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Abstract. 

The macroscopic linear elastic behaviour of inclusion-reinforced soils, regarded as 

periodic composite media, is investigated by means of the homogenization theory. Special 

attention is given here to the determination of their longitudinal shear stiffness properties, 

which strongly govern the reinforced ground response under lateral loading. Combining the 

use of analytical, variational as well as numerical methods, three particular engineering-

relevant configurations are more thoroughly examined: single trench, column and cross 

trench reinforcements. Fairly accurate closed-form expressions are thus obtained giving the 

value of the reinforced soil longitudinal shear stiffness as a function of the individual 

components shear moduli and reinforcement volume fraction. It is shown in particular that 

adopting a cross trench reinforcement layout instead of the classical column configuration 

results in a much higher improvement of the longitudinal shear stiffness. The results are then 

applied to assessing the reduction of soil liquefaction risk which can be attributed to the 
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presence of the reinforcing inclusions. Again, they clearly demonstrate the excellent 

performance of the cross trench configuration as compared to the complete inefficiency of 

the column reinforcement technique. 

Keywords: reinforced soils; column reinforcement; trench reinforcement; shear stiffness; 

homogenisation; liquefaction risk. 
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1. Introduction 

As it is increasingly acknowledged today, soils reinforced by inclusions may be regarded 

as composite materials, the macroscopic behaviour of which can be determined using the 

same homogenization methods as those employed for instance, at a much smaller scale, for 

industrial fibre composite materials. The applicability of such methods is based on the fact 

that the characteristic length of the reinforcement, such as the spacing between two 

inclusions, is small in comparison with the overall dimensions of the geotechnical structure. 

Furthermore, far from being an arbitrary simplifying assumption, the condition of 

periodicity is perfectly representative of the actual soil reinforcement construction 

procedures. 

As far as reinforcement by “thin” linear inclusions, made of much stiffer materials than 

the soil, like metal or concrete, is considered (metal strips or geotextiles in the earth 

reinforcement technique, soil nailing, rock bolting or even pile reinforced soils), a 

multiphase model is suitable for capturing the macroscopic behaviour of such reinforced 

soils (Sudret and de Buhan, 2001; Hassen and de Buhan, 2005). However, this model is not 

appropriate for describing the overall behaviour of foundation soils reinforced by large 

diameter columns (stone, lime or vibro-concrete inclusions), where a classical 

homogenization method for periodic media should therefore be preferred. 

So far, the homogenization method has been mainly applied to this particular class of 

soils strengthened by columnar inclusions, in the context of the limit analysis or yield design 

approach, striving to determine a macroscopic anisotropic yield strength condition for the 

reinforced soil (Jellali et al., 2005, 2011). This method is also applied to derive a simplified 

lower bound approximation to the behaviour of stone column reinforced soils, in the elastic 

as well as plastic range (Balaam and Booker, 1981; Canetta and Nova, 1989; Lee and Pande, 
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1998; Abdelkrim and de Buhan, 2007; Hassen et al., 2010). Focusing more specifically on 

the linear elastic behaviour, the latter approach gives reasonably good estimates for the axial 

stiffness characteristics of the reinforced soil, which are quite relevant for evaluating the 

settlements of the reinforced foundation under vertical loading. But they completely fail to 

correctly evaluate their stiffness characteristics under pure shear loading (longitudinal shear 

stiffness), which play a decisive role in the response of reinforced ground when subject for 

instance to earthquake induced lateral loading.  

The purpose of the present contribution is therefore to obtain the most possible accurate 

estimates for such a longitudinal shear modulus of column reinforced soils, both constituents 

being considered as isotropic linear elastic materials with perfect bonding at their interface. 

Referring to reinforced soils as periodic elastic media, the analysis is entirely based upon the 

solution to a specific elastic boundary value problem, attached to the reinforced soil 

representative unit cell (section 2). Several configurations are then thoroughly examined in 

the light of such a method: multilayer or single trench reinforcement where exact closed 

form expressions are obtained for the longitudinal shear modulus (section 3); the most 

frequently used column configuration where analytical bounds are favourably compared to 

previous analytical (Hashin and Rosen, 1964) as well as numerical estimates (section 4); and 

finally the so called “cross trench” configuration which proves to be an optimal way of 

ground improvement, notably in terms of shear stiffness characteristics (section 5). 

