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A posteriori analysis of Chorin-Temam scheme for Stokes equations
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We consider Chorin-Temam scheme (the simplest pressure-correction projection method) for the time-discretization of an unstationary Stokes problem in D ⊂ R d (d = 2, 3) given µ, f : (P) find (u, p) solution to u| t=0 = u 0 , u| ∂D = 0 and

Inspired by the analyses of the Backward Euler scheme performed by C.Bernardi and R.Verfürth, we derive a posteriori estimators for the error on ∇u in L 2 (0, T ; L 2 (D))-norm. Our invesigation is supported by numerical experiments.

French version: On discrétise en temps par le schéma Chorin-Temam un problème de Stokes non-stationnaire posé dans D ⊂ R d (d = 2, 3) étant donnés µ, f : (P) trouver (u, p) solution de u| t=0 = u 0 , u| ∂D = 0 et (1). En s'insipirant des analyses de C.Bernardi and R.Verfürth pour le schéma Euler rétrograde, nous construisons des estimateurs a posteriori pour l'erreur commise sur ∇u en norme L 2 (0, T ; L 2 (D)). Notre étude est étayée par des expériences numériques.

donc l'estimateur (22) plutôt que (20) (tiré directement de Prop. 2 et Prop. 3) si on veut une estimation robuste (c'està-dire de qualité indépendante des paramètres de discrétisation). D'autre part, bien que notre estimation ne soit pas totalement efficace (comme dans [START_REF] Kharrat | Time error estimators for the chorin-temam scheme[END_REF][START_REF] Kharrat | A posteriori error analysis of time-dependent stokes problem by chorin-temam scheme[END_REF], nos estimateurs ne sont pas bornés inférieurement et supérieurement par l'erreur), on montre néanmoins numériquement qu'elle peut être utile dans certains cas, et en particulier qu'elle est plus précise que celle proposée dans [START_REF] Kharrat | Time error estimators for the chorin-temam scheme[END_REF][START_REF] Kharrat | A posteriori error analysis of time-dependent stokes problem by chorin-temam scheme[END_REF] (plus de termes d'erreur sont pris en compte).

Pour des approximations (à λ > 0 donné) des composantes du vecteur vitesse et de la pression u = π sin(λt) sin(2πy) sin(πx) 2 ;sin(2πx) sin(πy) 2 p = sin(λt) cos(πx) sin(πy) avec des éléments finis continus P 2 et P 1 par morceaux dans D ≡ (-1, 1) × (-1, 1) (d = 2) maillé régulièrement avec des simplexes, on a calculé numériquement l'efficacité des estimateurs (20), ( 22) et (23) pour t ∈ (0, T ) discrétisé avec des pas de temps constants ∆t = T/N (N ∈ N). En effet, notre analyse a posteriori du cas semi-discret en temps se prolonge au cas complètement discret (en décomposant les résidus discrets en composantes temporelles et spatiales comme dans [START_REF] Verfürth | A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations[END_REF] on obtient directement les versions discrètes en espace des estimateurs semi-discrets en temps plus des estimateurs pour l'erreur en espace), et l'erreur de discrétisation en espace est par ailleurs négligeable ici pour notre exemple numérique (comme observé dans [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF] où il est utilisé pour λ = 1). 23)) donc on ne le voit que pour ∆t assez petit même si on ajoute le terme div u ∆t 2 L ∞ (0,t;Q d ) à l'estimateur (22). Sans parler de l'estimation de l'erreur sur u en norme L ∞ (0, T ; L 2 (D)), on n'a donc pas encore totalement résolu le problème de trouver un estimateur efficace et robuste pour l'erreur commise sur ∇u en norme L 2 (0, T ; L 2 (D)) par le schéma Chorin-Temam. Il faudrait au moins ajouter des coefficients devant les termes de l'estimateur (22) plus div u ∆t 2 L ∞ (0,t;Q d ) si on veut l'utiliser en pratique. Néanmoins, nous espérons que cette étude apporte un nouvel éclairage à la question. the usual L 2 inner-products for scalar and vector functions in D and introduce the standard functional spaces [START_REF] Temam | Navier-Stokes equations[END_REF][START_REF] Girault | Finite Element Approximation of the Navier-Stokes Equations[END_REF] 

