@idgrrpixel of the French radar mosaic of
Météo-France whose resolution is 1 km in spacefanain in time (see Tabary, 2007, for
more details about the radar processing). The slaselar is the C-band radar of Trappes,
which is located South-West of Seine-Saint-Denisir®p. The distance between the radar
and the rain gauges ranges from 28 Km to 45 Km.Fgel mapping the location of the rain
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gauges and the radar pixels. Four rainfall everitese main features are presented Table 1
are analysed in this study. They were selectede(eslty the last three) being among the
heaviest observed events.

2.2) Scores

The radar and rain gauge measurements of thestoied rainfall events over the
Seine-Saint-Denis County are compared with the lo¢élgcores commonly used for such
tasks (Diss et al., 2009; Emmanuel et al., 201@uéiias | Ventura et al., 2012; Krajewski et
al., 2010; Moreau et al. 2009):
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(Eq. 3)

- The Root mean square err®MSE), which varies between 0 antlo and whose optimal

Z(R _Gi)2

value is 0 :RMSE = D'T (Eq. 4)

- The Sope and Offset of the orthogonal linear regression. It minimizbée orthogonal
distance from the data points to the fitted liretcary to the ordinary linear regression which
minimizes the vertical distance and hence consideesof the data types as reference which
is not the case for the orthogonal regression. tienal values are respectively 1 and 0.

- The percentage (24 of radar time stepsR() contained in the intervdG, /1.515G,] (it

should be mentioned that this score is less comynasgd than the others, 1.2 and 2 instead
of 1.5 were also tested and yield similar resuligctv are not presented here).

WhereR andG correspond respectively to radar and rain gautge && denotes the average.
Time steps (indekin the previous formulas) of either a single evanall of them are used in
the sum for each indicator. The time step usualhsimered by meteorologist is one hour. As
in Emmanuel et al. (2012) and Diss et al. (2012xddition we will consider time steps of 5
and 15 min which are particularly important for ieais practical applications in urban
hydrology (Berne et al., 2004; Gires et al., 2012t}this paper in order to limit the influence
of time steps with low rain rate and especially zkeeos rainfall time steps on the indicators,
we only take into account the time steps for wlilod average rain rate measured by either
the radar or the rain gauges is greater than 1 n{fidueras i Ventura et al., 2012). The
results are presented for an identical threshold thee various time steps. However,
conclusions on the relation between the scorediffarent thresholds remain similar but with
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slightly different score values. The scatter plat &l the events is visible in Fig. 2. The
values of the scores are displayed in Fig. 3 fer4hevents, while the summary for all the
events is given in Tab. 2. Whatever the case, a&llrdin gauges are considered at once,
implying that the influence of the distance betweke rain gauges and the radar is not
analysed here. This choice was made because thencisranges from 28 Km 45 Km
according to the rain gauge which is not signiftcamough to enable a proper analysis of this
issue (see Emmanuel et al. 2012 for a more pretigg sf this effect).

Overall it appears that there are great dispariietween the events with much better
scores for the 15 Aug. 2010 and 15 Dec. 2011 evbatsfor the other two events. As it was
observed in previous studies (Emmanuel et al., 20i&s et al., 2009) the scores tend to
improve with increasing time steps. We find that &ogiven score, the ranking between the
events remains the same for all the time stepshwhighlights the interests of performing
analysis through scales rather than multiplyinglysns at a given scale which is commonly
done. More precisely it appears that the rankingvéen the events varies according to the
selected score. For instance the 9 Feb. 2009 evéimé worst event folNash, corr andNB,
whereas this is the case fon &bslope, offset and RMSE on 14 Jul. 2010. Furthermore for
some scores, the estimated value is significantferdnt for an event with regards to the
other ones. This is the case RWVISE for the 14 Jul. 2012 event (which strongly affettis
value of this score when all the events are consitjeor forNash for the 9 Feb. 2009 event
(here the score for all the events is not too &df)c These differences make it harder to
interpret precisely the consistency between rairgga and radar measurements according to
the event.

