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Abstract

We present a new auxiliary problem for the determination of the apparent stiffness of a Statistical Volume Element
(SVE). The SVE is embedded in an infinite, homogeneous reference medium, subjected to a uniform strain at infinity,
while tractions are applied to the boundary of the SVE to ensure that the imposed strain at infinity coincides with
the average strain over the SVE. The main asset of this new auxiliary problem resides in the fact that the associated
Lippmann–Schwinger equation involves without approximation the Green operator for strains of the infinite body,
which is translation-invariant and has very simple, closed-form expressions. Besides, an energy principle of the Hashin
and Shtrikman type can be derived from this modified Lippmann–Schwinger equation, allowing for the computation
of rigorous bounds on the apparent stiffness. The new auxiliary problem requires a cautious mathematical analysis,
because it is formulated in an unbounded domain. Observing that the displacement is irrelevant for homogenization
purposes, we show that selecting the strain as main unknown greatly eases this analysis. Finally, it is shown that
the apparent stiffness defined through these new boundary conditions “interpolates” between the apparent stiffnesses
defined through static and kinematic uniform boundary conditions, which casts a new light on these two types of
boundary conditions.

Keywords: Apparent stiffness, Boundary conditions, Effective stiffness, Homogenization, Lippmann–Schwinger
equation

1. Introduction

The determination of the macroscopic properties of heterogeneous materials can be carried out by means of
micromechanical models such as the model of Mori and Tanaka (1973) (see also Benveniste, 1987; Ponte Castañeda
and Willis, 1995), the model of Maxwell (McCartney and Kelly, 2008; McCartney, 2010), the self-consistent model
(Walpole, 1969; Kröner, 1977) or the generalized self-consistent model (Christensen and Lo, 1979; Hervé and Zaoui,
1993). These are invaluable tools, which provide semi-analytical (or even closed-form) estimates; besides, material
non-linearities can be accomodated (Suquet, 1997). However, it is well-known that they fail to account for the finest
details of the microstructure. This is due to the fact that most of them are based on the elementary solution to the
problem of one single inhomogeneity, embedded in an infinite, homogeneous matrix (Eshelby, 1957). Since the
inhomogeneity under consideration in this auxiliary problem is isolated, microstructural correlations can only be
approximately incorporated. In cases where a more faithful representation of the microstructure is needed, it is therefore
essential to resort to numerical homogenization, which provides accurate estimates derived from full-field computations.

Within the framework of numerical homogenization, the effective stiffness of heterogeneous materials is usually
estimated as the limit of the apparent stiffness of Statistical Volume Elements [SVEs, using the terminology introduced
by Ostoja-Starzewski (2006)] of growing size (Sab, 1992). In turn, the apparent stiffness is derived from the solution to
an auxiliary boundary value problem which states the elastic equilibrium of the SVE. The present paper is devoted to
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the issue of selecting appropriate boundary conditions for this auxiliary problem. Three types of boundary conditions
are frequently adopted, namely static and kinematic uniform boundary conditions (Hill, 1963, 1967; Mandel, 1972),
and periodic boundary conditions (Gusev, 1997, among others).

In the case of linear elasticity and kinematic uniform boundary conditions, the Lippmann–Schwinger equation is an
alternative (equivalent) formulation of the auxiliary problem (Zeller and Dederichs, 1973). Upon introduction of a
so-called reference medium, the classical boundary value problem of elasticity with the displacement as main unknown
is replaced with a unique integral equation with the polarization as main unknown.

In comparison with the initial boundary value problem, the equivalent integral equation has a number of assets, both
in periodic and random homogenization. In periodic homogenization for example, the structure of the equation lends
itself to efficient numerical treatments in the Fourier space (Moulinec and Suquet, 1994, 1998; Brisard and Dormieux,
2010, 2012). The resulting schemes can be extended to non-linear problems (Michel et al., 2001). In the present paper,
periodic boundary conditions are not adopted, and discretization of the Lippmann–Schwinger equation can no longer
benefit from formulations in the Fourier space. However, discretization of this equation in the real space can still be
carried out in an efficient way under certain circumstances. This is true of e.g. random matrix–inclusions composites.
Indeed, the polarization in the matrix vanishes if the latter is selected as reference medium. Then, the polarization
needs only be approximated in the inclusions (by e.g. piecewise polynomials), which results in a significant reduction
of the number of degrees of freedom. This is the basis of the Equivalent Inclusion Method (Moschovidis and Mura,
1975), a variational version of which will be proposed by the authors in a future publication.

Solving numerically the auxiliary problem with kinematic uniform boundary conditions would require the dis-
cretization of a Lippmann–Schwinger equation involving the Green operator for strains of a bounded domain. Such
an approach has two shortcomings. First, this operator is known for very specific shapes of the bounded domain
only. Second, it is not translation-invariant; as a consequence, the influence pseudo-tensors, which characterize the
interaction between two inclusions, would depend on the position of both inclusions. This would result in a costly
assembly of the linear system resulting from the discretization of the Lippmann–Schwinger equation.

To overcome these shortcomings, it is necessary to substitute the Green operator of the infinite domain (whole
space) to the Green operator of finite domains. This substitution effectively amounts to embedding the SVE in an
infinite medium, with imposed strain at infinity (see Fig. 3). The Equivalent Inclusion Method is in fact formulated in
this spirit. Since the Green operator of the infinite domain is translation-invariant, the influence pseudo-tensors of two
inclusions depend on their relative position only, thus easing assembly of the underlying linear system.

However, the resulting Lippmann–Schwinger equation is not well-suited to numerical homogenization, as the
corresponding boundary conditions do not allow for the specification of neither the macroscopic strain nor the
macroscopic stress. Although it is still possible to define the apparent stiffness associated with these boundary
conditions [see Fond et al. (2002) and Sec. 3.2 in the present paper], the resulting estimates cannot be regarded as
bounds, as the principle of Hashin and Shtrikman is lost.

In the present paper, we introduce a new auxiliary problem, with mixed boundary conditions, and the associated
modified Lippmann–Schwinger equation, which involves the Green operator of the infinite domain. As previously
suggested by Willis (1977), this operator is applied to the fluctuations of the polarization. However, Willis regarded
the resulting integral equation as an approximation of the Lippmann–Schwinger equation associated to kinematic
uniform boundary conditions for infinitely large SVEs. By contrast, in this paper, we regard this equation as the exact
Lippmann–Schwinger equation associated to the new, mixed boundary conditions, combining imposed strain at infinity
and imposed tractions at the boundary of the finite-size SVE (see Fig. 2).

This new auxiliary problem with mixed boundary conditions has a number of assets. First, the loading parameter is
the macroscopic strain (unlike the problem depicted in Fig. 3). This results in a direct definition of the corresponding
apparent stiffness; it differs from the apparent stiffness based on static or kinematic uniform boundary conditions.
Second, minimum potential and complementary energy principles can be derived, which in turn allow for the math-
ematical analysis of the well-posedness of the new auxiliary problem, as well as the elementary properties of the
apparent stiffness. Third, an energy principle of the Hashin and Shtrikman (1962a) type can be derived; under classical
restrictions on the stiffness of the reference medium, it is therefore possible to exhibit bounds on the apparent stiffness.
As the underlying Green operator is translation-invariant, this energy principle lends itself to direct discretization
in a numerical setting. Finally, the new definition of the apparent stiffness “interpolates” between the two classical
definitions based on static and kinematic uniform boundary conditions. Indeed, when the reference (embedding)
medium becomes infinitely soft (resp. stiff), the apparent stiffness associated with static (resp. kinematic) uniform
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boundary conditions is recovered. For finite stiffness reference media, the apparent stiffness associated with mixed
boundary conditions is bounded by these two limit apparent stiffnesses.