As a potential engineering application, section 6 describes how the previously obtained 

results can be incorporated into a simplified analysis of the way such reinforcements may 

contribute to reducing the liquefaction risk of saturated soils subject to earthquake loading. 

Among the main conclusions to be drawn from the analysis is the fact that no reduction of 
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the liquefaction risk is resulting from reinforcing the soil by columnar inclusions, whereas a 

quite significant reduction could be expected from cross trench reinforcement. 

2. A brief outline of the elastic periodic homogenization method applied to 

reinforced soils  
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Figure.1. Soil reinforced by a group of columns and associated unit cell 

A homogeneous soil reinforced by a group of vertical inclusions, parallel to the Ox3-

direction, is considered. Owing to the fact that the inclusions are regularly placed into the 

soil, a representative cell, denoted by C, may be exhibited as shown in Figure 1, and that 

both constituents are assumed to be elastic, the reinforced soil can thus be regarded as a 

periodic elastic medium. The homogenization theory applied to elastic periodic media has 

been developed for more than thirty years, notably by Sanchez-Palencia (1980), Duvaut 

(1976) or Bensoussan et al. (1978), based on the asymptotic expansion technique. It has 

been more recently extended to the elastoplastic behaviour of the materials (Suquet, 1985) 

with specific applications to column reinforced soils (Abdelkrim and de Buhan, 2007; 

Hassen et al., 2010). 
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An important result has been established in the framework of this theory, according to 

which the determination of the macroscopic behaviour of the equivalent homogenous 

medium is obtained from the solution to an elastic boundary value problem, called the 

“auxiliary problem”, defined on the representative cell of the periodic medium, considered 

as a micro-structure. This result states that the macroscopic elastic behaviour of the 

reinforced soil is defined as follows.  

We first introduce the set S of the statically admissible stress fields , on the one 

hand, the set C of the kinematically admissible displacements fields , on the other hand, 

defined as follows: 
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ax xuxFx
C

C
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Condition (1a) expresses the classical equilibrium equation in the absence of body 

force density, which is to be completed by the condition that the stress vector should remain 

continuous across possible stress discontinuity surfaces like the soil/column interface, while 

condition (1b), called antiperiodicity condition, states that stress vectors applied to the cell’s 

external boundary ∂C at two points x and x, deduced from one another by periodicity, are 

opposite. Likewise, definition (2) means that any kinematically admissible displacement 

field is the sum of a homogenous strain field, characterized by its gradient F, and a periodic 

fluctuation u. 
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On the basis of the above definitions, the general solution of the auxiliary problem can 

be formulated in the following way. Given any macroscopic stress , which could be 

regarded as a “loading parameter” on the unit cell, one should find a statically admissible 

stress field and a kinematically admissible displacement field such that: 

    ,   )()(grad)(grad 2/1)(     with  )(:)()( 

 ,   ,   , 

C


xxxxxx

CS

T 


c

  (3) 

where   denotes the average value of * over the unit cell C and c(x) denotes the fourth 

order tensor of elastic moduli at point x of the unit cell. The macroscopic elastic law simply 

writes in the form of the following linear stress-strain relationship: 

    with   :hom
c      (4) 

where chom represents the macroscopic elastic stiffness tensor.  

An equivalent procedure consists in solving the same problem where the macroscopic 

strain, instead of the macroscopic stress, is prescribed a loading parameter to the unit cell. 

3. Longitudinal shear modulus of reinforced soil: the multilayer model 

Our analysis will from now on be focused on the evaluation of one particular component 

of chom, namely the longitudinal shear stiffness GL of the reinforced soil, defined as: 

1331
hom
313113

hom
13133113  2  LGcc     (5) 

and reducing to the classical shear modulus (Lamé constant) for an isotropic elastic material. 