Q := L 2 (D) , Q := {q ∈ L 2 (D) , D q = 0} , W := [H 1 0 (D)] d , V := {v ∈ [H 1 0 (D)] d , div v = 0} . (2) 
We consider a weak formulation of problem (P) with µ > 0, f ∈ L 2 (0, T ; Q d ) (given in a Bochner space), u 0 ∈ V: (P) find u ∈ L 2 (0, T ; W) and p ∈ L 2 (0, T ; Q) such that u(0) = u 0 in V, and the following equation holds in L 2 (0, T )

d dt (u, v) + µ(∇u, ∇v) -(p, div v) + (q, div u) = ( f , v) , ∀(v, q) ∈ W × Q . (3) 
It is well-known that problem (P) is well-posed [START_REF] Temam | Navier-Stokes equations[END_REF][START_REF] Girault | Finite Element Approximation of the Navier-Stokes Equations[END_REF] (in particular, u ∈ C([0, T ], V) so initial condition makes sense) and because of the regularity assumptions, it also holds

∂ t u ∈ L 2 ((0, T ) × D), p ∈ L 2 (0, T ; H 1 (D)) and in L 2 (0, T ) (∂ t u, v) + µ(∇u, ∇v) + (∇p, v) -(∇q, u) = ( f , v) , ∀(v, q) ∈ W × H 1 (D) . (4) 
A standard time-discretization of (4) is Chorin-Temam scheme [START_REF] Chorin | Numerical Solution of the Navier-Stokes Equations[END_REF][START_REF] Temam | Une méthode d'approximation de la solution des équations de Navier-Stokes[END_REF]: given u -1/2 = u 0 , p 0 = 0, for n = 0 . . . N -1,

given ∆t n ∈ (0, ∆t], f ∆t = 1 ∆t n t n+1 t n f (s)ds (t n = n-1 k=0 ∆t k ; t N = T ), (P n ) find u n+1/2 ∈ W, p n+1 ∈ Q ∩ H 1 (D) solutions to ( u n+1/2 -u n-1/2 ∆t n + ∇p n , v) + µ(∇u n+1/2 , ∇v) = ( f n+1 , v) ∀v ∈ V , (5a) 
1 ∆t n+1 (div u n+1/2 , q) = -(∇p n+1 , ∇q) ∀q ∈ Q , (5b) 
which yields approximations whose rate of convergence to solutions of (P) is well-known a priori [START_REF] Guermond | Some implementations of projection methods for Navier-Stokes equations[END_REF][START_REF] Prohl | Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations[END_REF][START_REF] Guermond | On stability and convergence of projection methods based on pressure Poisson equation[END_REF]:

Proposition 1.
The following estimate holds:

u ∆t -u L 2 (0,T ;W) + p ∆t -p L 2 (0,T ;Q) = O(∆t 1 2 ) as ∆t → 0 , (6) 
where u ∆t and p ∆t are defined as

u ∆t (t) = t -t n ∆t n u n+1/2 - t -t n+1 ∆t n u n-1/2 , p ∆t (t) = p n . ∀t ∈ (t n , t n+1 ] , (7) 
In this work, we would like to numerically evaluate a posteriori the time discretization error with a view to adequately choosing the time steps ∆t n of Chorin-Temam scheme in practice (under a given error tolerance), which is still an open problem. A posteriori error estimations have been proposed for the Backward-Euler scheme (including full discretizations, in time and space) [1, 2] but they do not straightforwardly apply here. And a posteriori analyses of Chorin-Temam scheme have indeed been carried out recently [START_REF] Kharrat | Time error estimators for the chorin-temam scheme[END_REF][START_REF] Kharrat | A posteriori error analysis of time-dependent stokes problem by chorin-temam scheme[END_REF] but they suggest an estimator (different than ours) that does not account for the whole error. The present invesigation focuses on fully computable error bounds for Chorin-Temam scheme derived from the generic a posteriori framework introduced in [START_REF] Verfürth | A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations[END_REF] for the unstationary Stokes equations. Although our estimator is a priori not fully efficient, it is better than other ones and useful in some cases.

Note that in the following, we denote by a b any relation a ≤ Cb between two real numbers a, b where C > 0 is a numerical constant independent of the data of the problem. Moreover, we shall use standard inequalities such as

div v Q ≤ d 1/2 ∇v Q d×d , ∀v ∈ W and Poincaré-Friedrichs inequality with constant C P (D) > 0, then also max( v 2 Q d , ∇v 2 Q d×d ) ≤ v 2 W ≤ (1 + C 2 P ) ∇v 2 Q d×d , ∀v ∈ W . (8) 
In Section 2, we derive a posteriori error estimates following the procedure of [START_REF] Verfürth | A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations[END_REF], i.e. invoking Π : W → W, a projection such that v -Πv ∈ V. For all v ∈ W, Πv is the solution of Stokes equations:

∃! q v ∈ Q, ∃Υ(D) > 0 such that (∇Πv, ∇w) = (q v , div w) (r, div Πv) = (r, div v) , ∀(w, r) ∈ W × Q , (9a) 
Υ ∇Πv Q d×d ≤ div v Q . ( 9b 
)
In Section 3, we numerically test our a posteriori estimator.

