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Abstract

Nanocomposites are becoming more and more popular and mechanical models are needed to

help with their design and optimization. One of the key issues to be addressed by such models

is the surface-stresses arising at the inclusion-matrix boundary, due to its high curvature. In this

paper, we show that, contrary to what has previously been suggested, polarization techniques

can be employed in the context of composites with interface effects. This requires a specific

mathematical treatment of the interface, which must be regarded as a thin elastic layer. We then

apply the proposed general methods to the specific case of nanocomposites with monodisperse

spherical inclusions, for which a lower bound on the bulk modulus is derived. When interface

effects are disregarded, this bound coincides with the classical Hashin-Shtrikman bound. In the

presence of interface effects, we show that the existing Mori-Tanaka estimate is in fact a lower-

bound on the effective bulk modulus. Finally, lower bounds on the effective bulk modulus of

nanocomposites with polydisperse spherical inclusions are proposed. Although this result can

be considered as a by-product of the previous one, it is new, and has no published Mori-Tanaka

counterpart.

Key words: Nanocomposite, Surface stress, Hashin-Shtrikman bound, Spherical inclusion,

Polarization

Introduction

In solid mechanics, imperfect solid-solid interfaces are usually thought of as surfaces where

continuity of the traction vector is enforced, while displacements are discontinuous. Such inter-

faces can for instance represent ideal cracks in a continuous medium.

Another type of imperfect interfaces can however be devised, in which the displacements are

continuous, but the traction vector undergoes a discontinuity. Such interface effects can arise in

composite media, when coated inclusions are embedded in a matrix. If the coating is thin enough,

it can be reduced to a surface (in the mathematical sense), and equilibrium of the finite-thickness
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coating asymptotically results in a generalized Laplace equation linking the discontinuity of bulk

stresses to the stresses within the thin coating, see equations (14) and (15) in [1].

More generally, thermodynamical approach shows [2] that interface effects occur for every

(even uncoated) solid-solid interface. The surface energy of conventional composites is usually

negligible, compared to their bulk strain energy, and continuity of the traction vector can there-

fore still be assumed. Since surface energy depends on the surface area, this is no longer true

for nanocomposites, due to the high surface-to-volume ratio of the inclusions. For this class

of materials, surface effects cannot be disregarded, and experimental data indeed show a strong

dependence of the macroscopic moduli with the size of the embedded nanoparticles [3, 4]. The

stress discontinuities across the interface are now linked to so-called surface-stresses through

generalized Young-Laplace equations [5, 6].

For both composites with coated inclusions, and nanocomposites, the stress jump can be

assumed to depend linearly on the deformation of the interface. The stiffness of the interface can

then be defined as a fourth-rank, surface tensor. This tensor will always be positive definite in

the case of coated interfaces (since it derives from the 3d, positive definite, stiffness tensor of the

material constituting the coating), whereas this could fail to be true for nanocomposites [7].

The determination of the effective mechanical properties of composites subjected to inter-

face effects is of course of paramount interest. Based on the solution of a generalized Eshelby

problem, combined with the Mori-Tanaka [8] or Generalized Self-Consistent [9] homogeniza-

tion schemes, micromechanical estimates of the bulk and shear moduli of these composites have

been proposed by various authors [10–12]; disregarding interface effects, other estimates have

also been proposed [4, 13].

Besides estimates, rigorous bounds on the effective moduli are useful quantities allowing

to check the consistency of the previous approximations. To the authors’ knowledge, the only

attempt at establishing bounds on the effective elastic moduli of a nanocomposite is due to Le

Quang and He [14]. Restricting themselves to interfaces with positive definite stiffness, they

derived first-order upper and lower bounds for the effective elastic moduli of a distribution of

spheres. These bounds coincide with the well-known Voigt and Reuss bounds when interface

effects are omitted. They concluded that second-order bounds of the Hashin-Shtrikman type [15]

would be highly desirable, though difficult to arrive at, due to the peculiar (bidimensional) nature

of the interface’s stiffness tensor.

In this paper, we show how these difficulties can be overcome, and propose a general frame-

work for the derivation of second-order bounds on the elastic moduli of composites with interface

effects. In order to do so, we assume that the stiffness tensor of the interface is positive definite.

This assumption is essential for the result to be valid. This general framework is then applied

to a distribution of monosized spheres, for which we show that the Hashin-Shtrikman bound on

the bulk modulus coincides with the Mori-Tanaka estimate derived by Duan et al. [11]. This

remarkable result generalizes those available for a composite without interface effects.