The remainder of this paper is organized as follows. In Sec. 2, the definitions of static and kinematic uniform
boundary conditions are first recalled. Then, the new, mixed boundary conditions are introduced. The mathematical
properties of the resulting auxiliary problem, and the associated apparent stiffness are stated without proof. The
essential property is the asymptotic consistency: like standard problems with static and kinematic uniform boundary
conditions, the apparent stiffness tends to the effective stiffness as the size of the SVE grows to infinity. This justifies
the relevance of the new boundary conditions.

In Sec. 3, we present the rationale behind these new boundary conditions. The starting point is the Lippmann–
Schwinger equation, which is first recalled, together with the corresponding Hashin and Shtrikman energy principle.
The standard Lippmann–Schwinger equation is associated with kinematic uniform boundary conditions. As such,
it features the Green operator of a finite body. The section therefore goes on with a discussion on the use of the
Green operator of the infinite body in its stead. Then, an extension of the theorem of Eshelby (1957) is proposed, for
ellipsoidal SVEs. The section closes with the so-called modified Lippmann–Schwinger equation, which results directly
from this generalized theorem of Eshelby.

The new auxiliary problem with mixed boundary conditions is a typical example of elasticity problems in unbounded
domains, the mathematical analysis of which is difficult (as opposed to elasticity problems in bounded domains).
However, observing that the displacement is irrelevant for homogenization purposes (only the strain and stress are
relevant), a sound but simple mathematical framework is set up in Sec. 4 to tackle such problems. This requires the
definition of two pairs of orthogonal functional spaces: the spaces of divergence-free stresses and compatible strains on
the one hand, and the spaces of statically admissible stresses and kinematically admissible strains on the other hand.
These four spaces have the structure of Hilbert spaces. As a first application, a rigorous definition of the Green operator
for strains of the unbounded domain is given. The section closes with the equivalence (for ellipsoidal SVEs) of the
modified Lippmann–Schwinger equation and the auxiliary problem with mixed boundary conditions, which was stated
without proof in Sec. 3.

In Sec. 5, we show that the classical principles of minimum potential and complementary energies can be extended
to this new auxiliary problem. The well-posedness of the new auxiliary problem with mixed boundary conditions (as
well as the equivalent modified Lippmann–Schwinger equation) results from these principles. Besides, it is shown
that the minimum values of these energies are related to the newly defined apparent stiffness. This section closes with
simple applications of these principles to prove the properties of the apparent stiffness previously listed in Sec. 2.

Finally, in Sec. 6 we derive an energy principle of the Hashin and Shtrikman (1962a) type. Such principle is useful
for the numerical approximation of the modified Lippmann–Schwinger equation. Indeed, provided that the assumptions
of this principle are verified, any approximation of the true polarization provides a bound on the apparent stiffness.

2. Overview

The present work is devoted to the homogenization of random heterogeneous, linearly elastic materials. The
effective stiffness Ceff is usually computed as the limit of the apparent stiffness Capp of a bounded SVE Ω ⊂ Rd as
|Ω| → +∞. In turn, the apparent stiffness Capp is defined from the solution to the following auxiliary problem: find the
local displacement u such that

x ∈ Ω : ∇x · σ = 0, (1a)
x ∈ Ω : σ(x) = C(x) : ε(x), (1b)
x ∈ Ω : ε(x) = ∇s

xu, (1c)

where ε (resp. σ) is the local strain (resp. stress) and C is the local stiffness of the heterogeneous material. Furthermore,
∇ · σ denotes the divergence of σ and ∇su denotes the symmetric part of the gradient of u; finally,“:” stands for the
double contraction on the nearest two indices. The above problem must be complemented with apropriate boundary
conditions. Setting aside periodic boundary conditions, which will not be considered in the present paper, static or
kinematic uniform boundary conditions are usually adopted (Hill, 1963, 1967; Mandel, 1972).
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C(x)

σ(x) · n(x) = Σ · n(x)

Ω

Problem SUBC

n(x)

x
C(x)

u(x) = E · x

Ω

Problem KUBC

Figure 1: Graphical representation of the Problems SUBC (left) and KUBC (right).

In the case of static uniform boundary conditions, the loading parameter is the macroscopic stress Σ, and the
following tractions are specified at the boundary ∂Ω of the SVE

x ∈ ∂Ω : σ(x) · n(x) = Σ · n(x), (2)

where n is the outward normal to ∂Ω. Owing to the linearity of the problem, the macroscopic strain ε (the volume
average of the local strain) depends linearly on the macroscopic stress

ε = Sapp
SUBC : Σ,

where Sapp
SUBC is the apparent compliance. The apparent stiffness is then defined as Capp

SUBC = (Sapp
SUBC)−1. Together with

the static uniform boundary conditions (2), Eqs. (1) define Problem SUBC (see Fig. 1, left).
In the case of kinematic uniform boundary conditions, the loading parameter is the macroscopic strain E, and the

following displacements are specified at the boundary ∂Ω of the SVE

x ∈ ∂Ω : u(x) = E · x. (3)

Owing to the linearity of the problem, the macroscopic stress σ (the volume average of the local strain) depends
linearly on the macroscopic strain

σ = Capp
KUBC : E,

where Capp
KUBC is the apparent stiffness. Together with the kinematic uniform boundary conditions (3), Eqs. (1) define

Problem KUBC (see Fig. 1, right).
In the present paper, we propose a new auxiliary problem on the SVE Ω, with mixed (both static and kinematic)

boundary conditions. We call this new problem: Problem MBC. It requires the introduction of a homogeneous, linearly
elastic reference medium C0, occupying the whole space Rd, in which the SVE is embedded. Then, the local stiffness
C and compliance S = C−1, initially defined on Ω only, are extended to the whole space Rd as follows

x ∈ Rd \Ω : C(x) = C0, S(x) = S0, (4)

where S0 = C−1
0 is the compliance of the reference medium. We assume that the reference medium is isotropic, with

shear modulus µ0 and Poisson ratio ν0. Before we introduce Problem MBC, it should be noted that throughout this
paper, overlined quantities denote volume averages over the bounded SVE Ω, even if the quantity to be averaged is
defined over the whole space Rd

a =
1
|Ω|

∫
Ω

a, (5)

and it is emphasized that the above quantity is meaningful, since the domain Ω is always bounded.
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ε(x)→ E, ‖x‖ → +∞
C0

Rd

C(x)

[[σ]] · n = − (s − C0 : E) · n

Ω

n(x)

x

Figure 2: Graphical representation of Problem MBC. The SVE Ω is embedded in an infinite, homogeneous medium with stiffness C0, subjected to
the strain E at infinity, and the force density (s − C0 : E) · n at ∂Ω. The boundary condition at infinity ε→ E should be understood as: (ε − E) has
square-integrable components.

For the new, mixed boundary conditions introduced here, the loading parameter is again the macroscopic strain E.
In this problem, the unknowns are a constant, second-rank, symmetric tensor s and the local displacement u, such that

x ∈ Rd : ∇x · (σ − χ (s − C0 : E)) = 0, (6a)

x ∈ Rd : σ(x) = C(x) : ε(x), (6b)

x ∈ Rd : ε(x) = ∇s
xu, (6c)∫

Rd
(ε − E) : C : (ε − E) < +∞, (6d)

ε = E, (6e)

where χ denotes the indicator function of the SVE Ω.
Eq. (6d) means that the imposed strain at infinity is E. Since no boundary conditions are imposed to the displacement

u in the above problem, it is determined up to a rigid body motion. From Eq. (6e), this imposed strain coincides with
the macroscopic strain. Finally, Eq. (6a) means that σ is in equilibrium with a surface force applied to ∂Ω . Indeed,
since (σ − χ (s − C0 : E)) is divergence-free in Rd, and χ (s − C0 : E) is constant in Ω and Rd \ Ω, it is found that σ is
divergence-free in Ω and Rd \Ω, and discontinuous across ∂Ω. From the continuity of (σ − χ (s − C0 : E)) · n, we find

x ∈ ∂Ω : [[σ]](x) · n(x) = − (s − C0 : E) · n(x), (7)

where n(x) is the outward normal to ∂Ω at x and [[σ]](x) is the discontinuity of σ at x ∈ ∂Ω, in the direction of n(x).
To sum up, Problem MBC corresponds to the elastic equilibrium of the heterogeneous SVE Ω, embedded in the

homogeneous, reference medium C0. The resulting infinite body is submitted to the imposed strain E at infinity, and
the surface force density (s − C0 : E) · n applied to the boundary ∂Ω, where the constant tensor s is chosen so as to
ensure that ε = E (see Fig. 2).

