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Abstract:  15 

 Rain gauges and weather radars do not measure rainfall at the same scale; roughly 20 16 
cm for the former and 1 km for the latter. This significant scale gap is not taken into account 17 
by standard comparison tools (e.g. cumulative depth curves, normalized bias, RMSE) despite 18 
the fact that rainfall is recognized to exhibit extreme variability at all scales. In this paper we 19 
suggest to revisit the debate of the representativeness of point measurement by explicitly 20 
modelling small scale rainfall variability with the help of Universal Multifractals. First the 21 
downscaling process is validated with the help of a dense networks of 16 disdrometers (in 22 
Lausanne, Switzerland), and one of 16 rain gauges (Bradford, United Kingdom) both located 23 
within a 1 km2 area. Second this downscaling process is used to evaluate the impact of small 24 
scale (i.e.: sub - radar pixel) rainfall variability on the standard indicators. This is done with 25 
rainfall data from the Seine-Saint-Denis County (France). Although not explaining all the 26 
observed differences, it appears that this impact is significant which suggests changing some 27 
usual practice. 28 

 29 
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 32 

1) Introduction  33 

 34 

 The most commonly used rainfall measurement devices are tipping bucket rain gauges, 35 
disdrometers, weather radars and (passive or active) sensors onboard satellites. In this paper 36 
we focus on the observation scale gap between the two first devices which are considered here 37 
as point measurements and weather radars. A rain gauge typically collects rainfall at ground 38 
level over a circular area with a diameter of 20 cm and the sample area of operational 39 
disdrometers is roughly 50 cm2  whereas a radar scans the atmosphere over a volume whose 40 
projected area is roughly 1 km2 (for standard C-band radar operated by most of the western 41 
Europe meteorological national services). Hence observation scales differ with a ratio of 42 
approximately 107 between the two devices. A basic consequence, (e.g. Wilson, 1979), is that 43 
direct comparison of the outputs of the two sensors is at least problematic.  44 

 45 



 2 

 Standard comparison between rain gauge and radar rainfall measurements are based on 1 
scatter plots, rain rate curves, cumulative rainfall depth curves, and the computation of 2 
various scores such as normalized bias, correlation coefficient, root mean square errors, Nash-3 
Sutcliffe coefficient etc. (see e.g., Diss et al., 2009; Emmanuel et al., 2012; Figueras I Ventura 4 
et al., 2012; Krajewski et al., 2010; Moreau et al. 2009). Despite usually being mentioned the 5 
issue of the representativeness of point measurement (i.e. disdrometer or rain gauge) with 6 
regards to average measurements (i.e. radar) is basically not taken into account and its 7 
influence on the standard scores is not assessed. Furthermore the authors who addressed it 8 
either to separate instrumental errors from representativeness errors (Ciach et al., 1999, Zhang 9 
et al., 2007; Moreau et al. 2009), or to introduce an additional score taking into account an 10 
estimation of the representativeness error (Emmanuel et al., 2012; Jaffrain and Berne, 2012) 11 
all rely on a geostatistical framework which may tend to underestimate rainfall variability and 12 
especially the extremes. Indeed this framework assumes that the rainfall field or a transform 13 
of it is Gaussian, which does not enable to fully take into account the fact that the extremes of 14 
rainfalls exhibit a power law behaviour as it has been shown by various authors (Schertzer et 15 
al., 2010; Hubert, 2001; Ladoy et al., 1993; de Lima and Grassman, 1999; Schertzer and 16 
Lovejoy, 1992). 17 

 18 

 In this paper we suggest to revisit how the representativeness issue is taken into account 19 
in standard comparison tools between point measurement devices (disdrometers or rain 20 
gauges) and radar rainfall measurements by explicitly modelling the small scale rainfall 21 
variability with the help of Universal Multifractals (Schertzer and Lovejoy, 1987). They rely 22 
on the physically based notion of scale-invariance and on the idea that rainfall is generated 23 
through a multiplicative cascade process. They have been extensively used to analyse and 24 
simulate geophysical fields extremely variable over wide range of scales (see Schertzer and 25 
Lovejoy 2011 for a recent review). The issue of instrumental errors is not addressed in this 26 
paper.  27 

 28 

 The standard comparison tools are first presented and implemented on 4 rainfall events 29 
over the Seine-Saint-Denis County for which radar and rain gauges measurements are 30 
available (section 2). A downscaling process is then suggested and validated with two dense 31 
networks of point measurement devices (disdrometers or rain gauges) (section 3). Finally the 32 
influence of small scale rainfall variability on the standard scores is assessed and discussed 33 
(section 5).  34 

 35 

2) Standard comparison 36 

 37 

2.1) Rainfall data in Seine-Saint-Denis (France) 38 

 39 
 The first data set used in this paper consists in the rainfall measured by 26 tipping 40 
bucket rain gauges distributed over the 236 km2 Seine-Saint-Denis County (North-East of 41 
Paris). The rain gauges are operated by the Direction Eau et Assainissement (the local 42 
authority in charge of urban drainage). The temporal resolution is 5 minutes. For each rain 43 
gauge the data is compared with the corresponding radar pixel of the French radar mosaic of 44 
Météo-France whose resolution is 1 km in space and 5 min in time (see Tabary, 2007, for 45 
more details about the radar processing). The closest radar is the C-band radar of Trappes, 46 
which is located South-West of Seine-Saint-Denis County. The distance between the radar 47 
and the rain gauges ranges from 28 Km to 45 Km. See Fig. 1 mapping the location of the rain 48 
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gauges and the radar pixels. Four rainfall events whose main features are presented Table 1 1 
are analysed in this study. They were selected (especially the last three) being among the 2 
heaviest observed events.  3 
 4 