Using the same ingredients, we finally explore the more general case of a polydisperse dis-

tribution of spherical nano-inclusions. We show that with little effort, the results obtained for

monodisperse distributions can be extended to any particle-size distribution; the derivation then

leads to a new general bound on the effective bulk modulus.
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1. Background

1.1. Interface effects on spherical particles

At an interface between two different phases, the traction vector σ · n (σ is the stress tensor,

n the normal to the interface) can undergo a discontinuity. In the case of a fluid-fluid interface

for example, the Young-Laplace equation relates the pressure jump [[p]] across the interface to

the surface tension γ and the local curvature b

[[p]] = γ tr b. (1)

In the case of a solid-solid interface, not only the pressure, but also the shear stresses are

discontinuous. Equilibrium of the interface then yields the following equation, which can be

seen as a generalized Young-Laplace equation [5, 11]

[[σ]] · n + (σs : b) n + ∇s · σs = 0, (2)

where ∇s denotes the gradient operator along the interface, and σs the so-called surface stress

tensor. This tensor accounts for the concentration of elastic energy in the vicinity of the interface

[2]. Although this vicinity is of small, but finite, extension across the interface, it is convenient to

reduce it to a mathematical surface. All related physical (bulk) quantities then become singular;

in particular, this is true of the Cauchy stress tensor. Indeed, in terms of dimensional analysis,

equation (2) shows that σs has dimension of volume stress × length. Going back to the physical

origin of the surface stress tensor, and introducing the volume (Cauchy) stress σs
3d

within the

interface z− ≤ z ≤ z+ of finite thickness z+ − z−, we have

σ
s =

∫ z+

z−
σ

s
3d (z) dz,

where z is the local coordinate perpendicular to the interface. When reducing the interface to

a mathematical surface, the internal forces (stress resultants), which are the physically relevant

quantity, must be conserved. The Cauchy stress within the interface must therefore be understood

in the sense of generalized functions σs
3d

(z) =
[

σ
s/ (z+ − z−)

]

δ (z). In turn, the use of such

generalized functions can be sometimes misleading; this is certainly the case in the present study.

When convenient, the (singular) surface stress will therefore be replaced by a fictitious volume

stress uniformly distributed over a finite thickness h, which then tends to zero. This is the essence

of the thin elastic layer analogy introduced in 1.3.

To sum up, we are faced with three different mathematical representations of the same phys-

ical problem

• real distribution of volume stresses σs
3d

(z) across the real interface z− ≤ z ≤ z+,

• singular surface stresses σs concentrated at the zero-thickness interface,

• fictitious volume stresses σs/h uniformly distributed over a fictitious interface of finite

thickness h.

These representations are equivalent as long as the real thickness z+ − z−, as well as the

fictitious thickness h are both small.
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For spherical interfaces of radius a, to which this paper is devoted, the previous equation

reads, in spherical coordinates (θ: inclination, ϕ: azimuth)

σs
θθ + σ

s
ϕϕ − a [[σrr]] = 0, (3)

∂θσ
s
θθ +

1

sin θ
∂ϕσ

s
θϕ +

(

σs
θθ − σ

s
ϕϕ

)

cot θ + a [[σrθ]] = 0, (4)

∂θσ
s
θϕ +

1

sin θ
∂ϕσ

s
ϕϕ + 2σs

θϕ cot θ + a [[σrϕ]] = 0, (5)

with [[σi j]] = σi j(r = a+, θ, ϕ) − σi j(r = a−, θ, ϕ).

As already indicated, a linearly elastic behavior of the interface is assumed. Under this

assumption, the surface stresses are linearly related to the tangential components of the local

strain tensor. For isotropic (in the 2d sense) elasticity, the general surface stress-bulk strain

relationship can be found in Duan et al. [11], Le Quang and He [14], and specializes for spherical

interfaces

σs
θθ = λ

s
(

εθθ + εϕϕ
)

+ 2µsεθθ, (6)

σs
ϕϕ = λ

s
(

εθθ + εϕϕ
)

+ 2µsεϕϕ, (7)

σs
θϕ = 2 µsεθϕ, (8)

where εi j denote the components (in spherical coordinates) of the local (bulk) strain tensor, and

λs, µs the elasticity coefficients of the interface; we further introduce κs = λs + µs. It should be

noted that this last notation is fully consistent with Le Quang and He [14] (κs = κsi; µ
s = µsi),

while it differs slightly from Duan et al. [11], who adopted κs = 2(λs + µs).

This constitutive law can be rewritten in intrinsic form

σ
s = cs : ε, (9)

where cs denotes the fourth-rank (2d) elasticity tensor of the interface. It relates a volume quan-

tity (ε, continuous across the interface) to a surface quantity (σs). The elasticity tensor cs has

therefore the exact same singular nature as the surface tensor σs. However, unlike the surface

stress σs, the surface stiffness cs is simply a mathematical entity relating two measured quanti-

ties. As such, it has no physical volume counterpart; in particular, it is generally not the integral

of a real stiffness tensor (although we will introduce a fictitious 3d stiffness tensor in 1.3). This

is the reason why this tensor may not necessarily be positive definite, as already mentioned. Pos-

itive definiteness is essential in the framework of polarization methods, and we will therefore

assume in this study that cs is positive definite. More precisely, we will require the fictitious 3d

stiffness tensor c̃s to be positive definite, which, on closer inspection of (21) and (22), leads to

0 < κs < 3µs. (10)

1.2. Polarization methods in the absence of interface effects

In this section, we briefly introduce the variational methods developped by Willis [16] and

Ponte-Castañeda and Willis [17]. In their original form, these methods cannot handle interface

effects. How to include such effects in the framework presented here is the purpose of the next

section.