At first sight, Problem MBC might seem more complex than Problems SUBC and KUBC, due to the additional
unknown s, which cannot in general be determined directly. However, it will be shown in Sec. 4.4 that for ellipsoidal
SVEs, s is in fact equal to the macroscopic stress (s = σ), and that Problem MBC is equivalent to the following
modified Lippmann–Schwinger equation introduced in Sec. 3.4

(C − C0)−1 : τ + Γ∞0 ∗ (τ − χτ) = E, (8)

where the unknown polarization τ is supported in Ω, and Γ∞0 denotes the Green operator for strains of the unbounded
reference medium (see Sec. 4.3). For matrix–inclusions composites, it is natural to select the matrix as reference
medium. Then the polarization τ vanishes in the matrix, and Galerkin techniques can be used to discretize Eq. (8) with
polarizations which are polynomial in each inclusion. The assembly of the underlying linear system is efficient because
the Green operator Γ∞0 is translation-invariant. The resulting numerical method will be reported elsewhere.
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The mathematical analysis of Problem MBC (in particular, its well-posedness) is greatly simplified by the principles
of minimum potential and complementary energy introduced in Secs. 5.1 and 5.2, respectively. The potential and
complementary energiesW andW∗ associated with Problem MBC are defined as follows

W(ε) =

∫
Rd

(
1
2ε : C : ε − E : C0 : ε + 1

2 E : C0 : E
)
, (9)

W∗(σ) =

∫
Rd

(
1
2σ : S : σ − E : σ + 1

2 E : C0 : E
)
. (10)

Theorem 8 states that the solution to Problem MBC minimizes the potential energy on the space of strains
kinematically admissible with E. Similarly, Theorem 9 states that the solution to Problem MBC minimizes the
complementary energy on the space of stresses statically admissible with E. Both spaces are defined in Sec. 4.2. The
minimum potential energy principle can be invoked to prove that under the classical Assumption 1 below, Problem
MBC is well-posed.

Assumption 1. There exists α > 0 and β > 0 such that αI ≤ C ≤ βI in Ω1.

Since C0 is positive definite, it is always possible to chose 0 < α < α0 and β > β0, where α0 > 0 (resp. β0) is the
smallest (resp. largest) eigenvalue of C0 (see Sec. 4.3). Therefore, we will assume in the remainder of this section that
αI ≤ C ≤ βI holds in the whole space Rd.

For any value of the loading parameter E (which is equal to the macroscopic strain), the macroscopic stress σ is
therefore well-defined, and depends linearly on E, and it is possible to define the apparent stiffness Capp

MBC(C0) associated
with Problem MBC

σ = C : ε = Capp
MBC(C0) : E. (11)

The apparent stiffness Capp
MBC(C0) thus defined corresponds to neither static uniform, nor kinematic uniform boundary

conditions; in fact, it depends on the stiffness C0 of the reference medium. Its properties are listed below. It is shown in
Sec. 5.1 that Capp

MBC is symmetric; furthermore, the following bounds hold (see Sec. 5.3)

Capp
SUBC ≤ Capp

MBC(C0) ≤ Capp
KUBC.

In turn, these inequalities have two important consequences. First, the apparent stiffness Capp
MBC(C0) is positive

definite (because of the positive-definiteness of Capp
SUBC). Second, the present definition of the apparent stiffness is

asymptotically consistent. Indeed, since

Capp
SUBC,C

app
KUBC → Ceff as |Ω| → +∞,

[under statistical homogeneity and ergodicity assumptions, see Sab (1992)], we also have

Capp
MBC(C0)→ Ceff.

Finally, the following limit cases established in Sec. 5.3 cast a new light on the classical static and kinematic
uniform boundary conditions, which can now be considered as extreme cases of the more general mixed boundary
conditions. More precisely

Capp
MBC(C0)→ Capp

SUBC when ‖C0‖ → 0 and Capp
MBC(C0)→ Capp

KUBC when ‖C0‖ → +∞. (12)

In other words, the new mixed boundary conditions introduced here “interpolate” between the classical static and
kinematic uniform boundary conditions.

The paper closes with a third energy principle, of the Hashin and Shtrikman (1962a) type. Based on the modified
Lippmann–Schwinger equation (8), the following functional is introduced in Sec. 6 for ellipsoidal SVEs

HMBC($) = E : $ − 1
2$ : (C − C0)−1 : $ − 1

2$ :
(
Γ∞0 ∗ ($ − χ$)

)
. (13)

1In the present paper, “A ≤ B” is to be understood in the sense of associated quadratic forms.
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The above expression is very similar to the classical functional of Hashin and Shtrikman (1962a). Furthermore,
provided that the reference medium is stiffer (resp. softer) than all phases in the composite, this energy is minimum
(resp. maximum) on the space of polarizations (see Theorem 12). This is a useful result for numerical applications, as
it can be used to prove that numerical approximations of the apparent stiffness are actually bounds.

It should be noticed that Eq. (8) and (13) have already been introduced by Willis (1977), as a way to approximate
the solution to Problem KUBC for infinitely large SVEs. Our approach is significantly different, as we intend to apply
in future work the present developments to SVEs of finite size in a numerical setting. From this perspective, Eq. (8) is
regarded as the Lippmann–Schwinger equation associated without approximation with Problem MBC (which differs
from Problem KUBC), this equivalence being valid for ellipsoidal SVEs only.

To close this section, it is emphasized that the apparent stiffness defined through Problem MBC depends on the
shape of the SVE Ω, as indicated by the presence of the Hill tensor PΩ of Ω in Sec. 3.4. This is also true of apparent
stifnesses defined through Problems SUBC and KUBC, and should therefore not come as a surprise. One of the main
results of this paper is that, regardless of its exact shape, the apparent stiffness defined through Problem MBC converges
to the uniquely defined effective stiffness as the size of the SVE Ω tends to infinity [under statistical homogeneity and
ergodicity assumptions, see Sab (1992)]. In other words, the shape dependence vanishes for large SVEs.

Before we proceed with the proof of all the results stated in Sec. 2 above, we present in the following Sec. 3 the
reasoning that led to the mixed boundary conditions introduced in this paper. The starting point is the Lippmann–
Schwinger equation associated with Problem KUBC.

3. The rationale behind the mixed boundary conditions

3.1. The standard Lippmann–Schwinger equation and the principle of Hashin and Shtrikman
Introducing a homogeneous, linearly elastic reference medium C0, it is well known that Problem KUBC is

equivalent to the Lippmann–Schwinger equation (Zeller and Dederichs, 1973; Kröner, 1977)

x ∈ Ω : ε(x) + (Γ0 ~ ((C − C0) : ε)) (x) = E, (14)

where the main unknown is the strain ε. In Eq. (14), Γ0 denotes the Green operator for strains of the bounded domain
Ω with homogeneous stiffness C0, and ’~’ stands for the two-point product

(Γ0 ~$)(x) =

∫
y∈Ω
Γ0(x, y) : $(y)dy. (15)

It is recalled that the Green operator for strains returns the (opposite of the) strain induced in the reference medium
by the prestress $. In other words, if u is the solution to the following problem

x ∈ Ω : ∇x · σ = 0,
x ∈ Ω : σ(x) = C0 : ε(x) +$(x),
x ∈ Ω : ε(x) = ∇s

xu,
x ∈ ∂Ω : u(x) = 0,

then, by definition, Γ0 ~$ = −ε = −∇su. Substituting in Eq. (14) the so-called polarization τ(x) = (C(x) − C0) : ε(x)
to the strain ε(x), the Lippmann–Schwinger equation can be conveniently rewritten

x ∈ Ω : (C(x) − C0)−1 : τ(x) + (Γ0 ~ τ) (x) = E, (16)

and the strain and stress are readily retrieved from the solution τ of equation (16)

x ∈ Ω : ε(x) = E − (Γ0 ~ τ) (x) and σ(x) = C0 : ε(x) + τ(x). (17)