This modulus can be explicitly calculated in the case of a homogeneous soil (shear modulus 
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Gs ) reinforced by regularly spaced vertical “trenches” (layers) of a reinforcing material 

(shear modulus Gr > Gs ) as sketched in Figure 2. Two configurations should be considered. 
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(a)      (b) 

Figure 2. Homogeneous soil reinforced by parallel trenches subject to longitudinal shear 

a) The reinforcing layers are parallel to the plane Ox1x3 (Figure 2(a)). Implementing 

the previously described procedure, a macroscopic shear strain of the form: 

 1331 eeee       (6) 

is imposed to the unit cell. It can be easily seen that the following displacement field 

(bottom of figure 3(a)): 

312 ex       (7) 

is kinematically admissible with the macroscopic strain, while the following piecewise 

constant stress field (top of figure 3(a)): 
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is associated with the homogeneous strain field derived from (7) through the respective 

elastic constitutive laws of the soil and the reinforcement, while being statically 

admissible with the following macroscopic stress: 

   1331)1(2 eeeeGG rs      (9) 

hence from (5): 

GGGG rsL  )1(      (10) 
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(a)      (b) 

Figure 3. Stress fields and corresponding deformed configurations of a multilayered soil 

subject to longitudinal shear loading 

where denotes the reinforcement volume fraction. It is to be noted that this exact result 

coincides with the classical Voigt upper bound for a two-phase composite. 
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b) The reinforcing layers are perpendicular to the Ox1x3 loading plane (Figure 2(b)). 

A macroscopic shear stress of the form (top of figure 3(b)): 

 1331 eeeeT      (11) 

being imposed to the unit cell, the homogeneous stress field is obviously statically 

admissible and the piecewise constant strain field derived from the respective 

constituents elastic laws: 
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s
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may be easily integrated into the following piecewise linear displacement field (bottom of 

figure 3(b)): 
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  (13) 

where the side of the cubic unit cell has been conventionally taken equal to unity. Since 

the corresponding macroscopic strain is: 

  1331)2/()2/)(1( eeeeGTGT rs     (14) 

it follows from (5) that: 

1/1or    //)1(/1   GGGGG LrsL     (15) 

which is identical with the classical Reuss lower bound. 
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4. The case of column-reinforced soil 

The most commonly encountered case of a soil reinforced by a group of circular 

cylindrical columnar inclusions is now investigated, trying to evaluate the longitudinal 

shear modulus in the same way as it has been done in the previous section. Since exact 

solutions are not available in such a configuration, the problem will be dealt with by 

resorting to analytical bounds derived from variational principles as well as to finite 

element simulations. 

4.1. Derivation of an upper bound for GL 

It can be easily proved that, given any macroscopic strain  , and any displacement 

field ' , kinematically admissible with  , the following inequality, deduced from the 

minimum principle of the potential energy, holds: 

)(':)(:)('2/1::2/1

 with k.a. '  ,                  

hom xxx 


cc 


    (16) 

It follows that for a macroscopic shear strain of the form (6), we obtain an upper 

bound value for the macroscopic longitudinal shear modulus. Indeed: 

2hom 2::2/1  LGc      (17) 

so that: 

2

1331

4/)(':)(:)('     

     )( with k.a. '




xxxG

eeee

L 


c

   (18) 

This inequality is implemented making use of the following displacement field: 

3cos)(' er         (19) 



 

 12 

with (Figure 4 where, due to symmetries, only a quarter of the unit cell cross section of 

side equal to one has been represented): 

)( zonein                  

)( zonein        
)(4)(

)()(
  

)( zonein        
)(4)(

2
  

)(
2

2

2

IIIr

II
GGGG

GG
r

rGG

Ir
GGGG

G

r
srsr

srsr

srsr

s





 



   (20) 

1x

2x

2/1

2/1

 /
)(I

)(II

)(III

1x

2x

2/1

2/1

 /
)(I

)(II

)(III

 