3) Bridging the scale gap
3.1) Methodology

In this paper we suggest to bridge the scale gapd®en radar and point (disdrometer or
rain gauge) measurements with the help of a dovingcprocess based on the framework of
Universal Multifractals (UM) (Schertzer and Lovejdy987; Schertzer and Lovejoy 2011 for
a recent review). The UM framework is indeed congehto achieve this, because its basic
assumption is that rainfall is generated througpace-time cascade process meaning that the
downscaling simply consists in extending stocha#liche underlying multiplicative cascade
process over smaller scales (Biaou, 2005). The Umagrmultiplicative cascade process
fully characterizes the spatio-temporal structesgecially the long range correlation and the
variability through scales of the field. In the Ulkdmework the conservative process (e.g.,
rainfall) is characterized with the help of only awparameters,C; being the mean
intermittency (which measures the clustering of awerage intensity at smaller and smaller
scales with =0 for an homogeneous field) amdbeing the multifractality index (which
measures the clustering variability with regardsiritensity level, 0<sa <2). The UM
parameters used here arel.8 andC;=0.1 which are in the range of those found by vegio
authors who focused their analysis on the rainyigoof the rainfall field (de Montera et al,
2009; Mandapaka et al., 2009; Verrier et al., 2@@ides et al., 2013). In this framework the
statistical properties (such as the moment of ogjlef the rainfall intensity fieldR,) at a
resolutionA (A=L/I the ratio between the outer schland the observation scd)eare power
law related tol:
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<Rﬁ> = )X@  (Eq. 5)
With

C
K(g)=—=2(a" - Eq. 6
@@= -a) (Eg. 6)
being the scaling moment function which fully chaesizes the rainfall structure and
variability not only at a single scale but throwggiales.

In this paper discrete cascades are implementedninge that the rainfall over a large scale
structure is distributed in space and time stetep. At each step the “parent structure” is
divided into several “child structures” and thesimsity affected to a child structure is equal to
its parent’s one multiplied by a random incremémibrder to ensure the validity of Eq. 5 and

1a
G
6 the random multiplicative increment must be choas ex [M] L(a) |/ Aya1,

-1
where A, is the scale ratio between two consecutive tinepsstL(a) is an extremal Lévy-stable
random variable of Lévy stability index ( i.e. <exp(qL(a))> = exy:(q")), which corresponds to a

mathematical definition of the multifractality indeThe algorithm presented in Chambers et al.
(1976) was used to generateTio be consistent with the scaling of life-time Wse structure
size in the framework of the Kolomogorov picture tafbulence (Kolmogorov, 1962) the
scale of the structure is divided by 3 in space 2ndtime at each step of the cascade process
(Marsan et al., 1996; Biaou et al., 2005; Girealet2011), which leads to 18 child structures.
A new seed is chosen at the beginning of each ealizations of a downscaled rainfall field.
Finally it should be mentioned that in this papex are focusing the analysis on selected
rainfall episodes, which means that the zeros efrtinfall (on - off intermittency) do not
play a significant role. Hence we did not includey @orocess to generate additional zero
values other than the small values spontaneougbirad with the help of the multiplicative
cascade process itself (see Gires et al. 2013 doressuggestions on how to proceed to
include additional zeroes for longer series). Hosvewe used UM parameters obtained on
focusing on the rainfall episodes of the rainfadlds since analysis on large areas or long
period which include many zeros lead to signifibamtiased estimates (de Montera et al.
2009, Gires et al. 2012a).

3.2) Rainfall data from dense networks of point sugaments

- EPFL network of disdrometers in Lausane (Switzsd)

A network of 16 autonomous optical disdrometerstdgeneration Parsivel, OTT) was
deployed over EPFL campus from March 2009 to JWY02(see Jaffrain et al., 2011, for
more detailed information). The minimum distancénsen 2 disdrometers was about 8 m,
the maximum one about 800 m. The measured spetcta@narop size distribution (DSD)
have been used to derive the rain rate at a 1-emmporal resolution. The processing of the
DSD data is described in Jaffrain et al., 2011.9Alected a set of 36 rainfall events for which
the bias between a disdrometer and a collocatedgaiige was below 10% over the total
rainfall amount (see Jaffrain and Berne, 2012 feaik). Out of these 36 events, we selected
six having the largest rainfall amounts for thesgrg study.

The main features of the six studied rainfall égeare displayed Table 3.
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- Bradford U. network of rain gauges in Bradforch{teéd-Kingdom)