Following the presentation of Willis (1977), the principle of Hashin and Shtrikman (1962a) can be seen as the
variational counterpart of the Lippmann–Schwinger equation (16). Let τ denote the solution to this equation. Hashin
and Shtrikman (1962a) first prove that τ is a critical point of the functionalHKUBC

HKUBC($) = E : $ − 1
2$ : (C − C0)−1 : $ − 1

2$ : (Γ0 ~$). (18)
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Furthermore, the value ofHKUBC at τ is known. Indeed, from Eq. (17)

HKUBC(τ) = 1
2 E : σ − 1

2 E : C0 : ε = 1
2 E :

(
Capp

KUBC − C0

)
: E. (19)

Hashin and Shtrikman (1962a) then provide sufficient conditions for this critical point to be an extremum of
HKUBC. If the reference medium is stiffer (resp. softer) than the heterogeneous material, thenHKUBC is minimum (resp.
maximum) at τ. In other words

1. if C(x) ≤ C0 in Ω, then τ is the unique minimizer ofHKUBC, and for all $

1
2 E : Capp

KUBC : E ≤ 1
2 E : C0 : E +HKUBC($),

2. if C(x) ≥ C0 in Ω, then τ is the unique maximizer ofHKUBC, and for all $

1
2 E : Capp

KUBC : E ≥ 1
2 E : C0 : E +HKUBC($).

The celebrated bounds of Hashin and Shtrikman (1962b) on the effective properties Ceff are retrieved under the
assumption of statistical isotropy, with a phase-wise constant trial field $.

3.2. From Problem KUBC to Problem KUBC∞

The Lippmann–Schwinger equation (16) and the associated principle of Hashin and Shtrikman hold regardless of
the shape of the bounded SVE Ω. However, the Green operator for strains Γ0 is not translation-invariant if Ω is bounded.
This makes the derivation of numerical methods based on Eq. (16) overly complicated, and of little practical value. By
contrast, the Green operator for strains Γ∞0 of the unbounded domain Rd is translation-invariant, and its closed-form
expression for isotropic reference media is rather simple (see Appendix A). This has led many authors to substitute Γ∞0
to Γ0, assuming the approximation to be valid for domains Ω large enough. In other words, Eq. (16) is replaced with

x ∈ Ω : (C(x) − C0)−1 : τ(x) + (Γ∞0 ∗ τ)(x) = E∞, (20)

and the associated elasticity problem will be called Problem KUBC∞.
It is recalled that the Green operator Γ∞0 of the unbounded domain Rd returns the (opposite of the) strain ε induced

by the prestress $. In other words, for any prestress $, ε = −Γ∞0 ∗ $ is the unique compatible strain such that
C0 : ε +$ is divergence-free. A more formal definition of Γ∞0 (including requirements on the regularity of $) will be
given in Sec. 4.3.

Eq. (20) is specified in Ω only. However, E∞ − Γ∞0 ∗ τ defines a strain field ε in the whole space Rd. Similarly, if τ
is extended to 0 in Rd \ Ω, then σ = C0 : ε + τ is a divergence-free stress field defined in the whole space Rd. Having
thus extended σ and ε, it is seen from the definition of Γ∞0 that Problem KUBC∞ corresponds to the elastic equilibrium
of the SVE Ω, embedded in an infinite, homogeneous body with elastic stiffness C0, and subjected to a uniform strain
E∞ at infinity (see Fig. 3).

From Problem KUBC∞, it is possible to define a new apparent stiffness Capp
KUBC∞ of the finite body Ω. The derivation

must account for the fact that the loading parameter E∞ is not the average strain over the domain Ω. Therefore, both
the average stress σ and strain ε must be computed from the local stress σ and ε. Because of the linearity of Eq. (20)
with respect to E∞, both σ and ε depend linearly on the strain at infinity E∞

ε = AKUBC∞ : E∞, σ = BKUBC∞ : E∞,

where AKUBC∞ and BKUBC∞ are fourth-rank localization tensors. The apparent stiffness results from the elimination of
the loading parameter

Capp
KUBC∞ = BKUBC∞ : A−1

KUBC∞ .

This approach has been successfully used by e.g. Torquato (1997) for theoretical series expansions of the effective
stiffness, and by Fond et al. (2001, 2002) for numerical computations of these quantities. It can also be related to
Maxwell’s far-field methodology (McCartney and Kelly, 2008; McCartney, 2010).
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ε(x)→ E∞, ‖x‖ → +∞
C0

Rd

C(x)

Ω

Figure 3: Graphical representation of Problem KUBC∞. The SVE Ω is embedded in an infinite, homogeneous medium with stiffness C0, subjected
to the strain E∞ at infinity. The boundary condition at infinity ε→ E∞ should be understood as: (ε − E∞) has square-integrable components.

To close this section, it should be emphasized that Eq. (20) is not equivalent to Eq. (16); in other words,
Capp

KUBC , Capp
KUBC∞ . Using Saint-Venant’s principle, Willis (1977) proved that substituting Γ∞0 to Γ0 is valid in the limit

of infinitely large SVEs (provided that only the fluctuations of τ are considered). However, this substitution is no longer
valid in the case of finite-size SVEs.

Moreover, adoption of Eq. (20) leads to the loss of the principle of Hashin and Shtrikman. Indeed, if we were to
define the functionalHKUBC∞ as follows

HKUBC∞ ($) = E∞ : $ − 1
2$ : (C − C0)−1 : $ − 1

2$ : (Γ∞0 ∗$),

then we would readily find that the solution τ to Eq. (20) is a critical point ofHKUBC∞ . However, there is no longer a
direct relationship between the value ofHKUBC∞ at τ and the apparent stiffness Capp

KUBC∞ ; in other words, Eq. (19) does
not generalize to HKUBC∞ and Capp

KUBC∞ . Therefore, it would not be possible to resort to the principle of Hashin and
Shtrikman to exhibit bounds on Capp

KUBC∞ .
In section 3.4 below, we introduce the so-called modified Lippmann–Schwinger equation (8) as a way to address all

these shortcomings. We show that this new equation is also based on the substitution of Γ0 with Γ∞0 . Like Willis (1977),
we apply the Green operator of the infinite body to the fluctuations of τ only; however, we do not regard the solution
to the modified Lippmann-Schwinger equation as an approximate solution to the initial Problem KUBC. Instead, we
show in Sec. 4.4 that the modified Lippmann–Schwinger equation (23) is strictly equivalent to Problem MBC (which
differs from Problem KUBC).

Although it is based on a similar substitution, Eq. (23) is superior to Eq. (20) in that the loading parameter is
the macroscopic strain. As a consequence, Eq. (19) does generalize toHMBC and Capp

MBC, and it is possible to exhibit
bounds on the apparent stiffness Capp

MBC.

3.3. A generalization of Eshelby’s theorem

The motivation for the modified Lippmann–Schwinger equation introduced in Sec. 3.4 comes from Theorem 2
below, which can be seen as an extension of Eshelby’s theorem (Eshelby, 1957). Eshelby’s theorem states that, in an
ellipsoidal inclusion2, the strain caused by a uniform prestress is uniform. For the sake of completeness, this result is
recalled without proof in a compact form in Theorem 1.

Theorem 1 (Eshelby, 1957). If Ω is ellipsoidal, then for any constant prestress $

x ∈ Ω :
(
Γ∞0 ∗ (χ$)

)
(x) = PΩ : $,

where PΩ denotes the Hill tensor of Ω with respect to the reference medium C0.