Polarization methods require the introduction of a reference medium, which is assumed to

be linearly elastic, homogeneous and isotropic, with stiffness c0. If this medium is softer than
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any of the - so far, 3d - phases included in the composite, the following inequality holds for any

choice of the macroscopic strain E and the so-called polarization τ(x) stress field [17]

1

2
E : C : E ≥

1

2
E : c0 : E + τ : E −

1

2
τ :

(

c − c0
)−1

: τ −
1

2
τ :

(

Γ
0
⊛ τ

)

, (11)

in which ’⊛’ stands for the product of a two-point, fourth-rank operator with a one-point, second-

rank tensor

Γ
0
⊛ τ(x) =

∫

y∈Ω

Γ
0(x, y) : τ (y) d3y, (12)

while overlines denote volume averages

B =
1

V

∫

x∈Ω

B (x) d3x, (13)

V = |Ω| being the size of the representative volume elementΩ. It should be noted at this point that

inequality (11) holds for any choice of the polarization stress field τ(x). Unlike other variational

principles, no constraint is imposed on τ.

The Green operator for strains, Γ0, which appears in (11) is defined as follows [18]: for

any choice of the polarization field τ(x), ε(x) = −Γ0
⊛ τ(x) is the strain field in a prestressed,

homogeneous elastic medium with fixed boundary conditions

div
[

c0 : ε(x) + τ(x)
]

= 0 (x ∈ Ω), (14)

εi j(x) =
1

2

[

∂iu j(x) + ∂ jui(x)
]

(x ∈ Ω), (15)

u(x) = 0 (x ∈ ∂Ω). (16)

As pointed out by Willis [16], the finite-body Green operator Γ0 may be replaced by the

infinite-body Green operator Γ0
∞

Γ
0
⊛ τ(x) ≃

∫

y∈Ω

Γ
0
∞(x − y) :

[

τ(y) − τ
]

d3y (17)

Assuming the representative volume element Ω to be of ellipsoidal shape, we then make use

of Eshelby’s theorem [19] which leads to

∫

y∈Ω

Γ
0
∞(x − y) : τd3y = PΩ : τ, (18)

where PΩ denotes the Hill tensor of the ellipsoid Ω. We finally find

τ :
(

Γ
0
⊛ τ

)

=
1

V

∫

x,y∈Ω

τ(x) : Γ0
∞(x − y) : τ (y) d3x d3y − τ : PΩ : τ. (19)

To conclude this section, we note that if the reference medium is stiffer than all phases in the

composite, then the sign of inequality (11) must be changed, leading to an upper bound on the

effective elastic energy of the composite. As will be illustrated below, an appropriate choice of

the polarization field τ(x) (with an isotropic macroscopic strain E) can lead to upper- and lower-

bounds on the macroscopic bulk modulus of a composite.
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1.3. The interface as a thin elastic layer

The stiffness tensor cs defined by (9) is a surface tensor. As such, it cannot be directly

compared with the stiffness of the matrix and the inclusions (which are 3d tensors). In order to

establish Hashin-Shtrikman type bounds, however, we need to be able to compare the stiffnesses

of all phases with the reference material (see third term on the right-hand side of (11)). Without

further transformation, it is physically meaningless to compare the stiffness of the interface with

the stiffness of the reference material. However, noting that equations (2) and (9) are in fact the

basic equations of an elastic layer of small, but finite thickness, we show in this section that it is

possible to introduce a 3d stiffness tensor c̃s accounting for the interface. The quantity c̃s − c0

then becomes mathematically meaningful.

Following the approach of Hashin [1], the elastic interface in the two-phase model (matrix

+ inclusions) is represented by an elastic layer of small, but finite, thickness h ≪ a, made of an

isotropic, linearly elastic material with Young modulus E, and Poisson ratio ν. In Appendix A,

we show that if

κs =
Eh

2 (1 − ν)
, µs =

Eh

2 (1 + ν)
, (20)

then the two- and three-phase models are asymptotically equivalent when h→ 0+.

The 3d bulk and shear moduli κ̃s and µ̃s of the equivalent elastic layer are then deduced from

their 2d counterparts by

κ̃s =
E

3 (1 − 2 ν)
=

4 κs µs

3 h (3 µs − κs)
, (21)

µ̃s =
E

2 (1 + ν)
=
µs

h
, (22)

and the corresponding 3d stiffness tensor reads

c̃s = 3 κ̃s J + 2 µ̃s K, (23)

where J and K are the spherical and deviatoric fourth-order projectors.

When convenient, surface integrals involving the 2d stiffness tensor cs will be replaced by

analogous volume integrals involving the 3d stiffness tensor c̃s. As for polarizations, the 2d

polarization tensor τs should accordingly be replaced by the 3d polarization tensor τs/h. The

limit when h→ 0+ must then be taken in the subsequent expressions.

2. Application to nanocomposites with mono-sized spherical inclusions

In their standard form, polarization methods cannot handle interface effects. In this section,

we make use of the equivalence developed in section 1.3 to overcome this shortcoming. We

consider here a distribution of spherical inclusions (superscript ’i’) of radius a, embedded in

a matrix (superscript ’m’). The stiffness tensor of the inclusions (resp. the matrix) is denoted

ci (resp. cm). Let us also assume that the interface stiffness is positive definite, i.e. that (10)

is verified. The 3d stiffness tensor c̃s of the equivalent layer defined by (21), (22) and (23) is

therefore also positive definite, and the polarization methods introduced in section 1.2 apply, with

the matrix as reference material (c0 = cm). It should be noted that usually in nanocomposites,

the inclusions are stiffer than the matrix; besides, the thickness h of the equivalent layer being

6



arbitrarily small, this fictitious layer is also stiffer than the matrix and the inclusions. It follows

that

cm ≤ ci ≤ c̃s, (24)

where c ≤ c′ means that the difference c′ − c is a positive semidefinite quadratic form. In other

words, the reference medium is softer than all phases in the composite, and the polarization

methods exposed in section 1.2 will lead to a lower bound on the effective elastic energy of the

nanocomposite.