Figure 4. Zoning of the unit cell for the definition of kinematically (resp. statically) 

admissible displacement (resp. stress) fields 

where is the column radius equal to  /  and ),,( 3 zxr   the cylindrical 

coordinates. As a result of computations which may be found in Appendix A, the final 

result writes: 
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4.2. Derivation of a lower bound estimate for GL 

The derivation of such a lower bound is based on the minimum principle of the 

complementary energy applied to the same auxiliary problem, where a macroscopic stress 

  is prescribed as loading parameter. For any stress field '  statically admissible with 

 , this principle may be written as follows: 

)(':)(:)('2/1::2/1

 with s.a. '  ,                  

hom xxx 


ss 


   (22) 

where shom=(chom)-1 and s(x)=(c(x))-1 are the macroscopic and local elastic compliance 

tensors, respectively. For a pure shear stress of the form (11), this inequality becomes: 
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   (23) 

which yields the following lower bound estimate for GL: 
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An appropriately selected stress field, described in Appendix A, allows deriving the 

following lower bound for the longitudinal shear modulus of a column reinforced soil: 

1
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4.3. Comparison with numerical and Hashin-Rosen estimates. 

Analytical upper and lower bounds (21) and (25) are now compared with numerical 

simulations carried out with the standard finite element code Cast3M (Cast3M, 2003) on 

the one hand, the Hashin-Rosen’s estimate (Hashin and Rosen, 1964; Hashin, 1983), on 

the other hand.  

12.6%  ;  10/  sr GG 12.6%  ;  10/  sr GG
 

Figure 5. Elastically deformed configuration of a column reinforced soil under 

longitudinal shear loading 

Since the reinforced soil is periodic in the horizontal cross sectional Ox1x2-plane, 

implying that the solution to the auxiliary problem is independent of the x3 coordinate, 

only a “slice” of the unit cell needs to be considered in the numerical analysis. Figure 5 

pictures the deformed configuration of a column reinforced soil (exaggerated for the sake 

of clarity) under longitudinal shear loading, for typical values of the parameters, namely a 

shear stiffness of the column material (Gr) ten times greater than that of the soil (Gs) and 

a reinforcement volume fraction equal to %6.12 . Due to the obvious symmetry 

property of the problem with respect to the loading plane Ox1x3, half of the structure is 

represented in this figure. As it can be clearly seen from this figure, the column 
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undergoes much smaller deformations that the surrounding soil in nearly the same way as 

for a single trench reinforcement when the reinforcing layer is perpendicular to the plane 

of loading (Figure 3(b)). 
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Figure 6. Comparison among different estimates for the longitudinal shear modulus of a 

column reinforced soil 

The different analytical as well as numerical evaluations of the longitudinal shear 

modulus should also be compared with the analytical estimate provided by Hashin and 

Rosen (1964) or Hashin (1983) in a slightly different context. Indeed, according to their 

heuristic approach, the selected representative volume was not the cubic unit cell of 

periodic homogenization, but a composite circular cylinder made of a circular fiber 

(column) of radius a surrounded by an annular cylinder of matrix (soil) of external radius 

equal to b, so that the reinforcement volume fraction is 2)/( ba . The effective 

longitudinal shear modulus they derived from such a morphologic model, is based on the 

elastic solution to such a composite cylinder problem, which may be found in Appendix 
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A (the composite cylinder corresponds to the sub domain made of zones (I) and (II )). The 

corresponding estimate of the composite longitudinal shear modulus is: 

)()(

)()(HR

srsr

srsr
sL GGGG

GGGG
GG 

 


     (26) 

The different analytical bounds or estimates are compared to the results of finite 

element simulations in Figure 6, in the case when Gr=10Gs, the reinforcement volume 

fraction  being varied between 0 and 40% (the engineering practice shows that this 

parameter rarely exceeds 30%). According to this figure, the Hashin-Rosen estimates 

(triangular points) are very close to the numerical estimates (square bullets), both being 

comprised between the previously determined bounds (upper and lower solid curves) and 

almost coincident with the average value of upper and lower bounds (middle curve). It 

can be concluded that either the Hashin-Rosen estimate (26) or the half sum of bounds 

(21) and (25) provide a very accurate assessment for the increase of the longitudinal shear 

stiffness to be expected from reinforcing a soil by cylindrical columns.  