2Following Eshelby (1957), “inclusion” should be understood here as a prestressed, bounded region in a homogeneous, infinite medium.
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Using the same notations as in Theorem 1, Theorem 2 relates the average of the strain to the average of the
(heterogeneous) prestress in an ellipsoidal inclusion.

Theorem 2. If Ω is ellipsoidal

Γ∞0 ∗$ = PΩ : $,

for any prestress $ with square-integrable components supported in Ω.

In the above theorem, the assumption that $ is supported in the ellipsoidal domain Ω is essential. Furthermore, it
is recalled that, although Γ∞0 ∗$ is defined in the whole space Rd, only its values in Ω are considered to compute the
volume average Γ∞0 ∗$ [see Eq. (5)]. A proof of Theorem 2, based on Fubini’s theorem, can be found in Rodin and
Hwang (1991) (see Property 1). In the present paper, we propose an alternative proof, based on Lemma 1, which can be
seen as a generalization of the Maxwell-Betti reciprocal work theorem (see Appendix B).

3.4. The modified Lippmann–Schwinger equation
The derivation of the modified Lippmann–Schwinger equation (8) relies on the fact that the SVE Ω is ellipsoidal,

so that Theorem 2 applies. Let τ be the solution to Eq. (20); introducing the strain ε = E∞ − Γ∞0 ∗ τ, we have
ε = E∞ − PΩ : τ. Since the volume average ε is by definition the macroscopic strain E, Eq. (20) also reads

x ∈ Ω : (C(x) − C0)−1 : τ(x) + (Γ∞0 ∗ τ)(x) − PΩ : τ = E. (21)

From Theorem 1, we have

x ∈ Ω : PΩ : τ =
(
Γ∞0 ∗ (χτ)

)
(x), (22)

and upon substitution into Eq. (21)

x ∈ Ω : (C(x) − C0)−1 : τ(x) +
(
Γ∞0 ∗ (τ − χτ)

)
(x) = E. (23)

The main asset of Eq. (23), which is equivalent to Eq. (20), lies in the fact that the loading parameter is now the
macroscopic strain E, instead of the auxiliary strain E∞. This leads us to introduce the so-called modified Lippmann–
Schwinger equation, with unknown τ supported in Ω. This equation has already been introduced in Sec. 2 [see Eq.
(8)]; for the sake of completeness, it is recalled below

(C − C0)−1 : τ + Γ∞0 ∗ (τ − χτ) = E.

The above analysis shows that the solution τ to Eq. (8) is also the solution to Eq. (20), with E∞ = E + PΩ : τ

x ∈ Ω : E∞ −
(
Γ∞0 ∗ τ

)
(x) = E −

(
Γ∞0 ∗ (τ − χτ)

)
(x).

The left-hand side is the strain defined in Rd by the solution to Eq. (20), while the right-hand side is the strain
defined in Rd by the solution to Eq. (8). The above identity shows that both strains are equal inside Ω. However,
because Eq. (22) is valid in Ω only, this identity does not hold outside Ω.

This means that the strain (E−Γ∞0 ∗ (τ−χτ)) defined by the solution to the modified Lippmann–Schwinger equation
(8) is not the solution to Problem KUBC∞ defined in Sec. 3.2. It will be shown in Sec. 4.4 below that it is the solution
to Problem MBC, introduced in Sec. 2. More precisely, the modified Lippmann–Schwinger equation (8) is equivalent
to Problem MBC for ellipsoidal SVEs.

The modified Lippmann–Schwinger equation is a typical example of elasticity problems in unbounded domains (the
whole space Rd in the present case). Their mathematical analysis (namely, existence and uniqueness of the solution) is
notoriously more involved than that of problems posed in bounded domains. However, observing that the displacement
is irrelevant for homogenization purposes (only the strain and stress are relevant), a mathematical framework is set up in
Sec. 4 below to tackle such problems. As an application, a rigorous definition of the Green operator Γ∞0 is provided. It
is then possible to prove that (for ellipsoidal SVEs), Problem MBC is equivalent to the modified Lippmann–Schwinger
equation (8).
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4. A mathematical framework for elasticity problems in unbounded domains

Regularity requirements will be necessary to ensure existence and uniqueness of the solution to the problems
considered below. A natural choice is related to the finiteness of the elastic energy carried by stresses and strains. We
therefore introduce the space L2(Rd) of second-rank, symmetric tensors with square-integrable components in Rd. It is
recalled that L2(Rd) is a Hilbert space for the scalar product

〈σ, ε〉 =

∫
Rd
σ : ε, (24)

and the associated norm will be denoted ‖·‖2. Similarly, for Ω ⊂ Rd, we introduce the space L2(Ω) of second-rank,
symmetric tensors with square-integrable components in Ω. In the remainder of this paper, any element of L2(Ω) will
be considered as an element of L2(Rd), supported in Ω.

It should be noted that all stresses and strains arising in this paper are not finite-energy stresses and strains. Indeed,
we will frequently meet situations where σ ∼ σ∞ (resp. ε ∼ ε∞) when ‖x‖ → +∞ (σ∞, ε∞ are constant second-rank,
symmetric tensors). We will then require that σ − σ∞ ∈ L2(Rd) [resp. ε − ε∞ ∈ L2(Rd)].

4.1. Divergence-free and compatible tensors
In the remainder of this paper, the usual definition of divergence-free tensors is adopted. The second-rank, symmetric

tensor σ is said to be divergence-free (∇ · σ = 0) in Rd if for any vector u with C∞0 (Rd) components, 〈σ,∇su〉 = 0,
where the notation 〈σ, ε〉 = 〈σi j, εi j〉 stands for the application of the test function ε to the distribution σ. If σ ∈ L2(Rd),
this notation coincides with the usual scalar product over L2(Rd) [as defined in Eq. (24)]. We then define the space S
of divergence-free tensors with square-integrable components

S = {σ ∈ L2(Rd) such that ∇ · σ = 0}.
Clearly, S is a closed subspace of the Hilbert space L2(Rd) (since strong convergence implies weak convergence).

Therefore, it is a Hilbert space.
It is well-known that Poincaré’s and Korn’s inequalities do not apply to unbounded domains [although some

progress has been made in this direction, see e.g. Kondrat’ev and Oleinik (1988) and Amrouche et al. (2012)]. As
a consequence, existence and uniqueness of the displacement is difficult to prove for elasticity problems set in such
geometries. By constrast, proving the existence and uniqueness of the strain is relatively easy, as will be shown
below. The corresponding displacement u is unique up to a rigid body motion; besides if ε has square-integrable
components, then u has H1

loc(Rd) components (Amrouche et al., 2012). While this limitation could be prohibitive for
some applications, it is of little consequence for homogenization purposes, where the quantities of interest are the stress
σ and strain ε.

This observation led us to adopt a very lax definition of compatible strains: ε is said to be compatible if there exists
a distribution vector field u such that ε = ∇su in the sense of distributions. We then define the space K of compatible
tensors with square-integrable components

K = {ε ∈ L2(Rd) such that there exists u ∈ D′(Rd)d, ε = ∇su},
whereD′(Rd) denotes the space of distributions in Rd. Moreau’s characterization of compatible strains (see Theorem 3
below) proves that K is a closed subspace of L2(Rd). Therefore, it is a Hilbert space; this will allow us to invoke the
Lax–Milgram theorem in Sec. 4.3.

Theorem 3 (Moreau, 1979). Let ε be a second-rank, symmetric tensor with components inD′(Rd); for the existence
of a vector u with components inD′(Rd), such that ε = ∇su, it is necessary and sufficient that for any divergence-free
tensor σ with C∞0 (Rd) components, 〈ε,σ〉 = 0.

Theorem 3 ensures the existence of u, with no guarantee on its regularity, since ∇s is to be understood in the sense
of distributions [although some extensions to this theorem have recently been proposed by Amrouche et al. (2006)].