2.1. General form for the polarization field

Let us first recall that classical Hashin-Shtrikman bounds are obtained with piecewise con-

stant polarization fields. In our case, such a simple structure for τ proves too restrictive, and we

will need to allow for a dependence of the polarization field on the spherical angles. It should be

noted that the reference medium coincides with the matrix, therefore cm − c0 is singular. Due to

the third term of the right-hand side of equation (11), namely

1

2
τ :

(

c − c0
)−1

: τ, (25)

the polarization must vanish in the matrix [17].

Let N be the number of (spherical) nanoparticles contained in the representative volume ele-

ment Ω. Particle α (α = 1, . . . ,N) is centered at point xα. In this paper, we consider polarization

fields τ of the form

τ(x) =

N
∑

α=1

τ
p(x − xα), (26)

where τp denotes the polarization applied to each single particle (one particle being defined as

the union of inclusion and interface), which is the sum of two terms

τ
p(x) = H (a − r) τi(x) + δ(r − a)τs(n), (27)

where r = |x| and n = x/r; H is the Heaviside function, and δ the Dirac generalized function.

τ
i is the polarization on the inclusion, while τs is the polarization on the interface. It will be

convenient to introduce the volume average of τi, as well as the angular average of τs

τ
i
=

1

v

∫

|x|≤a

τ
i(x) d3x, (28)

τ
s
=

1

4π

∫

|n|=1

τ
s(n) d2n, (29)

where v = 4/3πa3 denotes the volume of the nanoparticles. The volume average of the total

polarization τ then reads

τ = f τ
i
+

3 f

a
τ

s
, (30)

where f = Nv/V is the volume fraction of nanoparticles.
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2.2. Bound on the bulk modulus

In order to obtain a bound on the bulk modulus of the composite, we choose

E =
1

3
Ei, τ

i = τii, τ
s(x) = τs (i − n ⊗ n) , (31)

where i denotes the second-rank identity tensor. The averages of τi and τs defined by (28) and

(29) then read

τ
i
= τi i, τ

s
=

2

3
τs i, τ = f

(

τi +
2τs

a

)

i. (32)

Introducing (31) and (32) in the right-hand side of (11), whose four terms must be evaluated

(see below), we obtain a bound on the bulk modulus of the composite.

We start with the two terms E : C : E and E : cm : E, whose evaluation is straightforward

E : C : E = KE2, E : cm : E = κmE2, (33)

where K (resp. κm) denotes the effective bulk modulus of the composite (resp. the matrix). Then,

equation (32) immediately yields

τ : E = f

(

τi +
2τs

a

)

E (34)

As for the term τ : (c − cm)−1 : τ, using (26), we first find

τ : (c − cm)−1 : τ =
1

V

N
∑

α=1

∫

|x−xα |≤a

τ
p(x − xα) :

[

c(x) − cm]−1
: τp(x − xα) d3x, (35)

where it has been assumed that each nanoparticle is completely included in the representative

volume element Ω. Since for |x − xα| ≤ a, c(x) depends only on x − xα, all N terms in the right

hand side of (35) are in fact identical

τ : (c − cm)−1 : τ =
N

V

∫

|x|≤a

τ
p(x) :

[

c(x) − cm]−1
: τp(x) d3x. (36)

As already noted in section 1.3, we need to be able to compare the stiffness of the interface

and the stiffness of the solid matrix. In order to do so, we treat the interface as an elastic layer of

thickness h, and stiffness c̃s. τs must then be replaced by τs/h

τ : (c − cm)−1 : τ =
N

V

∫

|x|≤a

τ
i :

(

ci − cm
)−1

: τi d3x + . . .

. . . +
N

V

∫

a≤|x|≤a+h

τ
s

h
: (c̃s − cm)−1 :

τ
s

h
d3x. (37)

The first term reduces to
(

τi
)2

f /
(

κi − κm
)

, while spherical coordinates x = r n are used for

the integration of the second term (integration with respect to r being trivial when h ≪ a)

τ : (c − cm)−1 : τ = f

(

τi
)2

κi − κm
+

N

V

1

h

(

a2 +
h2

12

) ∫

|n|=1

τ
s(n) : (c̃s − cm)−1 : τs(n) d2n. (38)
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Since the limit h → 0+ is to be taken in expression (38), equations (21) and (22) show that

(c̃s − cm)−1 can be replaced with (c̃s)−1, and simple algebra leads to

τ
s(n) : (c̃s)−1 : τs(n) =

h

κs
(τs)2

, (39)

and finally, with h→ 0+,

τ : (c − cm)−1 : τ = f

(

τi
)2

κi − κm
+

3 f

a

(τs)2

κs
. (40)

Finally, the last term in (11), namely τ :
(

Γ
0
⊛ τ

)

, is evaluated. Using equations (19) and

(26), we get

τ :
(

Γ
0
⊛ τ

)