5. The cross trench configuration 

As shown in Figure 7, the increase in shear stiffness due to reinforcement by columnar 

inclusions is relatively limited, far closer to the Reuss lower bound (15) than to the Voigt 

upper bound (10). By way of example, for a reinforcement volume fraction equal to 

20%, the longitudinal shear stiffness is increased by about 40%, which is twice as much 

as for a single trench configuration where the reinforcement is normal to the loading 

plane (bottom curve), but considerably less than for a single trench reinforcement placed 

in the loading plane (top curve), where such an increase would amount to 180%. Indeed 

in the latter configuration, the shear stiffness of the reinforcing material is fully mobilized 
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providing a kind of maximum “bracing effect” to the overall shear response of the 

reinforced soil. 

This suggests that a potentially innovative and optimal reinforcement technique 

(which is actually beginning to develop in practice), would consist in improving the soil 

not by a single array of parallel trenches, but by a network of two perpendicular arrays of 

trenches, forming a kind of “honeycomb structure” embedded in the soil, as sketched in 

Figure 8: this particular reinforcement geometry will be called the cross trench 

configuration. Denoting by t the thickness of a trench, and assuming that the side of the 

unit cell is taken equal to unity, the reinforcement volume fraction is simply: 

)2( tt        (27) 
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Figure 7. Increase of longitudinal shear stiffness for different types of reinforcement 
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Figure 8. Unit cell for a cross trench configuration of reinforcement 

Both variational methods already used for the column reinforcement technique, will 

now be implemented in order to provide sufficiently accurate bounds for the longitudinal 

shear modulus of cross trench reinforced soils. 

5.1. Upper bound estimate 

This upper bound estimate is obtained with the help of the following displacement 

field: 

31)(' exf      (28) 

where function f describing the displacement profile (Figure B1) is a piecewise linear 

continuous function defined as: 
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The implementation of the minimum principle of potential energy (16) making use of 

the above displacement field (see Appendix B for details) yields, after optimizing (i.e. 

minimizing) the bound with respect to parameter the following upper bound: 
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5.2. Lower bound estimate 

The lower bound estimate is derived from the application of the complementary 

energy minimum principle (24), using the following piecewise constant shear stress field 

over the unit cell (Figure B2): 
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The introduction of this stress field into (24) provides, after maximization with respect 

to the two parameters 21  and  , the following lower bound estimate for the longitudinal 

shear modulus of a cross trench reinforced soil (calculations are reported in Appendix B): 
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5.3. Comparison with numerical estimates: column vs. cross trench configuration 

Figure 9 pictures a perspective view of the deformed configuration of half of the unit 

cell of a cross trench reinforced soil subject to longitudinal shear loading, resulting from 

a finite element simulation of the problem. As can be observed in this figure, the trench 

which is perpendicular to the loading plane undergoes much less deformations than the 

soil and the trench placed in the loading plane. This illustrates the fact that, contrary to 

the former, the latter trench fully contributes to the reinforced soil shear stiffness by 

means of the already mentioned “bracing effect”. 

12.6%  ;  10/  sr GG 12.6%  ;  10/  sr GG
 

Figure 9. Deformed configuration of a cross trench reinforced soil under longitudinal 

shear loading 

Figure 10 displays the analytical (bounds) and numerical results obtained for a cross 

trench reinforced soil. It shows that, as expected, the numerical estimates are comprised 

between the analytical bounds which are relatively close to each other, the mean value of 
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these bounds (represented by the intermediate solid curve) providing an excellent 

estimate for the reinforced soil longitudinal shear stiffness. 