 5 

2.2) Scores 6 

 7 

 The radar and rain gauge measurements of the four studied rainfall events over the 8 
Seine-Saint-Denis County are compared with the help of scores commonly used for such 9 
tasks (Diss et al., 2009; Emmanuel et al., 2012; Figueras I Ventura et al., 2012; Krajewski et 10 
al., 2010; Moreau et al. 2009):  11 

- The Normalized Bias (NB) whose optimal value is 0: 1−=
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- The Nash-Sutcliffe model efficiency coefficient (Nash), which varies between ∞−  and 1 15 
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- The Root mean square error (RMSE), which varies between 0 and ∞+ and whose optimal 17 
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- The Slope and Offset of the orthogonal linear regression. It minimizes the orthogonal 19 
distance from the data points to the fitted line, contrary to the ordinary linear regression which 20 
minimizes the vertical distance and hence considers one of the data types as reference which 21 
is not the case for the orthogonal regression. The optimal values are respectively 1 and 0.  22 

- The percentage (%1.5) of radar time steps (Ri) contained in the interval [ ]ii GG 5.1;5.1/  (it 23 

should be mentioned that this score is less commonly used than the others, 1.2 and 2 instead 24 
of 1.5 were also tested and yield similar results which are not presented here). 25 

 26 

Where R and G correspond respectively to radar and rain gauge data. <> denotes the average. 27 
Time steps (index i in the previous formulas) of either a single event or all of them are used in 28 
the sum for each indicator. The time step usually considered by meteorologist is one hour. As 29 
in Emmanuel et al. (2012) and Diss et al. (2012), in addition we will consider time steps of 5 30 
and 15 min which are particularly important for various practical applications in urban 31 
hydrology (Berne et al., 2004; Gires et al., 2012b). In this paper in order to limit the influence 32 
of time steps with low rain rate and especially the zeros rainfall time steps on the indicators, 33 
we only take into account the time steps for which the average rain rate measured by either 34 
the radar or the rain gauges is greater than 1 mm/h (Figueras i Ventura et al., 2012). The 35 
results are presented for an identical threshold for the various time steps. However, 36 
conclusions on the relation between the scores for different thresholds remain similar but with 37 
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slightly different score values. The scatter plot for all the events is visible in Fig. 2. The 1 
values of the scores are displayed in Fig. 3 for the 4 events, while the summary for all the 2 
events is given in Tab. 2. Whatever the case, all the rain gauges are considered at once, 3 
implying that the influence of the distance between the rain gauges and the radar is not 4 
analysed here. This choice was made because this distance ranges from 28 Km 45 Km 5 
according to the rain gauge which is not significant enough to enable a proper analysis of this 6 
issue (see Emmanuel et al. 2012 for a more precise study of this effect).  7 

 8 

 Overall it appears that there are great disparities between the events with much better 9 
scores for the 15 Aug. 2010 and 15 Dec. 2011 events than for the other two events. As it was 10 
observed in previous studies (Emmanuel et al., 2012; Diss et al., 2009) the scores tend to 11 
improve with increasing time steps. We find that for a given score, the ranking between the 12 
events remains the same for all the time steps which highlights the interests of performing 13 
analysis through scales rather than multiplying analysis at a given scale which is commonly 14 
done. More precisely it appears that the ranking between the events varies according to the 15 
selected score. For instance the 9 Feb. 2009 event is the worst event for Nash, corr and NB, 16 
whereas this is the case for %1.5, slope, offset and RMSE on 14 Jul. 2010. Furthermore for 17 
some scores, the estimated value is significantly different for an event with regards to the 18 
other ones. This is the case for RMSE for the 14 Jul. 2012 event (which strongly affects the 19 
value of this score when all the events are considered) or for Nash for the 9 Feb. 2009 event 20 
(here the score for all the events is not too affected). These differences make it harder to 21 
interpret precisely the consistency between rain gauges and radar measurements according to 22 
the event.  23 

 24 

 25 

3) Bridging the scale gap 26 

 27 

3.1) Methodology 28 

 29 

 In this paper we suggest to bridge the scale gap between radar and point (disdrometer or 30 
rain gauge) measurements with the help of a downscaling process based on the framework of 31 
Universal Multifractals (UM) (Schertzer and Lovejoy, 1987; Schertzer and Lovejoy 2011 for 32 
a recent review). The UM framework is indeed convenient to achieve this, because its basic 33 
assumption is that rainfall is generated through a space-time cascade process meaning that the 34 
downscaling simply consists in extending stochastically the underlying multiplicative cascade 35 
process over smaller scales (Biaou, 2005). The underlying multiplicative cascade process 36 
fully characterizes the spatio-temporal structure, especially the long range correlation and the 37 
variability through scales of the field. In the UM framework the conservative process (e.g.,  38 
rainfall) is characterized with the help of only two parameters; C1 being the mean 39 
intermittency (which measures the clustering of the average intensity at smaller and smaller 40 
scales with C1=0 for an homogeneous field) and α being the multifractality index (which 41 
measures the clustering variability with regards to intensity level, 20 ≤≤ α ). The UM 42 
parameters used here are α=1.8 and C1=0.1 which are in the range of those found by various 43 
authors who focused their analysis on the rainy portion of the rainfall field (de Montera et al, 44 
2009; Mandapaka et al., 2009; Verrier et al., 2010, Gires et al., 2013). In this framework the 45 
statistical properties (such as the moment of order q) of the rainfall intensity field (Rλ) at a 46 
resolution λ (λ=L/l the ratio between the outer scale L and the observation scale l) are power 47 
law related to λ:  48 
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being the scaling moment function which fully characterizes the rainfall structure and 4 
variability not only at a single scale but through scales. 5 