=
1

V

N
∑

α,β=1

∫

x,y

τ
p(x − xα) : Γm

∞(x − y) : τp(y − xβ) d3x d3y − τ : PΩ : τ. (41)

Replacing x by x + xβ, and y by y + xβ,

τ :
(

Γ
0
⊛ τ

)

=
1

V

N
∑

α,β=1

∫

x,y

τ
p
[

x −
(

xα − xβ
)]

: Γm
∞(x − y) : τp(y) d3x d3y − τ : PΩ : τ. (42)

Equation (B.13) shows that in the previous sum, all terms with α , β vanish. Moreover,

(B.8) gives the value of this term for α = β. Then, assuming the representative volume element

Ω to be spherical, PΩ is known [19]. We finally find

τ :
(

Γ
0
⊛ τ

)

= 3 f (1 − f )

(

τi + 2τs/a
)2

3κm + 4µm
. (43)

We now seek the best choice of polarizations τi and τs leading to the optimal bound on K.

Gathering equations (33), (34), (40) and (43), we find the following inequality, valid for any

choice of E, τi and τs

1

2
KE2 ≥

1

2
κmE2 + f

(

τi +
2τs

a

)

E −
f

2

(

τi
)2

κi − κm
−

3 f

2a

(τs)2

κs
−

3

2
f (1 − f )

(

τi + 2τs/a
)2

3κm + 4µm
. (44)

When the macroscopic strain E is fixed, the quantity on the right hand side of (44) is a

quadratic form of the two variables τi and τs. Direct optimization with respect to these two

variables is possible, but it is preferable to introduce the following auxiliary variables

τ = τi +
2τs

a
, τ′ = τi −

3

2

κi − κm

κs
τs. (45)

It follows that
(

τi
)2

κi − κm
+

3

a

(τs)2

κs
=

1

κp − κm

(

τ2 +
4κs/3a

κi − κm
τ′2

)

, (46)
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where

κp = κi +
4κs

3a
(47)

and (44) can be rewritten as

1

2
KE2 ≥

1

2
κmE2 + f Eτ −

f

2

1

κp − κm

(

τ2 +
4κs/3a

κi − κm
τ′2

)

−
3

2
f (1 − f )

τ2

3κm + 4µm
. (48)

Clearly, this bound will be optimal for τ′ = 0, so that for any value of τ

1

2
KE2 ≥

1

2
κmE2 + f Eτ −

f

2

τ2

κp − κm
−

3

2
f (1 − f )

τ2

3κm + 4µm
. (49)

Optimizing now with respect to τ leads to the following bound on the bulk modulus of the

composite

K ≥ κm + f
3κm + 4µm

3 f κm + 4µm + 3 (1 − f ) κp
(κp − κm) . (50)

It is interesting to note that this bound formally coincides with the classical Hashin-Shtrikman

bound for composites with spherical inclusions (modified bulk modulus: κp) embedded in an

homogeneous matrix (bulk modulus: κm, shear modulus: µm), without surface effects.

This bound can also be proved to coincide with the Mori-Tanaka estimate of Duan et al. [11].

In comparing with this paper, however, attention should be paid to the fact that our definition of

κs differs from Duan’s (see the end of section 1.1). This generalizes the well-known result that

Hashin-Shtrikman bounds and Mori-Tanaka estimates coincide for spherical particulate compos-

ites in the absence of surface effects. Our calculation proves that it can be extended to composites

with surface effects.

3. Extension to nanocomposites with polydisperse spherical inclusions

In this section, the above derivation is extended to polydisperse distributions of spherical

inclusions. It is assumed that all particles (inclusions and their interface) share the same elastic

moduli κi, µi, κs and µs; however, the radius aα, α = 1, . . . ,N, is specific to each inclusion. The

particle-size distribution is characterized by the function f , such as f (a) da is the volume fraction

of all inclusions having a radius comprised between a and a + da; the total volume fraction of

inclusions therefore reads
∫ +∞

0

f (a) da. (51)

In order to exhibit a bound which explicitly accounts for the particle-size distribution, ex-

pressions (26), (27) and (31) are now replaced by the more general form

τ (x) =

N
∑

α=1

τ
p (x − xα, aα) , (52)

where

τ
p (x, a) = H (a − r) τi (a) i + δ (r − a) τs (a) (i − n ⊗ n) , (53)

and r = |x|, n = x/r. In the above expression τi (a) and τs (a) are two arbitrary scalar functions

of the radius a. Keeping the same value of the macroscopic strain tensor E, see equation (31),

the desired bound is derived from the introduction of (53) in the general inequality (11).
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With the definition of f (a) at hand, it can readily be seen that expressions (34) and (40) are

still valid, provided that the volume fraction f is replaced by appropriate integrals of the function

f (a). It is found successively

τ =

∫ +∞

0

f (a)

[

τi (a) +
2

a
τs (a)

]

da i, (54)

τ : (c − cm)−1 : τ =

∫ +∞

0

f (a)

[

τi (a)2

κi − κm
+

3

a

τs (a)2

κs

]

da, (55)

(

κm +
4

3
µm

)

τ : PΩ : τ =

{∫ +∞

0

f (a)

[

τi (a) +
2

a
τs (a)

]

da

}2

, (56)

(

κm +
4

3
µm

)

[

τ :
(

Γ
0
⊛ τ

)