A posteriori estimation of semi-discrete errors

Let us define residuals for Chorin-Temam approximations u ∆t , p ∆t as in [START_REF] Guermond | Some implementations of projection methods for Navier-Stokes equations[END_REF] of the solution to the problem (P)

< R u , v > W ,W = ( f , v) -(∂ t u ∆t , v) -(∇p ∆t , v) -µ(∇u ∆t , ∇v) ≡ ( f -f ∆t , v) + µ(∇u ∆t,+ -∇u ∆t , ∇v) , ∀v ∈ W , (10a) (R p , q) = -(div u ∆t , q) , ∀q ∈ Q , ( 10b 
)
where

f ∆t = f n+1 , u ∆t,+ = u n+ 1 2 for t ∈ (t n , t n+1 ].
The errors e u = uu ∆t , e p = pp ∆t satisfy:

(∂ t e u + ∇e p , v) + µ(∇e u , ∇v) + (div e u , q) =< R u , v > W ,W +(R p , q) , ∀(v, q) ∈ W × Q . ( 11 
)
Testing [START_REF] Kharrat | A posteriori error analysis of time-dependent stokes problem by chorin-temam scheme[END_REF] against v = e u -Πe u ∈ V, q = 0, yields in D (0, T ) (distributional sense)

1 2 d dt e u 2 Q d + µ ∇e u 2 Q d×d =< R u , e u > W ,W -< R u , Πe u > W ,W +(∂ t e u , Πe u ) + µ(∇e u , ∇Πe u ) . ( 12 
)
Using Young inequality with [START_REF] Prohl | Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations[END_REF], div e u = R p , (9b), Πe u = -Πu ∆t , e u (0) = 0, and integrating by part, one obtains

e u 2 L ∞ (0,t;Q d ) + µ ∇e u 2 L 2 (0,t;Q d×d ) R u 2 L 2 (0,t;W ) + µ R p 2 L 2 (0,t;Q) + t 0 |(e u , ∂ t Πe u )| + (e u , Πe u ) L ∞ (0,t) . (13) 
If we follow [START_REF] Verfürth | A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations[END_REF], then (13) yields a computable upper-bound using the following inequalities with Young's one

t 0 (e u , ∂ t Πu ∆t ) ≤ e u L ∞ (0,t;Q d ) Π∂ t u ∆t L 1 (0,t;Q d ) (14a) (e u , Πu ∆t ) L ∞ (0,t) e u L ∞ (0,t;Q d ) div u ∆t L ∞ (0,t;Q d ) . (14b) Since 1 ∂ t e u + ∇e p 2 L 2 (0,T ;W ) ≤ 2 R u 2 L 2 (0,T ;W ) + 2 ∇e u 2 
L 2 (0,T ;Q d×d ) also holds from (10a), one indeed obtains from (9b):

Proposition 2. There exists a constant c + (D) > 0 such that the following computable estimations hold

1 c + max e u 2 L ∞ (0,T ;Q d ) , ∂ t e u + ∇e p 2 L 2 (0,T ;W ) , µ ∇e u 2 L 2 (0,T ;Q d×d ) ≤ f -f ∆t 2 L 2 (0,T ;Q d ) + µ ∇u ∆t,+ -∇u ∆t 2 L 2 (0,T ;Q d×d ) + µ div u ∆t 2 L 2 (0,T ;Q) + div ∂ t u ∆t 2 L 1 (0,T ;Q) + div u ∆t 2 L ∞ (0,T ;Q) . (15) 
On the other hand, from (10a), (10b) and div u = 0, one has

µ ∇u ∆t,+ -∇u ∆t 2 L 2 (0,T ;Q d×d ) + µ div u ∆t 2 L 2 (0,T ;Q) f -f ∆t 2 L 2 (0,T ;Q d ) + ∂ t e u + ∇e p 2 L 2 (0,T ;W ) + µ ∇e u 2 L 2 (0,T ;Q d×d ) , (16) 
from which one next straightforwardly obtains the counterpart of (15) if one uses, in addition to (16),

div ∂ t u ∆t 2 L 1 (0,T ;Q) T min n=0...N-1 |∆t n | 2 ∇e u 2 L 2 (0,T ;Q d×d ) . (17) 
Proposition 3. There exists a constant c -(D) > 0 such that the following computable lower bound holds

c -µ ∇u ∆t,+ -∇u ∆t 2 L 2 (0,T ;Q d×d ) + µ div u ∆t 2 L 2 (0,T ;Q) + 1 N div ∂ t u ∆t 2 L 1 (0,T ;Q) ≤ f -f ∆t 2 L 2 (0,T ;Q d ) + ∂ t e u + ∇e p 2 L 2 (0,T ;W ) + µ + 1 min n=0...N-1 |∆t n | ∇e u 2 L 2 (0,T ;Q d×d ) . ( 18 
)
Proof of (17). We use the following inequality with div u = 0, noting 6