In this paper discrete cascades are implemented, meaning that the rainfall over a large scale 6 
structure is distributed in space and time step by step. At each step the “parent structure” is 7 
divided into several “child structures” and the intensity affected to a child structure is equal to 8 
its parent’s one multiplied by a random increment. In order to ensure the validity of Eq. 5 and 9 
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where λ0 is the scale ratio between two consecutive time steps. )(αL is an extremal Lévy-stable 11 

random variable of  Lévy stability index α ( i.e. ( ) ( )αα qqL exp)(exp = ), which corresponds to a 12 

mathematical definition of the multifractality index. The algorithm presented in Chambers et al. 13 
(1976) was used to generate it. To be consistent with the scaling of life-time vs. the structure 14 
size in the framework of the Kolomogorov picture of turbulence (Kolmogorov, 1962) the 15 
scale of the structure is divided by 3 in space and 2 in time at each step of the cascade process 16 
(Marsan et al., 1996; Biaou et al., 2005; Gires et al., 2011), which leads to 18 child structures. 17 
A new seed is chosen at the beginning of each new realizations of a downscaled rainfall field. 18 
Finally it should be mentioned that in this paper we are focusing the analysis on selected 19 
rainfall episodes, which means that the zeros of the rainfall (on - off intermittency) do not 20 
play a significant role. Hence we did not include any process to generate additional zero 21 
values other than the small values spontaneously obtained with the help of the multiplicative 22 
cascade process itself (see Gires et al. 2013 for some suggestions on how to proceed to 23 
include additional zeroes for longer series). However we used UM parameters obtained on 24 
focusing on the rainfall episodes of the rainfall fields since analysis on large areas or long 25 
period which include many zeros lead to significantly biased estimates (de Montera et al. 26 
2009, Gires et al. 2012a). 27 

 28 

 29 

 30 

3.2) Rainfall data from dense networks of point measurements 31 

 32 

- EPFL network of disdrometers in Lausane (Switzerland)  33 

 A network of 16 autonomous optical disdrometers (first-generation Parsivel, OTT) was 34 
deployed over EPFL campus from March 2009 to July 2010 (see Jaffrain et al., 2011, for 35 
more detailed information). The minimum distance between 2 disdrometers was about 8 m, 36 
the maximum one about 800 m. The measured spectra of raindrop size distribution (DSD) 37 
have been used to derive the rain rate at a 1-min temporal resolution. The processing of the 38 
DSD data is described in Jaffrain et al., 2011. We selected a set of 36 rainfall events for which 39 
the bias between a disdrometer and a collocated rain gauge was below 10% over the total 40 
rainfall amount (see Jaffrain and Berne, 2012 for details). Out of these 36 events, we selected 41 
six having the largest rainfall amounts for the present study.  42 

 The main features of the six studied rainfall events are displayed Table 3.  43 
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 1 

- Bradford U. network of rain gauges in Bradford (United-Kingdom) 2 

 The second data set used in this paper consists in the rainfall measured by 16 tipping 3 
bucket rain gauges installed over the campus of Bradford University (United-Kingdom). Eight 4 
measuring locations with 2 co-located rain gauges are installed on the roofs of the campus, 5 
this has been done to help find random rain gauge errors as described in Ciach and Krajewski 6 
(2006). The rain gauges installed at Bradford University are type ARG100, commonly used in 7 
the UK and described in Vuerich et al. (2009), the ‘WMO field intercomparison of rainfall 8 
intensity gauges’ report. The ARG100 rain gauges are supplied with a calibration factor 9 
between 0.197 and 0.203 mm per tip. If the calibration would be accurate, a pair of co-located 10 
rain gauges should give near identical readings when no random errors such as blockages 11 
have occurred. A dynamic re-calibration of all rain gauges, similar to the description in the 12 
manufacturers’ documentation has therefore been carried out in the laboratory.  A peristaltic 13 
pump was set-up to drip 1 litre of water in the rain gauge for over 60 minutes, simulating 20 14 
mm/hr intensity rainfall. During this re-calibration it was found that two of the purchased rain 15 
gauges lay outside the accepted range of 0.197 and 0.203 mm per tip, these rain gauges were 16 
sent back to the manufacturer to be recalibrated. For the other rain gauges it proved difficult 17 
to confirm exactly the same calibration factor in the laboratory. Repeated calibration of a 18 
single gauge could deliver a calibration factor between for example 0.199 and 0.201, whereas 19 
the factory calibration provided could be outside this interval, for example 0.198. The rain 20 
gauge data were therefore derived using the average value of calibration factor from the re-21 
calibration carried out in Bradford. Given this information, it was deemed that the maximum 22 
difference between 2 co-located rain gauges due to potential errors in the calibration factor 23 
would be (0.204/0.196)/0.196*100% = 4.1 %, n.b. as worst case scenario a slightly wider 24 
range of 0.196 to 0.204 mm per tip was used. This 4.1 % was used as cut-off point, i.e. if a 25 
pair of co-located rain gauges shows an absolute difference, |(RG1-RG2)/RG2*100%| or 26 
|(RG2-RG1)/RG1*100%|, that is larger than 4.1% ,  the pair was removed from the dataset as 27 
it is likely that one of the rain gauges suffered from random errors, such as temporary 28 
blockages etc. The rain gauges were visited approximately every 5 weeks, when the gauge 29 
funnel and tipping bucket were cleaned of any debris, and notes made of any blockages. The 30 
maximum distance between two rain gauges is 404 m and the time resolution 1 min. Three 31 
rainfall events were analysed (see Table 4). 32 

 33 

 34 

3.3) Validation, Results and discussion 35 

 36 

 The measurement devices of both Bradford U. and EPFL data sets are located within a 37 
1km2 area. Hence it is possible to use them to test the suggested spatio-temporal downscaling 38 
process. This is achieved by implementing the following methodology.  39 