Finally, all the results obtained in this section as well as in the two previous ones, have 

been summarized in Figure 11. By far the most remarkable result of the whole analysis, is 

the fact that reinforcing a soil according to the “cross trench technique” notably improves 

its performance in terms of overall longitudinal shear stiffness, in any case much more 

than a reinforcement by columnar inclusions. Indeed, for a typical value of 20%, the 

cross trench configuration provides an increase of almost 110%, that not so far from the 

maximum possible value of 180% (Voigt bound (10=), to be compared with 40% for a 

reinforcement by column, the minimum value of 22% corresponding to the Reuss bound 

(15)). 
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Figure 10. Analytical (bounds) and numerical estimates for the longitudinal shear 

stiffness of a cross trench reinforced soil 
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Figure 11. Longitudinal shear modulus of a reinforced soil for different configurations 

6. Application to the optimization of reinforcement layout as a way of reducing 

soil liquefaction 

6.1 Problem statement 

As it is well known in geotechnical engineering, saturated relatively loose soils (sands 

or silts) subject to cyclic shear strains induced by earthquake ground motions, experience 

excess pore water pressure generation which results in a liquefaction phenomenon that is 

a collapse of their resistance. Our objective here is to examine, through a very simple 

model based upon the previously obtained homogenization results, to what extent such a 

phenomenon can be avoided from strengthening the soil by inclusions (example of stone 

or vibro-concrete columns: Baez and Martin, 1993; Adalier et al., 2003; Al-Homoud and 

Degen, 2006). 
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Figure 12. Vertical propagation of a seismic wave in a soil 

The earthquake loading is schematized by a harmonic shear wave propagating 

upwards from the underlying substratum into the soil (Figure 12), defined as:  

1
3sin),( e

c

x
ttx 


       (34) 

where   is the horizontal displacement amplitude and   the angular frequency, both 

being prescribed characteristics of the seismic loading, while c is the shear wave velocity 

equal to: 

density mass soil:  ;  ss

s
s

G
c     (35) 

for the non reinforced soil and: 

  hom LG
c       (36) 

for the reinforced soil, regarded as a homogenized elastic continuum, where   

represents its average mass density defined as: 
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The cyclic strain field associated with (34) is therefore: 
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so that the shear strain amplitude at any point is: 
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It thus appears that the ratio between the macroscopic shear strain amplitude of the 

reinforced soil and that of the original soil is: 

L
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G
 hom

     (40) 

where, for the sake of simplicity, it has been assumed that s  . 

Actually, the relevant comparison to be performed is that between s  and the average 

value of the shear strain in the soil of the unit cell subject to hom , defined as:  
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where Cs denotes the geometrical sub domain of the unit cell C occupied by the soil, and 

is a localization factor.
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6.2. Assessing the mitigation of liquefaction risk 

The reduction of the potential risk of soil liquefaction to be expected from the 

stiffening effect of the reinforcement by inclusions, will be all the more important as the 

following ratio, which will conventionally be called risk reduction factor R, defined as: 

L

s

s

s

G

G
R 

       (42) 

will be smaller than unity.  This factor is now evaluated for the different geometries of 

reinforcement examined above. 

6.2.1. Single trench reinforcement (multilayer model) 

Two cases should be considered depending on the orientation of the loading with 

respect to the direction of the reinforcing layer. 

a) The plane of loading is parallel to the reinforcing trench (Figures 2(a) and 3(a)). 

The shear strain field being homogeneous, equal to the macroscopic shear strain, the 

localization factor is equal to =1, and then from (10) and (42): 
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b) The plane of loading is normal to the reinforcing trench (Figures 2(b) and 3(b)). 

The shear strain field being piecewise homogeneous (Eq. (12)), the localization factor is 

calculated from (12), (14) and (15) as: 
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hence 
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6.2.2. Reinforcement by circular columns  

Two different estimates of the localization factor can be obtained from the 

displacement and stress field used in Appendix A for the derivation of bounds on GL. The 

“approximate” displacement field defined by (19) and (20) yields, after some 

calculations, the following estimate: 
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On the other hand, the stress field defined by (A13)-(A15) makes it possible to 

calculate the following estimate for the localization factor: 
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and thus for the risk reduction factor: 
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The variations of the two above estimates of the risk reduction factor as functions of 

the reinforcement volume fraction have been displayed in Figure 13, along with the 

evaluation of this factor deduced from the finite element simulations carried out in 

section 4. It can be seen from this figure that, even though the previous estimates cannot 
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be rigorously interpreted as bounds on R, they actually bracket the numerical values 