+ τ : PΩ : τ

]

=

∫ +∞

0

f (a)

[

τi (a) +
2

a
τs (a)

]2

da. (57)

It should be noted that the proof of (57) relies on the use of (B.13), which remains valid when

the two spheres under consideration have different radii. Similarly to the monodisperse case, it

will be convenient to introduce the following auxiliary notation

κp (a) = κi +
4κs

3a
, (58a)

τ (a) = τi (a) +
2

a
τs (a) , (58b)

τ′ (a) = τi (a) −
3

2

κi − κm

κs
τs (a) , (58c)

so that equation (46) still applies. Substitution of (54), (55), (56), (57) and (58) into (11), finally

leads to

1

2
KE2 ≥

1

2
κmE2 +

∫ +∞

0

f (a) τ (a) da E −
1

2

∫ +∞

0

f (a)
τ (a)2

κp (a) − κm
da − . . .

. . . −
1

2

3

3κm + 4µm

∫ +∞

0

f (a) τ (a)2 da +
1

2

3

3κm + 4µm

[∫ +∞

0

f (a) τ (a) da

]2

, (59)

where the optimum choice τ′ ≡ 0 has been made. We now seek the scalar polarization τ (a)

which makes the bound on the right-hand side of (59) as large as possible. Stationarity of this

bound with respect to τ leads to

∫ +∞

0

f (a) δτ (a) da E −

∫ +∞

0

f (a)
τ (a) δτ (a)

κp (a) − κm
da−

3

3κm + 4µm

∫ +∞

0

f (a) τ (a) δτ (a) da+ . . .

. . . +
3

3κm + 4µm

∫ +∞

0

f
(

a′
)

τ
(

a′
)

da′
∫ +∞

0

f (a) δτ (a) da = 0, (60)

where δτ is a small variation of τ. This variation is arbitrary, and (60) therefore reduces to

[

1

κp (a) − κm
+

3

3κm + 4µm

]

τ (a) = E +
3

3κm + 4µm

∫ +∞

0

f
(

a′
)

τ
(

a′
)

da′. (61)
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The above equation uniquely defines the optimum choice of τ. Indeed, introducing the (as

yet unknown) quantity T =
∫ +∞

0
f (a) τ (a) da, (61) reads

τ (a) =
κp (a) − κm

3κp (a) + 4µm

[

(3κm + 4µm) E + 3T
]

, (62)

which, upon multiplication by f (a) and integration with respect to a results in the following

value of T

3T = (3κm + 4µm)
F

1 − F
E, (63a)

F = 3

∫ +∞

0

κp (a) − κm

3κp (a) + 4µm
f (a) da. (63b)

In the above expressions, F, and therefore T depend only upon the material properties κi, κs,

κm and µm and the particle-size distribution f , which are all input data; thus, T is fully determined.

Substitution of (63) in (62) and (59) gives the explicit expression of the optimum polarization

τ (a)

τ (a) =
κp (a) − κm

3κp (a) + 4µm
(3κm + 4µm)

E

1 − F
, (64)

as well as the optimum lower bound on the effective bulk modulus of the composite

K ≥ κm +
F

1 − F
(3κm + 4µm) . (65)

Expression (65) generalizes (50) to polydisperse distributions of inclusions; to the best of our

knowledge, this result is new. From the definition of F (63), it is readily seen that the particle size

distribution is explicitly accounted for in (65); furthermore, susbtitution of f (a′) ≡ f δ (a′ − a)

shows as expected that (65) reduces to (50) in the case of monosized inclusions.

Conclusion

In this paper, we introduce the thin elastic layer analogy which allows the use of polarization

techniques, even when surface stresses occur at the matrix-inclusion boundary. We therefore

answer affirmatively the up to now still pending question raised by Le Quang and He [14], on the

very possibility of including interface effects into a polarization framework.

We then propose Hashin-Shtrikman type lower bounds on the bulk modulus of a composite

made of mono-sized spherical nano-inclusions, taking explicitly interface effects into account.

Our results improve on the first-order bounds proposed by Le Quang and He [14], and coin-

cide with the Mori-Tanaka estimate established by Duan et al. [11]. Therefore, this previously

known estimate is in fact a rigorous lower-bound on the effective bulk modulus, provided that

the stiffness of the interface is positive definite.

This last requirement is not always true [7], in which case inequality (50), or its generalization

(65), no longer holds. The quantity on the right hand side can however still be used as an estimate

of the effective bulk modulus.

The lower-bound (50) established for monodisperse spherical nano-inclusions can easily be

extended to account for polydispersity. We believe that the resulting lower-bound (65) is new;

it explicitly features the particle-size distribution, which was to be expected, as interface effects

introduce a characteristic length-scale, to which the radius of the inclusions can be compared.

12



This paper calls for one further remark. In order to establish equation (43), we have assumed

the representative volume element to be spherical. It seems therefore that the exact bound de-

pends on the shape of the (albeit large) representative volume element. This is of course highly

undesirable, but it can easily be proved that (43) in fact holds for any shape of the domain (see

Appendix C).

Appendix A. Equivalence of the interface and the thin elastic layer

It has already been mentioned that direct application of inequality (11) fails with interface

effects, because of the 2d nature of the stiffness tensor cs of the interface. It is however possible

to introduce a fictitious elastic layer of thickness h ≪ a and appropriate (3d) elastic constants E

and ν. Proving the equivalence of the interface and the resulting thin elastic layer is the purpose

of this section.