First the average rain rate over the surrounding 1 km2 area with a 5 min resolution is 40 
estimated by simply taking the arithmetic mean of the rain rates computed by the available 41 
devices over 5 min.  42 

Then the obtained field is downscaled with the help of the process described in the section 43 
3.1. More precisely, seven steps of discrete cascade process are implemented leading to a 44 
spatial resolution of 46 cm and a temporal one of 2.3 s. The field is then re-aggregated in time 45 
to obtain a final temporal resolution of 1 min equal to the one of the two measuring devices. 46 
The output of the process consists in a realistic (if the downscaling process is correct!) rainfall 47 
estimate for 2187x2187 virtual disdrometers (or rain gauges) located within the 1 km2 area. 48 
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Fig. 4 displays the 5 consecutive time steps of the simulated rain rate at a resolution of 1 min 1 
in time and 46 cm in space starting with a uniform rain rate equal to 1 mm/h at the initial 2 
resolution of 5 min in time and 1 km in space. It should be mentioned that the straight lines 3 
which remind the pixelisation associated with radar data are due to the use of discrete 4 
cascades. The use of the more complex continuous cascades (see Lovejoy et Schertzer 2010 5 
for more details on how to simulate them) would avoid this unrealistic feature in the spatio-6 
temporal structure of the field but would not change the retrieved statistics.  7 

Third observed and simulated data are compared with the help of the temporal evolution of 8 
rain rates simulated for the various virtual disdrometer and quantile plots. More precisely the 9 
temporal evolution of the rain rate and the cumulative rainfall depth are computed for each of 10 
the virtual disdrometer (or rain gauge). Then, instead of plotting the 2187 x 2187 curves 11 
which leads to unclear graph, for each time step the 5, 25, 75 and 95 % quantiles among the 12 
virtual disdrometers are evaluated. The corresponding envelop curves (R5(t), R25(t), R75(t), 13 
R95(t) for rain rate, and C5(t), C25(t), C75(t), C95(t) for cumulative depth) are then plotted with 14 
the recorded measurements on the same graph. The corresponding curves for the EPFL data 15 
set and the Bradford U. one are displayed respectively Fig. 5.a and Fig. 5.b. For some events 16 
the graph of the rain rates is zoomed on portion of the event to enable the reader to see the 17 
details of the curves which is not always possible if the whole event is shown on a single 18 
graph. With regards to the quantile plots, for each location all the measured data (i.e. all the 19 
stations and all the available time steps, corresponding to respectively 36 495 and 29 000 20 
values for the EPFL and Bradford data set) is considered at once and compared with a random 21 
selection of the same number of virtual point measurements. Note that for the Bradford data 22 
set the random selection of virtual point measurements mimics the fact that the network is 23 
made of pairs of collocated rain gauges by selecting always two adjacent virtual rain gauges. 24 
Fig. 6.a and Fig 6.b provide an example of obtained quantile plots for respectively the EPFL 25 
and the Bradford data set. Similar plots are obtained for other realizations of the random 26 
selection of virtual point measurements within the square km. 27 

 28 

 Concerning the 6 June 2009 event of the EPFL data set, it appears that the disparities 29 
among the temporal evolution of the rain rate of the various disdrometers are within the 30 
uncertainty interval predicted by the theoretical model. Indeed the empirical curves are all 31 
between R5(t) and R95(t) and some are greater than R75(t) or lower than R25(t) for some time 32 
steps. It should be noted that for a given disdrometer the position of the measured rain rate 33 
varies within the uncertainty interval according to the time step (i.e. not always greater than 34 
R75(t) for instance), which is expected if the theoretical framework is correct. Concerning the 35 
temporal evolution of the cumulative rainfall depth, the measured curves are all within the 36 
[C5(t);C95(t)] uncertainty interval except for two disdrometers. There is furthermore a 37 
significant proportion (8 out of 15) of disdrometers within the [C25(t);C75(t)] interval which is 38 
expected. Hence for this specific event the downscaling model can be validated overall. 39 
Similar comments can be made for the other rainfall events with may be a tendency to slightly 40 
overestimate of the uncertainty interval for the rain rate. The quantile plot for a random 41 
selection of virtual disdrometer (Fig. 6.a) confirms the overall validity of the downscaling 42 
model for rain rates lower than 60 – 70 mm/h since it follows rather well the first bisector. For 43 
the extreme values (rain rates greater than 60 – 70 mm/h which corresponds to probability of 44 
occurrence roughly lower than 10-3) some discrepancies are visible and the simulated 45 
quantiles tend to be significantly greater than the observed ones. Given the validity of the UM 46 
model for rest of the curve, an interpretation of this feature could be that the measurement 47 
devices have troubles in the estimation of extreme time steps and tend to underestimate them. 48 
More extreme events should be analysed to properly confirm this. This nevertheless hints at a 49 
possible practical application of this downscaling process; generating realistic rainfall 50 
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quantiles at “point” scale. Indeed they do not seem accessible to direct observation because of 1 
both limitations in the accurate measurement of extreme rainfall and sparseness of point 2 
measurement network.  3 

 4 

 Before going on with the Bradford U. data set, let us test the sensitivity of the obtained 5 
results to the choice of UM parameters which have been set to α=1.8 and C1=0.1 for all the 6 
events which correspond to values commonly estimated on the rainy portions of the rainfall 7 
fields. The various parameter sets tested are shown in Table 5, along with γs, which is a scale 8 
invariant parameter consisting of a combination of both α and C1 and characterizing the 9 
maximum probable value that one can expect to observe a single realization of a 10 
phenomenon. It has been commonly used to assess the extremes in the multifractal framework 11 
(Hubert et al. 1993, Douglas and Barros 2003, Royer et al. 2008, Gires et al. 2011). The 12 
simulated quantiles (not shown here) are roughly similar to the ones found for α =1.8 and 13 
C1=0.1 for all the other UM parameter sets (with a tendency to generate slightly lower ones in 14 
the range 20 – 50 mm/h) except for the α =1.8 and C1=0.2 which generates significantly 15 
greater quantiles which are not compatible with the measured ones. For the 6th June events the 16 
spread in the simulated cumulative curves was also quantified for the various UM parameter 17 
set with the help of CV’95 defined as:  18 