We close this section with a theorem which is essential for the remainder of this paper. It should be noted that
orthogonal decompositions similar to that stated below have already been considered by other authors [see e.g. Milton
(2002) in the case of periodic boundary conditions].
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Theorem 4. The space L2(Rd) of symmetric, square-integrable tensors is the direct orthogonal sum of the space S of
divergence-free tensors and K of compatible tensors

L2(Rd) = S
⊥⊕ K.

Proof of Theorem 4. Since K is a closed subspace of L2(Rd), we have

L2(Rd) = K
⊥⊕ K⊥,

and it suffices to prove that K⊥ = S. We first consider σ ∈ S and ε ∈ K, and show that 〈σ, ε〉 = 0 (which proves that
S ⊂ K⊥). By construction, σ and ε have square-integrable components, and their Fourier transforms σ̂ and ε̂ also
have square-integrable components. Furthermore the compatible strain ε satisfies the following classical compatibility
conditions

∂2
hlεi j + ∂2

i jεhl − ∂2
jlεih − ∂2

ihε jl = 0,

which are to be understood in the sense of distributions. The above identity reads in Fourier space

khklε̂i j(k) + kik jε̂hl(k) − k jklε̂ih(k) − kikhε̂ jl(k) = 0.

Multiplying by δihσ̂
∗
jl(k) and using Einstein’s convention for repeated indices leads in intrinsic form to the following

identity

σ̂∗(k) : ε̂(k) = 2n · σ̂∗(k) · ε̂(k) · n − (n · σ̂∗(k) · n) (n · ε̂(k) · n) , (25)

where n = ‖k‖−1k. Now, n · σ̂(k) = 0, since ∇ · σ = 0. As a result, Eq. (25) reduces to σ̂∗(k) : ε̂(k) = 0. Then, using
Plancherel’s theorem 〈σ, ε〉 = (2π)−d〈σ̂∗, ε̂〉 = 0.

Conversely, let σ ∈ K⊥; then, for all ε ∈ K, 〈σ, ε〉 = 0. In particular, for all vector u with C∞0 (Rd) components, we
have 〈σ,∇su〉 = 0. By definition of the divergence, ∇ · σ = 0; in other words, σ ∈ S, and K⊥ ⊂ S. As a conclusion,
K⊥ = S, and the proof is complete.

4.2. Statically admissible stresses and kinematically admissible strains

In view of Problem MBC [see Eqs. (6)], it will prove convenient to introduce the following two subspaces of
L2(Rd). First, S† is defined as the space of stress tensors σ such that σ−χs is divergence-free for a constant, symmetric
tensor s; then, K† is defined as the space of compatible strains with null volume average over Ω

S† = {σ ∈ L2(Rd) such that there exists s constant, symmetric,σ − χs ∈ S},
K† = {ε ∈ K, such that ε = 0}.

We further define statically admissible stresses and kinematically admissible strains as follows. The stress σ is
said to be statically admissible with the macroscopic strain E if σ ∈ C0 : E + S†. Similarly, the strain ε is said to be
kinematically admissible with the macroscopic strain E if ε ∈ E + K†.

It can readily be verified that S† is a closed subspace of the Hilbert space L2(Rd). Similarly, K† is also a closed
subspace of the Hilbert space K. Therefore, both S† and K† are Hilbert spaces [for the L2(Rd) norm]. Furthermore, the
following orthogonal decomposition holds.

Theorem 5. The space L2(Rd) is the direct orthogonal sum of S† and K†

L2(Rd) = S†
⊥⊕ K†.

Proof of Theorem 5. Since S† is a closed subspace of L2(Rd), we have

L2(Rd) = S†
⊥⊕

(
S†

)⊥
,
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and it suffices to prove that (S†)⊥ = K†. We first consider σ ∈ S† and ε ∈ K†, and show that 〈σ, ε〉 = 0 (which proves
that K† ⊂ (S†)⊥). By definition, there exists s such that (σ − χs) ∈ S, and

〈σ, ε〉 = 〈σ − χs, ε〉 + 〈χs, ε〉 = 〈σ − χs, ε〉 + |Ω|s : ε.

The first term vanishes from Theorem 4 [(σ − χs) ∈ S, and ε ∈ K]. The second term also vanishes, since ε = 0.
Therefore, 〈σ, ε〉 = 0 and K† ⊂ (S†)⊥.

Conversely, we now consider ε ∈ (S†)⊥. Then for all σ ∈ S†, 〈σ, ε〉 = 0. In particular, since S ⊂ S†, for
all σ ∈ S, 〈σ, ε〉 = 0. From Theorem 3, this means that ε ∈ K. Similarly, for all constant, symmetric tensors s,
0 = 〈χs, ε〉 = |Ω|s : ε, and ε = 0. Therefore ε ∈ K†, and (S†)⊥ ⊂ K†.

4.3. A mathematical definition of the Green operator Γ∞0
It is now possible to give a precise definition of the Green operator Γ∞0 associated to the reference medium with

stiffness C0. Since C0 is positive definite, we have α0I ≤ C0 ≤ β0I, where α0 > 0 (resp. β0) is the smallest (resp.
largest) eigenvalue of C0, and I is the fourth-rank identity tensor. For $ ∈ L2(Rd), we then consider the following
problem

Find ε ∈ K such that (C0 : ε +$) ∈ S. (26)

In order to prove that this problem is well-posed, we first show that it is equivalent to minimizing the potential
energyW0(ε) = 1

2 〈ε,C0 : ε〉 + 〈$, ε〉, which is well-defined in K.

Theorem 6. ε ∈ K solves Eq. (26) if, and only if, ε minimizes the potential energyW0.

Proof of theorem 6. We first consider a solution ε ∈ K to Eq. (26). Then, for all δε ∈ K,

W0(ε + δε) −W0(ε) = 1
2 〈δε,C0 : δε〉 + 〈C0 : ε +$, δε〉,

and the second term vanishes from Eq. (26) and Theorem 4. Since the first term is positive, we find that W0 is
minimum at ε.

Conversely, let ε be a minimizer ofW0. ThenW0 is stationary at ε, and for all δε ∈ K, 〈C0 : ε + $, δε〉 = 0.
In other words, (C0 : ε + $) ∈ K⊥ and, from Theorem 4, (C0 : ε + $) ∈ S, which proves that ε is a solution to Eq.
(26).

Theorem 7. The potential energyW0 has a unique minimizer on K.

Proof of theorem 7. We first note that for all ε ∈ K,W0(ε) = 1
2A0(ε, ε) + 〈$, ε〉, where A0(ε1, ε2) = 〈ε1,C0 : ε2〉.

MinimizingW0 therefore reduces to the following variational problem

Find ε ∈ K such thatA0(ε, δε) + 〈$, δε〉 for all δε ∈ K. (27)

From the Cauchy-Schwarz inequality, the linear form δε 7→ 〈$, δε〉 is continuous over K. Then, from α0I ≤ C0 ≤
β0I,A0 is continuous and coercive over K. Since K is a Hilbert space, the Lax–Milgram theorem applies, andW0 has
a unique minimizer ε ∈ K.

For any prestress $ ∈ L2(Rd), we then define Γ∞0 ($) = −ε, where ε ∈ K is the unique solution to Eq. (26). Γ∞0
thus defined is obviously a linear operator from L2(Rd) to K. Furthermore, it is continuous. Indeed, using ε = −Γ∞0 ($)
as a test function in Eq. (27), it is found from the Cauchy-Schwarz inequality

α0‖ε‖22 ≤ 〈ε,C0 : ε〉 = −〈$, ε〉 ≤ ‖$‖2‖ε‖2.
In other words, ‖Γ∞0 ($)‖2 ≤ 1

α0
‖$‖2. Finally, Γ∞0 is obviously invariant by translation; therefore the mapping of

Γ∞0 to $ should be understood as a convolution product: Γ∞0 ($) = Γ∞0 ∗$.
With this definition of the Green operator Γ∞0 , it is readily verified that an equivalent formulation of Problem

KUBC∞ [see Eq. (20)] is

Find ε ∈ E∞ + K such that σ ∈ C0 : E∞ + S, where σ = C : ε.
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Similarly, an equivalent formulation of Problem MBC [see Eq. (6)] is

Find ε ∈ E + K† such that σ ∈ C0 : E + S†, where σ = C : ε. (28)

Finally, we note that if Ω is ellipsoidal and $ ∈ L2(Ω), then ε ∈ K† and σ ∈ S†, where ε = −Γ∞0 ∗
(
$ − χ$)

and
σ = C0 : ε +$ (attention must be drawn to the fact that $ is supported in Ω).