(square symbols). Moreover, their average value (middle curve) provides a very accurate 

estimate for the reduction factor.  
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Figure 13. Evaluations of the liquefaction risk reduction factor for a column-reinforced soil 

6.2.3. Cross trench reinforcement 

The procedure is quite similar to that followed for a column-reinforced soil. Leaving 

aside detailed calculations, the optimized displacement field (29) used in the 

determination of the upper bound solution yields: 
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where the expression of ub
ct,LG  is given by (30). Likewise, the optimized stress field (31)-

(32) used in the lower bound approach leads to: the following estimates of both the 

localization and risk reduction factors: 
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with lb
ct,LG  given by (33). 
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Figure 14. Evaluations of the liquefaction risk reduction factor for a cross trench reinforced 

soil 

The above analytical estimates of the risk reduction factor are compared with the 

numerical ones in Figure 14. Again, it can be seen that the average value of these 

estimates provide an excellent evaluation of this factor. 
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7. Analysis of results and concluding remarks 

All the results obtained in the previous section are summarized in Figure 15 showing 

the variation of the risk reduction factor as a function of the reinforcement volume 

fraction for the different types of reinforcement: single trench, column or cross trench 

configurations. As it is clearly apparent from this figure, the cross sectional shape of the 

reinforcement has a considerable influence on its performance in terms of mitigation of 

liquefaction risk, due to the decrease of the cyclic shear strain amplitude experienced by 

the soil subject to seismic loading. 

At first sight, referring to the bottom curve of Figure 15, one might wrongly conclude 

that reinforcing the soil by a single array of parallel trench would constitute the best way 

of reducing the risk of liquefaction. Unfortunately, the top curve of the same figure 

clearly shows this is only true when the trench orientation is in the seismic loading plane, 

the risk of liquefaction being on the contrary increased when the reinforcing trenches are 

normal to the same seismic loading plane. 

The upper intermediate curves, which correspond to the most frequently used 

configuration of reinforcement by columnar inclusions, show that there is no such 

mitigation effect of liquefaction risk, a slight increase of this risk being even observed. 

This somewhat unexpected result can be explained as follows from the multiplicative 

decomposition (42) of factor R. Indeed, while the second square root term of this 

expression is obviously smaller than one, since the longitudinal shear stiffness is greater 

than the soil shear modulus (Figure 11), its potentially positive effect is completely wiped 

out by the fact that the localization factor  is larger than one, which means that the shear 

strains tend to concentrate in the soil due to the presence of the reinforcing inclusion. 
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Figure 15. Evaluations of the liquefaction risk reduction factor for different kinds of 

reinforcements 

It finally turns out that the cross trench configuration (lower intermediate curves) 

makes it possible to obtain a quite significant reduction of risk liquefaction, the more 

pronounced reinforcing effect being in such a case only partially obliterated by the strain 

concentration effect. This quite important result is corroborated by Figure 16 displaying 

the variations of the risk mitigation factor with respect to the reinforcement-soil relative 

shear stiffness, the reinforcement volume fraction being held at a constant typical value 

of 16%. One could expect for instance that the risk factor would be cut in half when 

employing a sufficiently stiff reinforcing material. 

The implementation of the homogenization theory for elastic periodic media has 

made it possible to derive rigorous and accurate estimates for the longitudinal shear 

stiffness of reinforced soils, as well as to determine the most effective configuration to be 

assigned to the cross section of the reinforcing inclusion. Among the key results of such 
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an analysis, it should be pointed out that the cross trench configuration appears to be an 

optimized form both in terms of soil reinforcement efficiency and liquefaction risk 

remediation. This result has important consequences from an engineering design 

viewpoint, since it provides a strong theoretical background to the development of the 

cross trench reinforcement technique. 
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Figure 16. Liquefaction risk reduction factor as a function of the reinforcement relative 

shear stiffness for =16% 
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Appendix A. Derivation of bounds on GL for a column-reinforced soil 