)(*2
)()(

' 595
95

endmean

endend

tC

tCtC
CV

−=  19 

Where tend is the last time step of the event and Cmean(t) the average temporal evolution of the 20 
cumulative rainfall depth over the 16 disdrometers of the network. The values are reported in 21 
Table 5, and should be compared with the ratio between the maximum observed depth minus 22 
the minimum one divided by twice the average one which is equal to 18% for this event 23 
(since we have 16 disdrometers values slightly lower than this one are expected). When α is 24 
fixed it appears that CV’95 increases with C1, which was expected since it corresponds to 25 
stronger extremes (γs also increases). The same is observed when C1 is fixed and α increases 26 
although is appears that the influence of variations of α have a much less significant impact 27 
on the computed CV’95. It should be noted that the observed CV’95 cannot be interpreted only 28 
with the help of γs (indeed for α=1.6 and C1=0.1 we have γs = 0.22 and CV’95=11% whereas 29 
for α =1.8 and C1=0.05 we have greater γs and lower CV’95) which means that both 30 
parameters are needed. Similar results are found for the other rainfall events. Although likely 31 
to be oversimplifying the choice of constant UM parameters set to α=1.8 and C1=0.1 for all 32 
the events appears to be acceptable.  33 

  34 

 The results for the Bradford data set (Fig. 5.b) have a less straightforward interpretation. 35 
Indeed the discrete nature of the measurement with tipping bucket rain gauges makes is hard 36 
to analyse the results for the rain rates at a 1 min resolution. For example during the 22 June 37 
event the rain rate seldom exceeds the one corresponding to one tip in a min (i.e.: 12 mm/h) 38 
suggesting that the 1 min resolution is not adequate for this study which is why the temporal 39 
evolution of the rain rate was also plotted with a 5 min resolution. The other two event exhibit 40 
greater rain rates and the effects of the discretisation are dampened, suggesting that there is no 41 
need to analyse the rain rates with a 5 min resolution. Overall it seems that the downscaling 42 
model reproduces rather well the observed disparities between the rain gauges. With regards 43 
to the cumulative rainfall depth the disparities between the rain gauges are consistent with the 44 
theoretical expectations for the 22 June event (except for two rain gauges), and smaller for the 45 
other two events. This behaviour is quite different from the one observed with the EPFL data 46 
set. It is not clear whether this difference is due to the fact that two measurement devices are 47 
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used (suggesting either that the rain gauges artificially dampens the actual disparities or that 1 
the disdrometers artificially strengthen it because of instrumental errors) or because the 2 
downscaling model is less adapted for two of the Bradford events (6 July and 22 of August). 3 
The quantile plot (Fig. 6.b) is harder to interpret because of the discrete nature of the 4 
measurements. The seven horizontal segments correspond to measurements of 1 to 7 tips in a 5 
minute (there are several point on each segment because not all the rain gauges have the same 6 
calibration factor). One can only note that it seems that the simulated quantiles start to tend to 7 
be greater than the measured ones for rain rates smaller (20 - 30 mm/h) than with the 8 
disdrometers. Following the interpretation given for the EPFL data set, it would mean that the 9 
rain gauges start to underestimates rain rates for lower values. 10 

  11 

 Finally let us remind that the tested downscaling is a very simple and parsimonious one 12 
consisting in stochastically continuing an under-lying multifractal process defined with the 13 
help of only two parameters which are furthermore considered identical for all the events and 14 
locations. The fact that the observed disparities between point measurement for very dense 15 
networks of either disdrometers or rain gauges are in overall agreement with the theoretical 16 
expectations is a great achievement. It might be possible to refine the model by using different 17 
UM parameters according to the event, but the underlying rainfall theoretical representation 18 
should be improved first. As a conclusion it appears that although not perfect this very simple 19 
and parsimonious model is robust and it is relevant to use it for the purpose of this paper 20 
which is to revisit the representativeness issue on standard comparison scores between point 21 
and areal measurements.  22 

 23 

 24 

4) Impact of small scale rainfall variability on the standard indicators 25 

 26 

4.1) Methodology 27 

 28 

 The aim of this section is to estimate the expected values of the scores if neither radar 29 
nor rain gauges were affected by instrumental error, and the deviations from the optimum 30 
values were only due to the small scale rainfall variability. We will also investigate the related 31 
issue of the variations of the scores depending on where the rain gauges are located within 32 
their respective radar pixel. We remind that the studied data set is made of the rainfall output 33 
of 26 rain gauges and their corresponding radar pixels for four events. In order to achieve this 34 
we implement the following methodology:  35 

(i) Downscaling the radar data for each radar pixels to a resolution of 46 cm in space 36 
and 5 min in time which is similar to the rain gauge resolution. This is done by 37 
implementing 7 steps of the spatio-temporal downscaling process validated in the 38 
previous section and re-aggregating it in time. This yields the outputs of 39 

21872187×  “virtual rain gauges” for each of the 26 radar pixels. 40 

(ii)  Randomly selecting a “virtual rain gauge” for each radar pixel and computing the 41 
corresponding scores. In order to generate a distribution of possible values for 42 
each score, 1000 sets of 26 virtual rain gauges locations (one per radar pixel) are 43 
tested 44 

 45 

 46 

 47 
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4.2) Results and discussion 1 