4.4. Equivalence between the modified Lippmann–Schwinger equation and Problem MBC
In the present section, we show that the modified Lippmann–Schwinger equation (8) introduced in Sec. 3.4 is

equivalent to Problem MBC [see Eq. (28)] when the SVE Ω is ellipsoidal.
We first show that any solution to the modified Lippmann–Schwinger equation provides a solution to Problem

MBC. Let τ be a solution to Eq. (8). We then define in the whole space Rd the local strain ε as follows

ε = E − Γ∞0 ∗ (τ − χτ). (29)

From the definition of the Green operator for strains Γ∞0 [see Eq. (26)], ε ∈ E + K. Furthermore, τ is supported in
the ellipsoidal domain Ω, and Theorem 2 applies, leading to ε = E; in other words, ε ∈ E + K†.

Defining in Rd the local stress σ = C : ε, it is found from the combination of Eqs. (4), (8) and (29) that
σ = C0 : ε + τ. Using again the definition of the Green operator for strains Γ∞0 [see Eq. (26)],

σ − C0 : E − χτ = C0 : (ε − E) + τ − χτ ∈ S,
and σ ∈ C0 : E + S† (with s = τ). Therefore, ε defined by Eq. (29) is such that ε ∈ E + K† and C : ε ∈ C0 : E + S†; ε
is a solution to Problem MBC [see Eq. (28)].

Conversely, let ε ∈ E + K† be a solution to Problem MBC, and σ = C : ε. Since σ ∈ C0 : E + S†, there exists a
constant, second-rank, symmetric tensor s such that

σ′ = σ − C0 : E − χ (s − C0 : E) ∈ S,
further introducing ε′ = ε − E ∈ K† and τ = (C − C0) : ε, it is readily verified that

σ′ = C0 : ε′ + τ − χ (s − C0 : E) ,

and, from the definition of Γ∞0 [see Eq. (26)]

ε′ = −Γ∞0 ∗ (τ − χ (s − C0 : E)) .

Theorem 2 applies to (τ − χ (s − C0 : E)) which is supported in the ellipsoidal SVE Ω, and ε′ = PΩ :
(
τ − s + C0 : E

)
.

This volume average is null, since ε′ ∈ K†, which implies that τ = s − C0 : E, and ε = E − Γ∞0 ∗
(
τ − χτ); in other

words, τ is a solution to Eq. (8). Furthermore, s = τ + C0 : E = σ.
As a conclusion, the modified Lippmann–Schwinger equation (8) is an equivalent formulation of Problem MBC

when the SVE Ω is ellipsoidal.

In Sec. 5 below, we show that it is possible to state minimum potential (see Sec. 5.1) and complementary (see Sec.
5.2) energy principles associated with Problem MBC [see Eq. (28)]. The relevant expressions of these energies [see
Eqs. (9) and (10)] are analogous to the classical expressions, with corrections ensuring convergence of the integrals
over Rd. Furthermore, the stationary value of both these energies is related to the apparent stiffness Capp

MBC(C0) [see Eqs.
(34) and (38)].

5. Energy principles associated with Problem MBC

5.1. The principle of minimum potential energy
For ε ∈ E + K†, the potential energyW(ε) of the heterogeneous material is defined by Eq. (9). It can readily be

verified that this integral is well defined over E + K†. Indeed, its integrand is equal to

1
2ε
′ : C : ε′ + E : (C − C0) : ε′ + 1

2 E : (C − C0) : E,
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where ε′ = ε − E. In the above expression, the last two terms vanish outside Ω, while the first term is integrable over
Rd by definition of K†. Therefore, an alternative expression ofW(ε) is

W(ε) = 1
2 〈ε′,C : ε′〉 + |Ω|E : (C − C0) : ε′ + 1

2 |Ω|E :
(
C − C0

)
: E. (30)

In the remainder of this section, we will seek the minimum of the potential energy over the space of kinematically
admissible strains. We first note that optimizing ε 7→ W(ε) on E + K† is equivalent to optimizing ε′ 7→ W(ε′ + E) on
K†. Then, from Eq. (30)

W(ε′ + E) − 1
2 |Ω|E :

(
C − C0

)
: E = 1

2A(ε′, ε′) + |Ω|E : (C − C0) : ε′, (31)

whereA is a bilinear form over K† ×K† defined as follows

A(ε′1, ε
′
2) = 〈ε′1,C : ε′2〉, (32)

and optimizingW over E + K† reduces to solving the following variational problem

Find ε′ ∈ K† such thatA(ε′, δε) + |Ω|E : (C − C0) : δε = 0 for all δε ∈ K†, (33)

the corresponding optimizer of W being ε′ + E. It can readily be verified that, under Assumption 1, the linear
form ε′ 7→ |Ω|E : (C − C0) : ε′ is continuous, while the bilinear form A is continuous and coercive. Therefore, the
Lax–Milgram theorem applies, and the potential energyW has a unique minimizer on E + K†.

Theorem 8 below characterizes the solutions of Problem MBC in terms of minimums of the potential energy. As
such, it generalizes to unbounded domains the classical principle of minimum potential energy; its proof can be found
in Appendix C.

Theorem 8 (Principle of minimum potential energy). ε ∈ E + K† solves Problem MBC if, and only if, ε minimizes the
potential energyW on E + K†.

The above results prove that Problem MBC has a unique solution in E + K†. As a consequence, when Ω is
ellipsoidal, the equivalent modified Lippmann–Schwinger equation (8) also has a unique solution in L2(Ω).

Since Problem MBC is well-posed, the apparent stiffness Capp
MBC(C0) is well-defined. It can further be shown that

the minimum value ofW is related to the apparent stiffness. Indeed, let ε′ ∈ K† be the unique minimizer ofW(E + ε′),
and ε = ε′ + E. Then, from Eqs. (11) and (33)

A(ε′, ε′) = −|Ω|E : (C − C0) : ε′ = −|Ω|E :
(
Capp

MBC(C0) − C
)

: E,

and, using (31)

W(ε) = 1
2 |Ω|E : (C − C0) : ε′ + 1

2 |Ω|E :
(
C − C0

)
: E = 1

2 |Ω|E :
(
Capp

MBC(C0) − C0

)
: E.