The second data set used in this paper considgteinainfall measured by 16 tipping
bucket rain gauges installed over the campus adfBrd University (United-Kingdom). Eight
measuring locations with 2 co-located rain gaugesirsstalled on the roofs of the campus,
this has been done to help find random rain gaugeseas described in Ciach and Krajewski
(2006). The rain gauges installed at Bradford Ursiig are type ARG100, commonly used in
the UK and described in Vuerich et al. (2009), téMO field intercomparison of rainfall
intensity gauges'report. The ARG100 rain gauges are supplied withakbration factor
between 0.197 and 0.203 mm per tip. If the calibratvould be accurate, a pair of co-located
rain gauges should give near identical readingsnwine random errors such as blockages
have occurred. A dynamic re-calibration of all rg@uges, similar to the description in the
manufacturers’ documentation has therefore beetedaput in the laboratory. A peristaltic
pump was set-up to drip 1 litre of water in thenrgauge for over 60 minutes, simulating 20
mm/hr intensity rainfall. During this re-calibratiot was found that two of the purchased rain
gauges lay outside the accepted range of 0.19D203 mm per tip, these rain gauges were
sent back to the manufacturer to be recalibratedttte other rain gauges it proved difficult
to confirm exactly the same calibration factor e ttaboratory. Repeated calibration of a
single gauge could deliver a calibration factomman for example 0.199 and 0.201, whereas
the factory calibration provided could be outsities tinterval, for example 0.198. The rain
gauge data were therefore derived using the averalge of calibration factor from the re-
calibration carried out in Bradford. Given thisanhation, it was deemed that the maximum
difference between 2 co-located rain gauges dyeotential errors in the calibration factor
would be (0.204/0.196)/0.196*100% = 4.1 %, n.bnasst case scenario a slightly wider
range of 0.196 to 0.204 mm per tip was used. THis%4 was used as cut-off point, i.e. if a
pair of co-located rain gauges shows an absolutereince, |(RG1-RG2)/RG2*100%| or
|(RG2-RG1)/RG1*100%)], that is larger than 4.1%e pair was removed from the dataset as
it is likely that one of the rain gauges sufferedni random errors, such as temporary
blockages etc. The rain gauges were visited apmrabely every 5 weeks, when the gauge
funnel and tipping bucket were cleaned of any delamd notes made of any blockages. The
maximum distance between two rain gauges is 40santlze time resolution 1 min. Three
rainfall events were analysed (see Table 4).

3.3) Validation, Results and discussion

The measurement devices of both Bradford U. andlLEdfata sets are located within a
1kn? area. Hence it is possible to use them to tessulygested spatio-temporal downscaling
process. This is achieved by implementing the failhgg methodology.

First the average rain rate over the surroundingnf area with a 5 min resolution is
estimated by simply taking the arithmetic meanh& tain rates computed by the available
devices over 5 min.

Then the obtained field is downscaled with the haflphe process described in the section
3.1. More precisely, seven steps of discrete caspadcess are implemented leading to a
spatial resolution of 46 cm and a temporal one.8fs2 The field is then re-aggregated in time
to obtain a final temporal resolution of 1 min elgieathe one of the two measuring devices.
The output of the process consists in a realigtib€¢ downscaling process is correct!) rainfall

estimate for 2187x2187 virtual disdrometers (on rgauges) located within the 1 krarea.
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Fig. 4 displays the 5 consecutive time steps oflthrilated rain rate at a resolution of 1 min
in time and 46 cm in space starting with a unifaam rate equal to 1 mm/h at the initial
resolution of 5 min in time and 1 km in space.Hbsld be mentioned that the straight lines
which remind the pixelisation associated with radata are due to the use of discrete
cascades. The use of the more complex continuacadas (see Lovejoy et Schertzer 2010
for more details on how to simulate them) wouldidwhis unrealistic feature in the spatio-
temporal structure of the field but would not charige retrieved statistics.

Third observed and simulated data are compared tivéhhelp of the temporal evolution of
rain rates simulated for the various virtual disdeter and quantile plots. More precisely the
temporal evolution of the rain rate and the cunivgatainfall depth are computed for each of
the virtual disdrometer (or rain gauge). Then, eadt of plotting the 2187 x 2187 curves
which leads to unclear graph, for each time step5th25, 75 and 95 % quantiles among the
virtual disdrometers are evaluated. The correspunénvelop curvesR§(t), Ros(t), Rys(t),
Ros(t) for rain rate, andCs(t), Cas(t), Crs(t), Cos(t) for cumulative depth) are then plotted with
the recorded measurements on the same graph. Tiesmonding curves for the EPFL data
set and the Bradford U. one are displayed respaygtiig. 5.a and Fig. 5.b. For some events
the graph of the rain rates is zoomed on portiothefevent to enable the reader to see the
details of the curves which is not always possiblihe whole event is shown on a single
graph. With regards to the quantile plots, for eldation all the measured data (i.e. all the
stations and all the available time steps, cornedipgy to respectively 36 495 and 29 000
values for the EPFL and Bradford data set) is d®rsd at once and compared with a random
selection of the same number of virtual point measents. Note that for the Bradford data
set the random selection of virtual point measurégmenimics the fact that the network is
made of pairs of collocated rain gauges by selgaiways two adjacent virtual rain gauges.
Fig. 6.a and Fig 6.b provide an example of obtaipeantile plots for respectively the EPFL
and the Bradford data set. Similar plots are okthifor other realizations of the random
selection of virtual point measurements within s@are km.