 2 

 The distributions of the scores obtained for the 1000 samples of virtual rain gauges set 3 
are displayed on Fig. 3 for time steps of 5, 15 and 60 min, with the numerical value of the 5, 4 
50 and 95% quantile. An example of scatter plot with a set of “virtual” rain gauges is visible 5 
on Fig. 2.  6 

  7 

 The 50% quantile for each score provides an estimation of the expected value if neither 8 
radar nor rain gauges are affected by instrumental errors. The differences with regards to the 9 
optimal values of scores are simply due to the fact that rainfall exhibits variability at small 10 
scales (i.e. below the observation scale of C-band radar in this paper) and that radar and rain 11 
gauge do not capture this field at the same scale. Practically it means that when a score is 12 
computed with real data (i.e. affected by instrumental errors), its value should not be 13 
compared with the theoretical optimal values but to the ones displayed on Fig. 3, which is 14 
never done. The extent of the distributions, which can be characterized with the help of the 15 
difference between the 5 and 95%, reflects the uncertainty on the scores associated with the 16 
position of the rain gauges in their corresponding radar pixel. Practically it means that when 17 
comparisons of scores are carried out with real data, as it is commonly done to compare the 18 
accuracy of the outputs of various radar quantitative precipitation estimation algorithm for 19 
example, the observed differences in the scores should be compared with this uncertainty to 20 
check whether they are significant or not.  This is never done and  could lead to qualifying the 21 
conclusions of some comparisons. 22 

 The values that should be used as reference (i.e. 50% quantile found considering only 23 
consequences of small scale rainfall variability) are displayed Fig. 3. Some of them are 24 
significantly different from the optimal values and as expected the difference is greater for 25 
small time steps which are more sensitive to small scale rainfall variability. For instance for 26 
15 min the 50% quantile is equal 0.91, 0.81 and 79 for respectively the corr, Nash and %1.5 27 
scores. The values for the slope are also smaller than one (0.82, 0.90 and 0.96 for respectively 28 
5, 15 and 60 min time steps), which was not necessarily expected. 29 

 30 

 With regards to the scores computed for the 4 studied events over the Seine-Saint-Denis 31 
County, it appears that independently of the event and time step the scores found for Nash, 32 
%1.5 and corr are not consistent with the idea that they are only due to small scale rainfall 33 
variability, meaning that instrumental errors affected the measurement. For RMSE the scores 34 
found are explained by small scale rainfall variability for 15 Aug. 2010 and 15 Dec. 2011 and 35 
almost for 14 Jul. 2010. For the event of 9 Feb. 2009 the observed RMSE is even lower than 36 
the values of the distribution of the “virtual gauges”. This is quite surprising since this 37 
distribution is a lower limit (for instance instrumental errors are not taken into account), 38 
which suggest some error compensation for this specific case. For NB and slope we find that 39 
the computed scores reflect instrumental errors for 9 Feb. 2009 and 14 Jul. 2010. It is also the 40 
case for the other two events with a time step of 5 min, but not with a 1 h time step. 41 

 42 

 In the methodology developed previously two steps are random and it is therefore 43 
important to check the sensitivity of the results to them. The first one is the downscaling of 44 
the radar pixels where the rain gauges are located. The sensitivity is tested by simulating a 45 
second set of downscaled rainfall fields. The second one is the selection of the virtual rain 46 
gauges that are used to compute the distributions displayed Fig. 3. Indeed in the downscaling 47 
process 21872187× virtual rain gauges are generated for each of the studied 26 radar pixels, 48 
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leading to ( )2621872187×  ( 173107.4 ×≈ ) possible combinations. A set of 1000 combinations 1 

is used to generate the studied distributions. To test the sensitivity, the distributions are 2 
assessed for two more sets for each of the two downscaled rainfall fields. Hence a total of 6 3 
samples for each score are tested to analyse this sensitivity issue. Figure 7 displays the 4 
cumulative probability function for the NB with a 15 min time steps which is representative of 5 
other time steps and scores. Visually it seems that the obtained distributions are very similar. 6 
It is possible to confirm this assertion more quantitatively with the help of a two samples 7 
Kolmogorov-Smirnov test (Massey, 1951) which is commonly used to check whether two 8 
samples are generated with the help of the same distribution. The null hypothesis that the 9 
samples are from the same underlying distribution is tested for the 6 samples two by two. It is 10 
rejected with a 95% confidence interval only 27 times out of 378 tests (378 = 14 tests for the 11 
6 samples two by two x 9 scores x 3 time steps). This confirms the first impression that the 6 12 
samples reflect similar distributions, and that the results previously discussed are robust and 13 
not sensitive to the random steps of the downscaling process and the selection process of the 14 
virtual rain gauges. 15 

 The sensitivity of the results to the choice of the UM parameter α=1.8 and C1=0.1 was 16 
also tested as in the section 3.3. Fig. 9 displays the cumulative probability distribution of for 17 
the Nash and %1.5 scores for the same sets of UM parameters as in the section 2.3 (see Table 18 
5). The same comments remain valid, i.e.: with a fixed parameter, the greater is the other one 19 
the worst is the indicator, C1 has a stronger influence than α on the computed uncertainty. 20 
Therefore, both parameters are needed and results cannot be interpreted only with the help of 21 
γs. It can be added that the worst is the indicator the widest is the probability distribution. 22 
Similar results are found for the other scores. It appears that the values of the UM parameters 23 
used for the simulations have a strong influence on resulting cumulative distributions,  24 
suggesting that for practical applications the parameters should be carefully estimated with a 25 
particular emphasis on C1.   26 