The 3d equilibrium equations of the thin layer read, in spherical coordinates

∂rσrr +
1

r
∂θσrθ +

1

r sin θ
∂ϕσrϕ +

1

r

(

2σrr − σθθ − σϕϕ + σrθ cot θ
)

= 0, (A.1)

∂rσrθ +
1

r
∂θσθθ +

1

r sin θ
∂ϕσθϕ +

1

r

[(

σθθ − σϕϕ
)

cot θ + 3σrθ

]

= 0, (A.2)

∂rσrϕ +
1

r
∂θσθϕ +

1

r sin θ
∂ϕσϕϕ +

1

r

(

3σrϕ + 2σθϕ cot θ
)

= 0. (A.3)

The surface-stress is then defined as the resultant of the stresses within the thickness of the

membrane

σs
i j =

∫ r=a+h

r=a

σi j dr ≃ hσi j (i, j ∈ {r, θ, ϕ}), (A.4)

and integration of equations (A.1), (A.2) and (A.3) with respect to a ≤ r ≤ a+h yields, for h ≪ a

[[σrr]] +
1

a
∂θσ

s
rθ +

1

a sin θ
∂ϕσ

s
rϕ +

1

a

(

2σs
rr − σ

s
θθ − σ

s
ϕϕ + σ

s
rθ cot θ

)

= 0, (A.5)

[[σrθ]] +
1

a
∂θσ

s
θθ +

1

a sin θ
∂ϕσ

s
θϕ +

1

a

[(

σs
θθ − σ

s
ϕϕ

)

cot θ + 3σs
rθ

]

= 0, (A.6)

∂rσ
s
rϕ +

1

a
∂θσ

s
θϕ +

1

a sin θ
∂ϕσ

s
ϕϕ +

1

a

(

3σs
rϕ + 2σs

θϕ cot θ
)

= 0, (A.7)

where [[σri]] here denotes the difference σri(r = a + h) − σri(r = a), which reduces to the

discontinuity introduced in section 1 when h→ 0.

Since σri is continuous at r = a and r = a + h, we find that σs
ri

scales as h[[σri]] when h→ 0.

Equations (A.5) to (A.7) then show that σs
θθ

, σs
ϕϕ and σs

θϕ
scale as a[[σri]]. In other words, the

normal stresses σri can be neglected, and equations (A.5), (A.6) and (A.7) finally reduce to (3),

(4) and (5).

Integrating with respect to r the constitutive equations of the membrane, while enforcing

σs
rr = 0, we get the ‘plane-stress’ equations

σs
θθ =

Eh

1 + ν

[

εθθ +
ν

1 − ν

(

εθθ + εϕϕ
)

]

, (A.8)

σs
ϕϕ =

Eh

1 + ν

[

εϕϕ +
ν

1 − ν

(

εθθ + εϕϕ
)

]

, (A.9)

σs
θϕ =

Eh

1 + ν
εθϕ, (A.10)
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which are identical to equations (6) through (8), provided that conditions (20) are enforced.

The equivalence between the finite thickness elastic membrane and the elastic interface is then

established.

Appendix B. Solution to the polarized problem

In this section, we carry out the calculation of Γm
∞ ⊛ τ

p, where τp is given by (27) and (31).

Recalling the definition of Γm
∞, as well as Lipmann-Schwinger’s equation [18], it is easily found

that −Γm
∞ ⊛ τ is the strain ε(x) within the homogeneous, infinite space R3 (with elastic constants

κm and µm), due to the prestress τp(x)

div
[

cm : ε(x) + τp(x)
]

= 0 (x ∈ R3), (B.1)

u(x)→ 0 (|x| → +∞), (B.2)

where u(x) is the displacement associated with the strain field ε(x). Given the expression of τp,

as well as the requirement that u must i. remain finite at the origin, ii. tend to zero at infinity, and

iii. be continuous at the interface r = a, we seek u under the classical form

ui(x) = U
r

a
n, um(x) = U

a2

r2
n, (B.3)

with r = |x|, and n = x/r. Superscript i (inclusion) refers to the region r < a, whereas superscript

m (matrix) refers to the region r > a. It should be noted however that the polarized problem is

formulated on a medium with identical elastic constants in both regions. The strains read

ε
i(x) =

U

a
i, ε

m(x) =
U

a

a3

r3
(i − 3 n ⊗ n) , (B.4)

and the constitutive law (taking into account the prestress τp) provides the stresses

σ
i(x) =

(

3 κm
U

a
+ τi

)

i, (B.5a)

σ
m(x) = 2 µm U

a

a3

r3
(i − 3 n ⊗ n) . (B.5b)

In order to enforce the jump conditions (3), (4), (5), the surface stresses must be evaluated.

This is straightforward, since the polarized problem is formulated on an homogeneous medium

(zero elastic constants of the interface). For this problem, therefore, the elastic part of the surface

stresses is zero. The surface stresses reduce to the polarisation τs, and equation (3) leads to

U

a
= −
τi + 2 τs/a

3κm + 4µm
, (B.6)

while equations (4) and (5) are identically satisfied; introduction of (B.6) into (B.4) finally gives

the expression of ε = −Γm
∞ ⊛ τ

p.