∆t n t n+1 t n div u ∆t 2 Q ≥ div u n+ 1 2 2 Q + div u n-1 2 2 Q : div ∂ t u ∆t 2 L 1 (0,T ;Q) ≤ N N-1 n=0 div(u n+ 1 2 -u n-1 2 ) 2 Q ≤ 2N N-1 n=0 ( div u n+ 1 2 2 Q + div u n-1 2 2 Q ) ≤ N-1 n=0 12N ∆t n t n+1 t n div u ∆t 2 Q .
So the framework introduced in [START_REF] Verfürth | A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations[END_REF] for an a posteriori analysis of a Backward Euler discretization of Stokes problem still applies here with Chorin-Temam scheme (it applies with any scheme provided the reconstructions u ∆t , p ∆t are defined using appropriate discrete variables). Though, the point is now to let not only the residuals, but also the two last terms in (13), be easily and sharply estimated (contrary to the fully discrete Backward Euler case in [START_REF] Verfürth | A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations[END_REF], these terms cannot be neglected here because they can be of the same order as the error). We draw the following conclusions. First, Prop. 2 and 3 suggest that the procedure of [START_REF] Verfürth | A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations[END_REF] should be modified here to estimate the error

µ ∇e u 2 L 2 (0,T ;Q d×d ) + ∂ t e u + ∇e p 2 L 2 (0,T ;W ) (19)
a posteriori in a more robust way than by the estimator (20) obtained straightforwardly from the estimations above:

µ ∇u ∆t,+ -∇u ∆t 2 L 2 (0,T ;Q d×d ) + µ div u ∆t 2 L 2 (0,t;Q) + div ∂ t u ∆t 2 L 1 (0,T ;Q) . ( 20 
)
1 Observe that the convergence of ∂ t u ∆t + ∇p ∆t to ∂ t u + ∇p in L 2 (0, T ; W ) is natural here, like for Backward-Euler schemes [START_REF] Bernardi | A posteriori error analysis of the fully discretized time-dependent Stokes equations[END_REF].

4

For instance, if one replaces (14a) with the following upper bound (21), on noting ( 8) and (9b),

t 0 |(e u , ∂ t Πe u )| ∇e u L 2 (0,t;Q d ) div ∂ t u ∆t L 2 (0,t;Q) , (21) 
then bounds similar to (15) and (18) hold but with div ∂ t u ∆t L 2 (0,t;Q) instead of div ∂ t u ∆t L 1 (0,t;Q) and without invoking discretization parameters like N and ∆t n , which suggests the a posteriori error estimator (22) more robust than (20):

µ ∇u ∆t,+ -∇u ∆t 2 L 2 (0,T ;Q d×d ) + µ div u ∆t 2 L 2 (0,T ;Q) + div ∂ t u ∆t 2 L 2 (0,T ;Q) . (22) 
Of course, this is not a fully efficient estimator yet, since it is a priori not bounded above and below by the error (19), even if one neglects the source error ff ∆t2 L 2 (0,T ;Q d ) of "high" order O(∆t 2 ) -recall ( 6) -. It is nevertheless useful in some cases, as shown in the next section. Second, (22) sometimes improves some estimators in the literature like

µ ∇u ∆t,+ -∇u ∆t 2 L 2 (0,T ;Q d×d ) + N-1 n=0 ∆t n+1 ∇p n+1 -∆t n ∇p n 2 Q (23)
that was proposed in [START_REF] Kharrat | Time error estimators for the chorin-temam scheme[END_REF][START_REF] Kharrat | A posteriori error analysis of time-dependent stokes problem by chorin-temam scheme[END_REF]. Clearly, for small ∆t, our estimator is larger than the one proposed in [START_REF] Kharrat | Time error estimators for the chorin-temam scheme[END_REF][START_REF] Kharrat | A posteriori error analysis of time-dependent stokes problem by chorin-temam scheme[END_REF], on noting

∆t n+1 ∇p n+1 -∆t n ∇p n 2 Q div u n+1/2 -div u n-1/2 2 Q ∆t ∆t n div ∂ t u ∆t 2 Q (t)
for t ∈ (t n , t n+1 ], after using a Poincaré inequality with (5b). And, the numerical example of the following Section 3 indeed shows that ( 22) is a better upper-bound than (23), at least when the error is not mainly driven by div u ∆t 2 L ∞ (0,T ;Q) .