Concerning the 6 June 2009 event of the EPFL skttait appears that the disparities
among the temporal evolution of the rain rate ad tlarious disdrometers are within the
uncertainty interval predicted by the theoreticaldal. Indeed the empirical curves are all
betweenRs(t) andRgs(t) and some are greater thBys(t) or lower thanR,s(t) for some time
steps. It should be noted that for a given disdtemthe position of the measured rain rate
varies within the uncertainty interval accordingthe time step (i.e. not always greater than
Rzs5(t) for instance), which is expected if the themadtframework is correct. Concerning the
temporal evolution of the cumulative rainfall depthe measured curves are all within the
[Cs(t);Cos(t)] uncertainty interval except for two disdrommte There is furthermore a
significant proportion (8 out of 15) of disdrometavithin the Cos(t);Cr5(t)] interval which is
expected. Hence for this specific event the dowirsganodel can be validated overall.
Similar comments can be made for the other raiefadints with may be a tendency to slightly
overestimate of the uncertainty interval for thénreate. The quantile plot for a random
selection of virtual disdrometer (Fig. 6.a) confarthe overall validity of the downscaling
model for rain rates lower than 60 — 70 mm/h sibéallows rather well the first bisector. For
the extreme values (rain rates greater than 60 mmth which corresponds to probability of
occurrence roughly lower than 30 some discrepancies are visible and the simulated
guantiles tend to be significantly greater thandhserved ones. Given the validity of the UM
model for rest of the curve, an interpretation lué tfeature could be that the measurement
devices have troubles in the estimation of extréme steps and tend to underestimate them.
More extreme events should be analysed to progerijirm this. This nevertheless hints at a
possible practical application of this downscalipgocess; generating realistic rainfall
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quantiles at “point” scale. Indeed they do not seexessible to direct observation because of
both limitations in the accurate measurement ofeexé rainfall and sparseness of point
measurement network.

Before going on with the Bradford U. data set,ugttest the sensitivity of the obtained
results to the choice of UM parameters which hasenbset tax=1.8 andC,;=0.1 for all the
events which correspond to values commonly estidhatethe rainy portions of the rainfall
fields. The various parameter sets tested are showable 5, along witlys, which is a scale
invariant parameter consisting of a combinationboth a and C; and characterizing the
maximum probable value that one can expect to w@bser single realization of a
phenomenon. It has been commonly used to assesgttieenes in the multifractal framework
(Hubert et al. 1993, Douglas and Barros 2003, Reyeal. 2008, Gires et al. 2011). The
simulated quantiles (not shown here) are roughtyilar to the ones found fax =1.8 and
C,=0.1 for all the other UM parameter sets (withradncy to generate slightly lower ones in
the range 20 — 50 mm/h) except for the=1.8 andC,=0.2 which generates significantly
greater quantiles which are not compatible withrttemsured ones. For th8 Sune events the
spread in the simulated cumulative curves was @lsmtified for the various UM parameter
set with the help ofV g5 defined as:

CV'95: C95(tend) _Cs(tend)

2* Con (tea)
Wheretqnqis the last time step of the event &gl {t) the average temporal evolution of the
cumulative rainfall depth over the 16 disdrometdrthe network. The values are reported in
Table 5, and should be compared with the ratio betwthe maximum observed depth minus
the minimum one divided by twice the average ondclvlis equal to 18% for this event
(since we have 16 disdrometers values slightly taivan this one are expected). Whers
fixed it appears thaCV' o5 increases withC;, which was expected since it corresponds to
stronger extremeg/{also increases). The same is observed vhdn fixed anda increases
although is appears that the influence of variagioha have a much less significant impact
on the compute@V gs. It should be noted that the obsen@d o5 cannot be interpreted only
with the help ofys (indeed fora=1.6 andC;=0.1 we havey; = 0.22 andCV' ¢5=11% whereas
for a =1.8 andC;=0.05 we have greatey; and lower CV'gs) which means that both
parameters are needed. Similar results are founthéoother rainfall events. Although likely
to be oversimplifying the choice of constant UM graeters set ta=1.8 andC,=0.1 for all
the events appears to be acceptable.