 Upper bound estimate 

It should first be noted that the displacement field defined by (19) and (20) can be 

written in the form (2) that is: 
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since u(x) is equal to zero on the external boundary of the unit cell cross section, so that 

the periodicity condition is automatically satisfied. This implies that the displacement 

field is kinematically admissible with the following macroscopic strain: 
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On the other hand, referring to (18), the average value of the strain energy on the unit 

cell can be calculated as follows: 
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since tr’=0. Now, it turns out that the stress field '  in zones (I) and (II ) associated with 

the displacement field '  through the elastic constitutive law: 
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satisfy the equilibrium conditions, including the continuity of the shear stress rz'  across 

the soil (II )-column (I) interface (r=). It follows from applying the virtual work principle 

(Clapeyron equation) that: 
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where S(r= 1/2) is the interface between regions (II ) and (III ) (dashed circle in Figure 4) 

and from (19) and (20): 
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We thus obtain: 
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Meanwhile, the calculation of the elastic strain energy in zone (III ) is straightforward, 

since in this region: 
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and then 
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The average of the elastic strain energy over the entire unit cell is therefore: 
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with from (20): 
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and thus from (18) and (A2): 
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 Lower bound estimate 

The following stress field is defined in the same zones as the previous displacement 

field. It is associated in zones (I) and (II ) to the displacement field defined by (19) and 

(20), through the elastic law: 

* Zone (I) (  r0 ) 
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* Zone (II ) ( 2/1 r ) 
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while it is completed in zone (III ) by: 
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It can be easily seen that the equilibrium equations are satisfied in each zone 

separately, while the shear stress component rz'  remains continuous across the 

interfaces between zones (I) and (II ) on the one hand, zones (II ) and (III ) on the other 

hand. The macroscopic stress equilibrated by this stress field is: 
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The average elastic energy associated with the above statically admissible stress field 

'  is: 
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where the value of the sum of the first two terms is exactly the same as that calculated in 

(A7), that is on account of (A11): 
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Since the stress field in zone (III ) can be rewritten as: 

)(' 3131 eeeeT      (A19) 

the corresponding elastic stress energy is: 
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so that: 
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As a result of (24), (A16) and (A21), the following lower bound is finally obtained: 
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that is: 
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Remark. It should noted that the previously mentioned displacement and stress fields 

restricted to zones (I) and (II ) correspond to the elastic solution exhibited by Hashin and 

Rosen (1964) for their axisymmetric composite cell model (see 3.3.). 

Appendix B. Derivation of bounds on GL for a cross trench reinforced soil 

 Upper bound estimate 
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Figure B1. Displacement profile in the unit cell 



 

 40 

Since the displacement field defined by (28) and (29) can be rewritten as: 
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where u(x), being equal to zero on the external boundary of the unit cell cross section, is 

periodic, it appears to be kinematically admissible with the following macroscopic strain: 
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The associated strain field is therefore: 
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so that: 
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and then, referring to the zoning of Figure (B1): 
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The upper bound estimate deduced from the general inequality (18): 
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is then minimized with respect to parameter : 
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where rs tGGtG  )1( . 

Taking into account the relationship between the trench thickness and the 

reinforcement volume fraction: 

  11)2( ttt      (B8) 

the optimized bound (30) is finally obtained. 

 Lower bound estimate 

The stress field defined by (31) and (32) is statically admissible, since it obviously 

satisfies the equilibrium equation in each zone (Figure (B2)), where it is constant, while 

the stress vector continuity is ensured at the interfaces between these zones (namely 

between zones  )()(  and   )()( IVIIIIII  ). Furthermore it equilibrates the following 

macroscopic stress: 
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The calculation of the complementary energy yields 
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Figure B2. Piecewise homogeneous shear stress field in the unit cell 

hence the following lower bound: 
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Searching for the maximum of the right hand member of (B11) with respect to 1  and 

2 , under the condition 21 )1(  ttT  , yields: 
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that is: 
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