Numerical results

We want to bring numerical evidences that estimator ( 22) is sometimes i) useful and ii) better than (20) and ( 23). Given λ > 0, we numerically compute the efficiencies of the three estimators using discrete approximations of u = π sin(λt) sin(2πy) sin(πx) 2 ;sin(2πx) sin(πy) 2 p = sin(λt) cos(πx) sin(πy) in D ≡ (-1, 1) × (-1, 1) (d = 2), with t ∈ (0, T ) uniformly discretized by time steps ∆t = T/N (N ∈ N) when µ = 1. We discretize in space the velocity components and the pressure with, respectively, continuous P 2 and P 1 Finite-Elements functions, i.e. in conforming discrete spaces W h ⊂ W, Q h ⊂ (Q ∩ H 1 (D)) defined on regular simplicial meshes of D. The a posteriori analysis of Section 2 still applies with right-hand side in (13) defined using now fully-discrete approximations. Then indeed, following [START_REF] Verfürth | A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations[END_REF], one can decompose the fully-discrete residuals in a sum of two terms, one accounting for space-discretization errors and one for time-discretization errors. The two last terms in the (new) right-hand side of (13) remain the same (they are explicitly computable). This yields estimators linked to the time discretization which are exactly the space-discrete counterparts of the terms in the bounds (15) and (18). Moreover, in our numerical example, space discretization errors prove negligible in comparison with time discretization errors (as already observed in [START_REF] Guermond | An overview of projection methods for incompressible flows[END_REF] for λ = 1). We thus next show only numerical results obtained for one sufficiently fine mesh (with more than 10 5 vertices).

We compare the effectivities of (space-discrete versions of) the a posteriori error estimators (20), ( 22) and (23) evoked in the previous section for the (space-discrete) error ∇e u h 2 L 2 (0,T ;Q d×d ) + ∂ t e u h + ∇e p h 2 L 2 (0,T ;W ) . One clearly sees from the numerical results obtained for λ = 10, T ≤ 3 in Fig. 1 that i) (20) is not robust when ∆t is too small or T too large compared with (22), and ii) ( 22) is better than the estimator (23) in so far as, for that specific case, it has the same decay rate than the error (19) and not a faster one like (23). Though, our estimator (22) is still not fully efficient, even when adding the term div u ∆t 2 L ∞ (0,T ;Q) to (22), since it is not bounded above and below by the error. Furthermore, if we use it as such (that is as a sum of terms without coefficients), in some cases, it also fails (like (23)) at evaluating correctly the error. For instance when λ = 1, the error (19) scales like div u ∆t 2 L ∞ (0,T ;Q) with respect to ∆t, while the other terms in (22) are of higher-order in ∆t. But this cannot be observed unless ∆t is very small, even if we use (22) plus div u ∆t 2 L ∞ (0,T ;Q) as an estimator 2 insofar as the magnitude of the latter term is much smaller than the former (10 -1 vs. 10 2 ). Then, for too large ∆t, the effectivity of our estimator also decays, and the error still cannot be evaluated confidently. So, without even mentionning the error e u L ∞ (0,T ;Q d ) , the question how to estimate a posteriori error discretizations in Chorin-Temam scheme efficiently and robustly (in all cases) thus remains open. One should at least coefficient adequately the terms in the estimator above (22) plus div u ∆t 2 L ∞ (0,T ;Q) . We nevertheless hope to have shed new light on the problem.
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 1 Numerical solutions to Stokes equations by Chorin-Temam pressure-correction projection method Given a smooth bounded open set D ⊂ R d (d = 2, 3) with boundary ∂D of class C 2 , let us denote similarly by (•, •)

Figure 1 :

 1 Figure 1: For ∆t = .1, .05, .025, .0125, .00625, effectivities in log scale (as a function of T ) of (20) -top left -, (22) -top right -, and (23) -bottom left -( div u ∆t 2 L ∞ (0,T ;Q) included) at estimating (19) when λ = 10, T ≤ 3; and div u ∆t 2 L ∞ (0,T ;Q) / error (19) -bottom right -when λ = 1, T ≤ 10.

Note that in fact we also added the term div u ∆t 2 L ∞ (0,T ;Q) to (20), (22) and (23) in Fig.1, but it is small compared to other terms, thus unseen.