 27 

 Besides redefining the optimum of standard scores and setting values to which score 28 
variations should be compared, this work also suggests changing common practice when 29 
temporal evolution of rain rate or cumulative rainfall depth observed by rain gauge or 30 
disdrometer and the corresponding radar pixel are plotted on the same graph. This is the last 31 
standard way of comparing the output of the two measurement devices to be addressed in this 32 
paper. The observation scale gap between the two devices should be visible directly on the 33 
plot. A way of achieving this is to explicitly display the range of “realistic” values at the rain 34 
gauge scale for a given radar pixel measurement, in order to give an immediate insight into 35 
this issue to the reader and suggest whether to look for other explanations than small scale 36 
rainfall variability. This is currently not done in usual comparison. We propose to proceed as 37 
in the section 3 and to plot the 5, 25, 50 and 95 % quantiles for both rain rate and cumulative 38 
depth along with the radar curves. This is done in Fig. 8 for the 9 Feb. 2009 and 14 Jul. 2010 39 
rainfall event for one rain gauge. For the 9 Feb. 2009, the cumulative depth (Fig. 8.b) is 40 
clearly outside the uncertainty range of the radar measurement at rain gauge scale meaning 41 
the instrumental error are likely to have affected at least one of the devices. Concerning the 14 42 
Jul. 2010, the rain gauge cumulative depth is in agreement with the radar measurement (Fig. 43 
8.d). With regards to the rain rate (Fig. 8.c), the rain gauge measurements are in the lower 44 
portion of the realistic values for the first peak, outside of it for the second peak (suggesting 45 
the effect of instrumental errors), and in the upper one for the third peak. More generally these 46 
results suggest that to compare the measurements of two devices that observe the same 47 
physical phenomenon at two different scales, it should become a common practice to first 48 
simulate an ensemble of realistic outputs at the smallest available scale of observations among 49 
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two devices, and to compare the latter’s output to the generated ensemble. The example of 1 
radar and rain gauge was discussed in this paper, but similar techniques could also be 2 
implemented on the comparison between satellite and radar data that also do not correspond 3 
to the same scale, while with a smaller scale gap compare to the case discussed in this paper. 4 

 5 

 These results also hint at some ways of revisiting standard interpolation and merging 6 
techniques that, in spite being beyond the main scope of this paper, can take advantage from 7 
obtained herein results. Indeed the validity of a UM model of rainfall down to very small 8 
scale suggests that developing a multifractal interpolation algorithm would be feasible. Some 9 
basic ideas on how to proceed can be found in Tchiguirinskaia et al. 2004, but there is still 10 
some work to be done in order to have an operational algorithm. Of course the output of such 11 
process would not be a single field but an ensemble of realistic fields, conditioned by the 12 
observed rainfall data. With regards to the merging between radar and rain gauge data the 13 
work here also suggest some new ideas. Indeed in this paper the rainfall at the rain gauge 14 
scale was simulated from the radar, but since we have validated a mathematical representation 15 
of rainfall between the two observation scales it is possible to do the inverse. More precisely, 16 
it would also be possible to compute an ensemble of possible radar values that could result in 17 
the observed data at the rain gauge scale. Such information could be used to modify in new 18 
ways the radar measurements according to the rain gauge data, which is a common step of 19 
merging techniques. 20 

 21 

 22 

5) Conclusion 23 

 24 

 In this paper the issue of representativeness of point measurement with regards to larger 25 
scale measurements is revisited in the context of comparison between rain gauge and radar 26 
rainfall measurement. More precisely the influence the small scale rainfall variability 27 
occurring below the radar observation scale (1 km in space and 5 min in time here) on the 28 
standard comparison scores is investigated. It appears that this influence is twofold. First the 29 
target values of the scores are not the optimum ones because rainfall variability “naturally” 30 
worsens them. This worsening, which is neglected in numerous published comparisons, is 31 
significant. Second, because of the random position of the point measurements within a radar 32 
pixel there is an expected uncertainty on a computed score. The two effects are quantified in 33 
details on a case study with radar and rain gauge data from the 237 Km2 Seine-Saint-Denis 34 
County (France) and appears to be significant. This result is assessed with the help of a robust 35 
methodology relying on an explicit theoretical representation of the small scale rainfall 36 
variability not grasped by the radar (C-band one here). Indeed the parsimonious Universal 37 
Multifractals, which rely on only two parameters furthermore not event based in this study, 38 
are used to perform a realistic downscaling of the radar data to the point-measurement scale. 39 
This downscaling process is validated with the help of two very dense (i.e. 16 within an area 40 
of 1 km2) networks of disdrometers in Lausane (Switzerland) and rain gauges in Bradford 41 
(United-Kingdom).  The disparities observed between the point measurements are in 42 
agreement with the theoretical expectations.  43 

 44 

 The two effects of small scale rainfall variability indentified on standard comparison 45 
tools are unfortunately usually not taken into account by meteorologists and hydrologists 46 
when they carry out standard comparison to either evaluate new radar quantitative estimation 47 
precipitation algorithms or compare two. Doing it could lead to qualifying some otherwise 48 
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straightforward conclusion. The results obtained on this case study show that the assessed 1 
values for standard scores are not fully explained by small scale rainfall variability. This 2 
means that a methodology to properly distinguish the instrumental error from the 3 
representativeness issue should be developed within that framework of multifractal modelling 4 
of rainfall. The validation of a downscaling process is also a first step in improving existing 5 
merging techniques between the two rainfall measurements devices which can help in 6 
providing the accurate fine scale rainfall needed for urban hydrology applications. Further 7 
investigation would be needed to achieve these two aims. 8 

 9 
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 24 
Figure 1: Map of the 26 rain gauges of Seine-Saint-Denis used in this study, with the radar 25 
pixels of the Météo-France mosaic 26 

 27 

 28 
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 1 
Figure 2: Scatter plot for all the events with a 15 min time steps: (a) Radar vs. rain gauges 2 
measurements, (b) Radar vs. a set of virtual rain gauges (one per radar pixels) 3 