The results for the Bradford data set (Fig. Sdeha less straightforward interpretation.
Indeed the discrete nature of the measurementtipping bucket rain gauges makes is hard
to analyse the results for the rain rates at arlresolution. For example during the 22 June
event the rain rate seldom exceeds the one comdsmpto one tip in a min (i.e.: 12 mm/h)
suggesting that the 1 min resolution is not adexjt@t this study which is why the temporal
evolution of the rain rate was also plotted with min resolution. The other two event exhibit
greater rain rates and the effects of the disetitis are dampened, suggesting that there is no
need to analyse the rain rates with a 5 min reieoluDverall it seems that the downscaling
model reproduces rather well the observed disparhlietween the rain gauges. With regards
to the cumulative rainfall depth the disparitiesween the rain gauges are consistent with the
theoretical expectations for the 22 June eventgfeixior two rain gauges), and smaller for the
other two events. This behaviour is quite differieatn the one observed with the EPFL data
set. It is not clear whether this difference is tlué¢he fact that two measurement devices are



1 used (suggesting either that the rain gaugesaatifi dampens the actual disparities or that
2 the disdrometers artificially strengthen it becawdeinstrumental errors) or because the
3 downscaling model is less adapted for two of thadBird events (6 July and 22 of August).
4 The quantile plot (Fig. 6.b) is harder to interplketcause of the discrete nature of the
5 measurements. The seven horizontal segments cong$p measurements of 1 to 7 tipsin a
6 minute (there are several point on each segmemiukemot all the rain gauges have the same
7  calibration factor). One can only note that it se¢hat the simulated quantiles start to tend to
8 be greater than the measured ones for rain ratedlesnf20 - 30 mm/h) than with the
9 disdrometers. Following the interpretation giventfee EPFL data set, it would mean that the

10 rain gauges start to underestimates rain ratdsviar values.

11

12 Finally let us remind that the tested downscaigg very simple and parsimonious one

13 consisting in stochastically continuing an undendymultifractal process defined with the

14  help of only two parameters which are furthermarestdered identical for all the events and

15 locations. The fact that the observed disparitietsvben point measurement for very dense

16 networks of either disdrometers or rain gaugesirai@verall agreement with the theoretical

17  expectations is a great achievement. It might Issipte to refine the model by using different

18 UM parameters according to the event, but the uyiderrainfall theoretical representation

19 should be improved first. As a conclusion it appdhat although not perfect this very simple

20 and parsimonious model is robust and it is relevantise it for the purpose of this paper

21  which is to revisit the representativeness issustandard comparison scores between point

22 and areal measurements.

23

24

25  4) Impact of small scale rainfall variability oretlstandard indicators

26

27  4.1) Methodology

28

29 The aim of this section is to estimate the exmkotdues of the scores if neither radar

30 nor rain gauges were affected by instrumental eand the deviations from the optimum

31 values were only due to the small scale rainfalialality. We will also investigate the related

32 issue of the variations of the scores dependingvibare the rain gauges are located within

33 their respective radar pixel. We remind that thel&d data set is made of the rainfall output

34 of 26 rain gauges and their corresponding radaglifor four events. In order to achieve this

35 we implement the following methodology:

36 (1) Downscaling the radar data for each radar pixeks tesolution of 46 cm in space

37 and 5 min in time which is similar to the rain gaugsolution. This is done by

38 implementing 7 steps of the spatio-temporal dowlinsggrocess validated in the

39 previous section and re-aggregating it in time. sThields the outputs of

40 2187x 2187 “virtual rain gauges” for each of the 26 radargi$x

41 (i) Randomly selecting a “virtual rain gauge” for eaalar pixel and computing the

42 corresponding scores. In order to generate a loligton of possible values for

43 each score, 1000 sets of 26 virtual rain gaugestitots (one per radar pixel) are

44 tested

45

46

47
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4.2) Results and discussion

The distributions of the scores obtained for tB8QLsamples of virtual rain gauges set
are displayed on Fig. 3 for time steps of 5, 15 @danin, with the numerical value of the 5,
50 and 95% quantile. An example of scatter plohwitset of “virtual” rain gauges is visible
on Fig. 2.