We now consider a second sphere, centered at R, and we evaluate the integral

∫

|x−R|≤a

τ
p(x − R) : (Γm

∞ ⊛ τ
p)(x) d3x = −

∫

|x−R|≤a

τ
p(x − R) : ε(x) d3x, (B.7)

where ε is given by (B.4) and (B.6). This integral will be evaluated in two specific cases.
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If the two spheres coincide. then R = 0, and ε(x) = εi. We find

−

∫

|x|≤a

τ
p(x) : ε(x) d3x = −

∫

|x|≤a

τ
i : εi d3x − . . .

. . . −

∫

|n|=1

τ
s(n) : εi a2 d2n = 3v

(

τi + 2 τs/a
)2

3κm + 4µm
. (B.8)

If the two spheres do not overlap. then |R| > 2a, and ε(x) = εm(x). We set x = r n +R (|n| = 1).

Since i : εm(x) = tr εm(x) = 0 (see (B.5)), (B.7) can be rewritten

−

∫

|x−R|≤a

τ
p(x − R) : ε(x) d3x = . . .

. . . = −

∫

r≤a
|n|=1

τ
p(r n) : εm(r n + R) r2dr d2n = . . .

. . . = a2τs

∫

|n|=1

(n ⊗ n) : εm(a n + R)d2n. (B.9)

The subsequent calculations will be performed in spherical coordinates, θ denoting the angle

between R and n. We first find

ε
m(a n + R) = −

τi + 2 τs/a

3κm + 4µm

a3

(

R2 + 2aR cos θ + a2
)3/2

[

i − 3
(R + a n) ⊗ (R + a n)

R2 + 2aR cos θ + a2

]

, (B.10)

where R = |R|. Total contraction with n ⊗ n gives

(n ⊗ n) : εm(a n + R) = −
τi + 2 τs/a

3κm + 4µm

1
(

1 + 2ρ cos θ + ρ2
)3/2

[

1 − 3
(1 + ρ cos θ)2

1 + 2ρ cos θ + ρ2

]

, (B.11)

with ρ = R/a > 2. Inserting into (B.9), and integrating with respect to the azimuthal angle, one

finds

−

∫

|x|≤a

τ
p(x − R) : ε(x) d3x = −2πa3

τs/a
(

τi + 2τs/a
)

3κm + 4µm
. . .

. . .

∫ π

0

sin θ
(

1 + 2ρ cos θ + ρ2
)3/2

[

1 − 3
(1 + ρ cos θ)2

1 + 2ρ cos θ + ρ2

]

dθ. (B.12)

The integral on the right-hand side can be proved to vanish, and it is finally found

−

∫

|x|≤a

τ
p(x − R) : ε(x) d3x = 0. (B.13)

Appendix C. Proof that the bound on K does not depend on the shape of Ω

In this section, we go back to the simplification introduced in (18) in which the representative

volume element was assumed to be of ellipsoidal shape. The resulting bound on the macroscopic

bulk modulus K of the composite then depends on the Hill tensor PΩ of this ellipsoid, which
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in turn depends on the aspect ratio of Ω. Therefore, one might be lead to think that the bound

proposed in this paper depends on the actual shape of the representative volume element, which

would be highly undesirable. Fortunately, this is not true, as will be proved below.

In this section, we discard the asumption that Ω is an ellipsoid. Going back to equation (18),

we now replace τ by its value τ i, with (see (32))

τ = f

(

τi +
2τs

a

)

. (C.1)

This leads to

Γ
0
∞ ⊛ τ (x) =

∫

y∈Ω

Γ
0
∞(x − y) : τ d3y

= τ

∫

y∈Ω

Γ
0
∞(x − y) : i d3y, (C.2)

where the integral is to be understood in the sense of the Cauchy principal values. As usual [20],

the fourth-rank Green tensor Γ0
∞ is decomposed as follows

Γ
0
∞ = E0δ (x) + vp F0, (C.3)

where E0 is the Hill tensor for spheres, and

F0
i jkl = − ∂

2
jlg

0
ik

∣

∣

∣

{i j},{kl}
. (C.4)

In (C.4), g0
ik

denotes the second-rank Green operator for the infinite medium, and symmetriza-

tion with respect to indices (i, j) and (k, l) was performed. It is a matter of simple algebra to show

that F0 (r) : i is proportional to i − 3n ⊗ n, where n = r/ |r|. Therefore, the trace of F0 (r) : i is

null, and

τ (x) : F0 (x − y) : τ = 0, (C.5)

since τ (x) is proportional to the second-rank identity tensor. In other words,

τ :
(

Γ
0
∞ ⊛ τ

)

=

∫

x∈Ω

τ (x) :

∫

y∈Ω

δ (x − y) : E0 : τd3yd3x = . . .

. . . =
1

V

∫

x∈Ω

τ (x) : E0 : τd3x = τ : E0 : τ. (C.6)

Recalling that E0 is the Hill tensor of a sphere, (C.6) shows that (19) holds for any domain

Ω; PΩ sould then be replaced by E0. In equation (43) the representative volume element was

assumed to be spherical, which amounted to replacing PΩ with the tensor E0. The bound (50) is

therefore correct, irrespective of the shape of Ω.
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