 4 
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 1 
Figure 3: Histograms of the scores computed for the 1000 samples of possible combinations 2 
of virtual rain gauges. The values of the scores for all the events (solid) and the event of 9 3 
Feb. 2009 (long dash), 14 Jul. 2010 (dash), 15 Aug. 2010 (dash dot) and 15 Dec. 2011 (dash 4 
bi-dot) are also displayed in red. The three figures associated with each distribution are the 5, 5 
50 and 95% quantile. 6 
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 1 

 2 

 3 
Figure 4: Illustration of the spatio-temporal downscaling process. Three realisations of the 4 
simulated rain rate with a resolution of 1 min in time and 46 cm in space starting with a 5 
uniform rain rate of 1 mm/h at the initial resolution of 5 min in time and 1 km in space.  6 

 7 

 8 
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 1 
Figure 5: Temporal evolution of the rain rate and cumulative rainfall depth for point 2 
measurements for the EPFL data set (a) and the Bradford University data set (b). For each 3 
event the uncertainty range of the average measurement at the disdrometers or rain gauge 4 
observation scale is displayed (R25(t) - R75(t) or R25(t) - R75(t)  and C5(t) - C95(t) or C5(t) - 5 
C95(t) are the limit of respectively the dark and the light area). Average measurement with 5 6 
min resolution in blue.  7 
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 1 

 2 

 3 
Figure 6: Quantile plot (including all the stations and all the available time steps) of the 4 
measured data versus a realisation of downscaled rainfall fields for the EPFL (a) and Bradford 5 
(b) data set.  6 

 7 

 8 
Figure 7: Cumulative probability functions for the NB with a 15 min time steps of the 6 9 
samples generated to test the sensitivity of the results to the downscaling process and the 10 
selection process of the virtual rain gauges.  11 
 12 
 13 
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 1 
Figure 8: Rain gauge (dash), radar (solid), and uncertainty range of the radar measurement at 2 
the rain gauge scale (same as in Fig. 6) for 9 Feb. 2009 (top) and 14 Jul. 2010 (bottom) with 3 
the Seine-Saint-Denis data set. 4 
 5 
 6 

 7 
Figure 9: Cumulative probability functions for the Nash (a) and %1.5 (b) scores with a 15 min 8 
time steps for 5 different sets of UM parameters inputted to the downscaling process.  9 
 10 
 11 
 12 
 13 
 14 
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Tables 1 
 2 
Table 1: General features of the studied rainfall events in Seine-Saint-Denis. For the 3 
cumulative depth the three figures correspond to the average, the maximum, and the 4 
minimum over the rain gauges or the corresponding radar pixels  5 

 6 

 9 Feb. 2009 14 Jul. 2010 15 Aug. 2010 15 Dec. 2011 

Approx. Event duration 
(h) 

9 6 30 30 

Available gauges 24 24 24 26 

Gauge cumul. depth (mm) 11.4 (10 - 
12.8) 

37.9 (47.8 – 
23.4) 

50.1 (62.8 – 
27.4) 

22.4 (28.2 – 
18.2) 

Radar cumul. Depth (mm) 8.5 (9.3 – 7.5) 28.7 (35.8 – 
21.2) 

50.6 (59.2 – 
36.0) 

22.4 (28.2 – 
19.8) 

 7 

 8 

 9 

Table 2: Standard scores for the comparison between radar and rain gauges data for the 4 10 
studied events. Only the time steps with one of data type exhibiting a rain rate greater than 1 11 
mm/h are considered. 12 

Score   5 min                15 min           60 min 

Nb. of points 

NB 

Corr 

RMSE 

Nash 

Slope 

Offset 

%1.5 

    11412.             3884.               991. 

  - 0.15               - 0.13              - 0.12 

    0.70                 0.78                0.82 

    5.19                 3.71                3.09 

    0.46                 0.54                0.59 

    0.43                 0.46                0.48 

    1.33                 1.24                1.17 

    38.7                 55.9                72.1 

 13 

Table 3: Same as in Table 1 for the studied rainfall event in Lausane (EPFL data set) 14 

 6 June 
2009 

17 July 
2009 

8 
October 

2009 

26 
March 
2010 

3 April 
2010 

5 August 
2010 

Approx. Event 
duration (h) 

6 7.6 7.9 5.8 7.3 4.5 

Nb of selected 
disdrometers 

15 16 15 16 16 15 

Disdrometer cumul. 
depth (mm) 

9.7 (11.1 
– 7.6) 

22.9 (26.5 
– 18.0) 

12.2 
(13.4 – 
10.8) 

11.8 
(13.8 – 
10.2) 

14.0 
(16.2 – 
12.1) 

5.5 (6.6– 
4.6) 

Maximum % 
difference between 
all selected 
disdrometers 

46 47 24 35 34 43 
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 1 

Table 4: as in Table 1 for the studied rainfall events and selected rain gauge data in Bradford 2 
(Bradford University data set) 3 

 22 June 2012 6 July 2012 15 August 2012 

Approx. Event duration (h) 24 10 3 

Nb of selected gauges 14 14 16 

Maximum % difference within 
pairs of selected co-located rain 
gauges 

4.1% 2.0% 3.7% 

Gauge cumul. depth (mm)  43.2  
(49.4 – 39.4) 

36.7  
(38.0 – 34.5) 

16.8  
(17.4 – 15.2) 

Maximum % difference between 
all selected rain gauges 

25% 10% 14% 

 4 

Table 5: Sensitivity test to the values of the UM parameters for the 6 June 2009 of the EPFL 5 
data set  6 

 7 

α C1 γs CV’95  (%) 

1.8 0.1 0.50 14 

1.8 0.05 0.36 9.2 

1.8 0.2 0.67 26 

1.4 0.1 0.42 12 

0.6 0.1 0.22 11 

 8 

 9 