The 50% quantile for each score provides an esbmaf the expected value if neither
radar nor rain gauges are affected by instrumesntals. The differences with regards to the
optimal values of scores are simply due to the flaat rainfall exhibits variability at small
scales (i.e. below the observation scale of C-bvaddr in this paper) and that radar and rain
gauge do not capture this field at the same s&akctically it means that when a score is
computed with real data (i.e. affected by instrutakrerrors), its value should not be
compared with the theoretical optimal values buth® ones displayed on Fig. 3, which is
never done. The extent of the distributions, whielh be characterized with the help of the
difference between the 5 and 95%, reflects the rtaiogy on the scores associated with the
position of the rain gauges in their correspondigar pixel. Practically it means that when
comparisons of scores are carried out with rea,dad it is commonly done to compare the
accuracy of the outputs of various radar quantigaprecipitation estimation algorithm for
example, the observed differences in the scoresldhme compared with this uncertainty to
check whether they are significant or not. Thisaser done and could lead to qualifying the
conclusions of some comparisons.

The values that should be used as reference5(1%. quantile found considering only
consequences of small scale rainfall variabilityg displayed Fig. 3. Some of them are
significantly different from the optimal values aad expected the difference is greater for
small time steps which are more sensitive to sstle rainfall variability. For instance for
15 min the 50% quantile is equal 0.91, 0.81 andor3espectively theorr, Nash and % s
scores. The values for tiskope are also smaller than one (0.82, 0.90 and 0.96e&pectively
5, 15 and 60 min time steps), which was not nec#gsxpected.

With regards to the scores computed for the 4istelvents over the Seine-Saint-Denis
County, it appears that independently of the east time step the scores found ash,
%5 andcorr are not consistent with the idea that they arg duole to small scale rainfall
variability, meaning that instrumental errors aféetthe measurement. FABMSE the scores
found are explained by small scale rainfall vatigbfor 15 Aug. 2010 and 15 Dec. 2011 and
almost for 14 Jul. 2010. For the event of 9 Fel@®the observed RMSE is even lower than
the values of the distribution of the “virtual g&sg. This is quite surprising since this
distribution is a lower limit (for instance instremtal errors are not taken into account),
which suggest some error compensation for thisiBpease. FONB andslope we find that
the computed scores reflect instrumental error®fBeb. 2009 and 14 Jul. 2010. It is also the
case for the other two events with a time step wiirg but not with a 1 h time step.

In the methodology developed previously two steps random and it is therefore
important to check the sensitivity of the resutigshiem. The first one is the downscaling of
the radar pixels where the rain gauges are locdted.sensitivity is tested by simulating a
second set of downscaled rainfall fields. The sdcome is the selection of the virtual rain
gauges that are used to compute the distributimpayed Fig. 3. Indeed in the downscaling
process2187x 218virtual rain gauges are generated for each of tingied 26 radar pixels,

10
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leading t0(2187x 2187 (= 4.7x10"®) possible combinations. A set of 1000 combinations

is used to generate the studied distributions. & the sensitivity, the distributions are
assessed for two more sets for each of the two sloaled rainfall fields. Hence a total of 6
samples for each score are tested to analyse énhsitigity issue. Figure 7 displays the
cumulative probability function for thidB with a 15 min time steps which is representatifve o
other time steps and scores. Visually it seemsttiebbtained distributions are very similar.
It is possible to confirm this assertion more guatively with the help of a two samples
Kolmogorov-Smirnov test (Massey, 1951) which is coomly used to check whether two
samples are generated with the help of the santebdison. The null hypothesis that the
samples are from the same underlying distributsoi@sted for the 6 samples two by two. It is
rejected with a 95% confidence interval only 27esmout of 378 tests (378 = 14 tests for the
6 samples two by two x 9 scores x 3 time stepsis Tbnfirms the first impression that the 6
samples reflect similar distributions, and that tesults previously discussed are robust and
not sensitive to the random steps of the downsgadnocess and the selection process of the
virtual rain gauges.

The sensitivity of the results to the choice & thM parameteo=1.8 andC;=0.1 was
also tested as in the section 3.3. Fig. 9 dispihgscumulative probability distribution of for
the Nash and % s scores for the same sets of UM parameters agisdttion 2.3 (see Table
5). The same comments remain valid, i.e.: withkadiparameter, the greater is the other one
the worst is the indicatoC; has a stronger influence thanon the computed uncertainty.
Therefore, both parameters are needed and resut®tbe interpreted only with the help of
Ys It can be added that the worst is the indicaber widest is the probability distribution.
Similar results are found for the other scoreaplpears that the values of the UM parameters
used for the simulations have a strong influenceresulting cumulative distributions,
suggesting that for practical applications the peaters should be carefully estimated with a
particular emphasis db.

