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Abstract : this communication is concerned with the theoretical prediction of the energy-minimizing (or
stress-free) strains that can be realized by martensitic microstructures. Polyconvexification and related notions
are used to derive some upper bounds (in the sense of inclusion) on the set of energy-minimizing strains. Lower
bounds are obtained from lamination techniques. Three-, four-, and twelve-well problems are considered.
In particular, the structure of the set of energy-minimizing strains in cubic to monoclinic transformations is
investigated in detail.
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Some metallic alloys exhibit a solid/solid phase transformation between different crystallographic struc-
tures, known as austenite (stable at high temperature) and martensite (stable at low temperature) [1]. That
phase transformation can be triggered both by thermal and mechanical loading. In terms of crystallographic
structure, the austenite has a higher symmetry than the martensite. Therefore, the martensite actually exists in
the form of several variants, corresponding to different orientations of the martensitic lattice with respect to the
austenitic lattice. Accordingly, to each martensitic variant is attached a transformation strain, describing the
deformation between the crystallographic structures of the austenite and the martensite. The number of marten-
sitic variants as well as the corresponding transformation strains depend on the alloy considered, through the
structure of the austenite and martensite lattices. Some common examples include the cubic to tetragonal trans-
formation (MnCu, MnNi), the cubic to orthorombic transformation (β′

1CuAlNi) and the cubic to monoclinic
transformations (NiTi, γ′1CuAlNi), corresponding respectively to 3, 6 and 12 martensitic variants.

This communication is concerned with the theoretical prediction of the set of strains that minimize the
effective (or macroscopic) energy. Those strains, classically refered to as recoverable strains, play a central role
in shape memory effect displayed by alloys such as NiTi or CuAlNi [3]. The macroscopic energy is defined
as the quasiconvexification (or relaxation) of a multi-well energy function that models the behaviour of the
material at a microscopic level. The relaxation procedure essentially consists in finding the austenite/martensite
microstructures which minimize the global energy. Closed-form solutions have been obtained only for two
phases in the geometrically nonlinear setting [2], and up to three phases in the geometrically linear setting
[4, 8].

This communication aims at complementing existing results on that problem, essentially by deriving bounds
on the set of energy-minimizing strains [5, 6, 7]. Upper bounds are obtained using distinctive properties of
Young measures [2]. Lower bounds are constructed using lamination techniques. Both the geometrically
nonlinear setting (finite strains) and the geometrically linear setting (infinitesimal strains) are covered, the latter
being less accurate but significantly more tractable.

In the geometrically nonlinear setting, analytical expressions of both lower and upper bounds are derived
for a general three-well problem that encompasses the cubic to tetragonal transformation as a special case. In
the geometrically linear setting, the twelve-well problems corresponding to cubic to monoclinic-I and cubic
to monoclinic-II transformations are investigated. The structure of the sets of energy-minimizing strains is
studied in detail. For the twelve-well problems, that investigation is notably supported by considering four-well
restrictions, for which three-dimensional representations of the bounding sets can be obtained.
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