Besides redefining the optimum of standard scares setting values to which score
variations should be compared, this work also ssiggehanging common practice when
temporal evolution of rain rate or cumulative ralhfdepth observed by rain gauge or
disdrometer and the corresponding radar pixel &tegl on the same graph. This is the last
standard way of comparing the output of the two sueament devices to be addressed in this
paper. The observation scale gap between the twicedeshould be visible directly on the
plot. A way of achieving this is to explicitly digy the range of “realistic” values at the rain
gauge scale for a given radar pixel measuremerdrdar to give an immediate insight into
this issue to the reader and suggest whether to fmoother explanations than small scale
rainfall variability. This is currently not done irsual comparison. We propose to proceed as
in the section 3 and to plot the 5, 25, 50 and 9§u#ntiles for both rain rate and cumulative
depth along with the radar curves. This is donEig 8 for the 9 Feb. 2009 and 14 Jul. 2010
rainfall event for one rain gauge. For the 9 FeBO® the cumulative depth (Fig. 8.b) is
clearly outside the uncertainty range of the radaasurement at rain gauge scale meaning
the instrumental error are likely to have affeci¢teast one of the devices. Concerning the 14
Jul. 2010, the rain gauge cumulative depth is me@gent with the radar measurement (Fig.
8.d). With regards to the rain rate (Fig. 8.c), ths gauge measurements are in the lower
portion of the realistic values for the first peakitside of it for the second peak (suggesting
the effect of instrumental errors), and in the uppee for the third peak. More generally these
results suggest that to compare the measurementwooflevices that observe the same
physical phenomenon at two different scales, itukhdecome a common practice to first
simulate an ensemble of realistic outputs at thallest available scale of observations among

11
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two devices, and to compare the latter’'s outputhto generated ensemble. The example of
radar and rain gauge was discussed in this papgrsimilar techniques could also be
implemented on the comparison between satelliteraddr data that also do not correspond
to the same scale, while with a smaller scale gappare to the case discussed in this paper.

These results also hint at some ways of revisisitagdard interpolation and merging
techniques that, in spite being beyond the maipead this paper, can take advantage from
obtained herein results. Indeed the validity of il bhodel of rainfall down to very small
scale suggests that developing a multifractal patition algorithm would be feasible. Some
basic ideas on how to proceed can be found in Taimgkaia et al. 2004, but there is still
some work to be done in order to have an operdtadgarithm. Of course the output of such
process would not be a single field but an enserablesalistic fields, conditioned by the
observed rainfall data. With regards to the merdiegveen radar and rain gauge data the
work here also suggest some new ideas. Indeedisrp#per the rainfall at the rain gauge
scale was simulated from the radar, but since we kalidated a mathematical representation
of rainfall between the two observation scales possible to do the inverse. More precisely,
it would also be possible to compute an ensembfossible radar values that could result in
the observed data at the rain gauge scale. Sucimafion could be used to modify in new
ways the radar measurements according to the migegdata, which is a common step of
merging techniques.

5) Conclusion

In this paper the issue of representativenesoiot pneasurement with regards to larger
scale measurements is revisited in the contexbofparison between rain gauge and radar
rainfall measurement. More precisely the influertbe small scale rainfall variability
occurring below the radar observation scale (1 knsgace and 5 min in time here) on the
standard comparison scores is investigated. Itapp®at this influence is twofold. First the
target values of the scores are not the optimuns tweeause rainfall variability “naturally”
worsens them. This worsening, which is neglectediumerous published comparisons, is
significant. Second, because of the random posdfahe point measurements within a radar
pixel there is an expected uncertainty on a contpstere. The two effects are quantified in
details on a case study with radar and rain gaage fiom the 237 KmSeine-Saint-Denis
County (France) and appears to be significant. fidsgsalt is assessed with the help of a robust
methodology relying on an explicit theoretical megentation of the small scale rainfall
variability not grasped by the radar (C-band onehdndeed the parsimonious Universal
Multifractals, which rely on only two parametersthermore not event based in this study,
are used to perform a realistic downscaling ofrtdar data to the point-measurement scale.
This downscaling process is validated with the le#lpvo very dense (i.e. 16 within an area
of 1 kn?) networks of disdrometers in Lausane (Switzerlamadl rain gauges in Bradford
(United-Kingdom). The disparities observed betwdbe point measurements are in
agreement with the theoretical expectations.

The two effects of small scale rainfall varialyilindentified on standard comparison
tools are unfortunately usually not taken into actoby meteorologists and hydrologists
when they carry out standard comparison to eitkialuate new radar quantitative estimation
precipitation algorithms or compare two. Doing dutd lead to qualifying some otherwise

12
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straightforward conclusion. The results obtainedtlis case study show that the assessed
values for standard scores are not fully explaibgdsmall scale rainfall variability. This
means that a methodology to properly distinguisie fhstrumental error from the
representativeness issue should be developed withirframework of multifractal modelling

of rainfall. The validation of a downscaling proses also a first step in improving existing
merging technigues between the two rainfall measands devices which can help in
providing the accurate fine scale rainfall needed urban hydrology applications. Further
investigation would be needed to achieve theseaims.
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Figure 2: Scatter plot for all the events with arih time steps: (a) Radar vs. rain gauges
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Feb. 2009 (long dash), 14 Jul. 2010 (dash), 15 2040 (dash dot) and 15 Dec. 2011 (dash
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Figure 4: lllustration of the spatio-temporal dowaling process. Three realisations of the
simulated rain rate with a resolution of 1 min ime and 46 cm in space starting with a
uniform rain rate of 1 mm/h at the initial resotutiof 5 min in time and 1 km in space.
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Figure 5. Temporal evolution of the rain rate angnalative rainfall depth for point
measurements for the EPFL data set (a) and thefddatniversity data set (b). For each
event the uncertainty range of the average measuteat the disdrometers or rain gauge
observation scale is displayeR:{(t) - Rss(t) or Ros(t) - Rys(t) and Cs(t) - Cos(t) or Cs(t) -
Cos(t) are the limit of respectively the dark and tight area). Average measurement with 5
min resolution in blue.
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Tables

Table 1: General features of the studied rainfakénés in Seine-Saint-Denis. For the
cumulative depth the three figures correspond t® #verage, the maximum, and the
minimum over the rain gauges or the correspondadgrr pixels

9 Feb. 2009 14 Jul. 2010 15 Aug. 2010 15 Dec. 2011
Approx. Event duration 9 6 30 30
(h)
Available gauges 24 24 24 26

Gauge cumul. depth (mm) 11.4 (104 37.9(47.8—| 50.1(62.8—-| 22.4(28.2 -
12.8) 23.4) 27.4) 18.2)

Radar cumul. Depth (mm) 8.5(9.3-7/5) 28.7 (35.8 50.6 (59.2 - | 22.4(28.2-
21.2) 36.0) 19.8)

Table 2: Standard scores for the comparison betwaeéar and rain gauges data for the 4

studied events. Only the time steps with one o digbe exhibiting a rain rate greater than 1

mm/h are considered.

Score 5 min 15 min 60imi

Nb. of points 11412. 3884. 991.

NB -0.15 -0.13 -0.12

Corr 0.70 0.78 0.82

RMSE 5.19 3.71 3.09

Nash 0.46 0.54 0.59

Sope 0.43 0.46 0.48

Offset 1.33 1.24 1.17

%; 5 38.7 55.9 72.1

Table 3: Same as in Table 1 for the studied rdiefant in Lausane (EPFL data set)

6 June 17 July 8 26 3 April 5 August
2009 2009 October | March 2010 2010
2009 2010

Approx. Event 6 7.6 7.9 5.8 7.3 4.5
duration (h)

Nb of selected 15 16 15 16 16 15
disdrometers

Disdrometer cumul.| 9.7 (11.1 | 22.9 (26.5| 12.2 11.8 14.0 5.5 (6.6—
depth (mm) - 7.6) —18.0) (13.4-| (13.8- | (16.2- 4.6)

10.8) 10.2) 12.1)

Maximum % 46 47 24 35 34 43
difference between

all selected

disdrometers

23



1

2
3

~N OO0 b~

Table 4: as in Table 1 for the studied rainfall ri@geand selected rain gauge data in Bradford

(Bradford University data set)

22 June 2012 6 July 2012 15 August 2(
Approx. Event duration (h) 24 10 3
Nb of selected gauges 14 14 16
Maximum % difference within 4.1% 2.0% 3.7%
pairs of selected co-located rain
gauges
Gauge cumul. depth (mm) 43.2 36.7 16.8
(49.4-39.4) | (38.0—-34.5)| (17.4-15.2)
Maximum % difference between 25% 10% 14%
all selected rain gauges

12

Table 5: Sensitivity test to the values of the Ubdtgmeters for the 6 June 2009 of the EPFL

data set

a Cy Vs CV'gs5 (%)
1.8 0.1 0.50 14

1.8 0.05 0.36 9.2

1.8 0.2 0.67 26

14 0.1 0.42 12

0.6 0.1 0.22 11
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