In other words

min
ε∈E+K†

W(ε) = 1
2 |Ω|E :

(
Capp

MBC(C0) − C0

)
: E. (34)

To close this section, we further show that the apparent stiffness Capp
MBC(C0) is symmetric. To this end, we consider

two macroscopic strains E1 and E2, and ε′i ∈ K† the unique minimizer ofW(Ei + ε′i ) (i = 1, 2). Then, using again Eqs.
(11) and (33)

A(ε′1, ε
′
2) = −|Ω|E1 : (C − C0) :

(
ε′2 − E2

)
= −|Ω|E1 :

(
Capp

MBC(C0) − C
)

: E2,

A(ε′2, ε
′
1) = −|Ω|E2 : (C − C0) :

(
ε′1 − E1

)
= −|Ω|E2 :

(
Capp

MBC(C0) − C
)

: E1,

and

E1 : Capp
MBC(C0) : E2 = E2 : Capp

MBC(C0) : E1,

since the bilinear formA is symmetric. Therefore, the apparent stiffness is symmetric.
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5.2. The principle of minimum complementary energy

For σ ∈ C0 : E + S†, the complementary energyW∗(σ) of the heterogeneous material is defined by Eq. (10). It
can readily be verified that this integral is well defined over C0 : E + S†. Indeed, its integrand is equal to

1
2σ
′ : S : σ′ + E : (C0 : S − I) : σ′ + 1

2 E : (C0 : S : C0 − C0) : E,

where σ′ = σ − C0 : E. In the above expression, the last two terms are null outside Ω, while the first term is integrable
over Rd by definition of S†. Therefore, an alternative expression ofW∗(σ) is

W∗(σ) = 1
2 〈σ′,S : σ′〉 + |Ω|E : (C0 : S − I) : σ′ + 1

2 |Ω|E :
(
C0 : S : C0 − C0

)
: E. (35)

In the remainder of this section, we will seek the minimum of the complementary energy over the space of
statically admissible stresses. We first note that optimizing σ 7→ W∗(σ) on C0 : E + S† is equivalent to optimizing
σ′ 7→ W∗(σ′ + C0 : E) on S†. Then, from Eq. (35)

W∗(σ′ + C0 : E) − 1
2 |Ω|E :

(
C0 : S : C0 − C0

)
: E = 1

2A∗(σ′,σ′) + |Ω|E : (C0 : S − I) : σ′, (36)

whereA∗ is a bilinear form over S† × S† defined as follows

A∗(σ′1,σ′2) = 〈σ′1,S : σ′2〉,

and optimizingW∗ over C0 : E + S† reduces to solving the following variational problem

Find σ′ ∈ S† such thatA∗(σ′, δσ) + |Ω|E : (C0 : S − I) : δσ = 0 for all δσ ∈ S†, (37)

the corresponding optimizer ofW∗ being σ′ + C0 : E. It can readily be verified that, under Assumption 1, the linear
form σ′ 7→ |Ω|E : (C0 : S − I) : σ′ is continuous, while the bilinear formA∗ is continuous and coercive. Therefore,
the Lax–Milgram theorem applies, and the complementary energyW∗ has a unique minimizer on C0 : E + S†.

Theorem 9 below characterizes the solutions of Problem MBC in terms of minimums of the complementary energy.
As such, it generalizes to unbounded domains the classical principle of minimum complementary energy; its proof can
be found in Appendix C.

Theorem 9 (Principle of minimum complementary energy). σ ∈ C0 : E + S† solves Problem MBC if, and only if, σ
minimizes the complementary energyW∗ on C0 : E + S†.

It can further be shown that the minimum value ofW∗ is related to the apparent stiffness Capp
MBC(C0). Indeed, let

σ′ ∈ S† be the unique minimizer ofW∗(C0 : E + σ′). Then, from Eqs. (11) and (37)

A∗(σ′,σ′) = −|Ω|E : (C0 : S − I) : σ′ = −|Ω|E :
(
2C0 − C0 : S : C0 − Capp

MBC(C0)
)

: E,

and, using (36)

W∗(σ) = 1
2 |Ω|E : (C0 : S − I) : σ′ + 1

2 |Ω|E :
(
C0 : S : C0 − C0

)
: E

= 1
2 |Ω|E :

(
C0 − Capp

MBC(C0)
)

: E.

In other words

min
σ∈C0:E+K†

W∗(σ) = − 1
2 |Ω|E :

(
Capp

MBC(C0) − C0

)
: E. (38)

5.3. Applications: properties of the apparent stiffness

In the present section, we use the previous results to prove some properties of the apparent stiffness Capp
MBC(C0)

defined by Eq. (11). These properties have already been stated without proof in Sec. 2.
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Lower-bound on the apparent stiffness. It can readily be shown that Capp
SUBC ≤ Capp

MBC(C0). To this end, we define on Rd

a trial stress σtrial, statically admissible with E as follows

1. In Ω, σtrial = σSUBC, where σSUBC is the stress arising from Problem SUBC [see Eqs. (1) and (2)], and Σ is
chosen so as to ensure that the average strain in Ω is E.

2. Outside Ω, σtrial = C0 : E.

It is readily verified that σtrial ∈ C0 : E + S†. Besides, for σ = σtrial, the integrand in Eq. (10) vanishes in Rd \Ω,
and a straightforward application of Hill’s lemma in the bounded domain Ω leads to

W∗(σtrial) = 1
2 |Ω|E :

(
C0 − Capp

SUBC

)
: E. (39)

From Theorem 9,W∗(σMBC) ≤ W∗(σtrial), where σMBC is the stress arising from Problem MBC. The proposed
lower-bound then results from the comparison of Eqs. (38) and (39).

Upper-bound on the apparent stiffness. It can readily be shown that Capp
MBC(C0) ≤ Capp

KUBC. To this end, we define on Rd

a trial strain εtrial, kinematically admissible with E as follows

1. In Ω, εtrial = εKUBC, where εKUBC is the displacement arising from Problem KUBC [see Eqs. (1) and (3)].
2. Outside Ω, εtrial = E.

Is is readily verified that εtrial ∈ E + K†. Besides, for ε = εtrial, the integrand in Eq. (9) vanishes in Rd \Ω, and a
straightforward application of Hill’s lemma in the bounded domain Ω leads to

W(εtrial) = 1
2 |Ω|E :

(
Capp

KUBC − C0

)
: E. (40)

From Theorem 8, W(εMBC) ≤ W(εtrial), where εMBC is the strain arising from Problem MBC. The proposed
upper-bound then results from the comparison of Eqs. (34) and (40).

Extreme values of C0. In the present paragraph, we address the two extreme cases of a reference medium with
vanishing stiffness and a rigid reference medium. Intuitively, it is clear that boundary condition (7) wins over the
boundary condition at infinity (6d) for a soft reference medium. In other words, Problem SUBC is retrieved in that
case. Conversely, for a rigid reference medium, the boundary condition at infinity (6d) wins over boundary condition
(7), and Problem KUBC is retrieved. This is expressed more formally in the following two theorems.

Theorem 10. For any macroscopic strain E, there exists γSUBC > 0, which does not depend on the stiffness C0 of the
reference medium, such that

0 ≤ E :
(
Capp

MBC(C0) − Capp
SUBC

)
: E ≤ γSUBCβ0,

where β0 is the largest eigenvalue of C0.

Theorem 11. For any macroscopic strain E, there exists γKUBC > 0, which does not depend on the stiffness C0 of the
reference medium, such that

0 ≤ E :
(
Capp

KUBC − Capp
MBC(C0)

)
: E ≤ γKUBC

α0
,

where α0 is the smallest eigenvalue of C0.

It should be noted that in both cases, the positivity of the quantities under consideration results from the lower-
and upper-bounds proposed above. The proof of Theorems 10 and 11 can be found in Appendix D. Eq. (12) is then a
direct consequence of these theorems.

In Sec. 6 below, we show that the principle of Hashin and Shtrikman (1962a) can be extended to the modified
Lippmann–Schwinger equation (8) introduced in Sec. 3.4 for ellipsoidal SVEs.
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6. Principle of Hashin and Shtrikman associated with the modified Lippmann–Schwinger equation

In the present section, it is assumed that the SVE Ω is ellipsoidal; besides, τ denotes the solution to the modified
Lippmann–Schwinger equation (8). For $ ∈ L2(Ω), the functionalHMBC of Hashin and Shtrikman is defined by Eq.
(13), and it is readily verified [using Eq. (8)] that the gradient ofHMBC is null at τ. In other words, τ is a critical point
of the functionalHMBC; furthermore, the value ofHMBC at τ is known. Indeed, from Eq. (8),HMBC(τ) = 1

2τ : E and,
from σ = C0 : ε + τ and Eq. (11)

τ =
(
Capp

MBC(C0) − C0

)
: E,

and we finally find

HMBC(τ) = 1
2 E :

(
Capp

MBC(C0) − C0

)
: E.

In order to characterize the nature (minimum, maximum or saddle point) of this stationary point, further assumptions
must be made on the local stiffness. More precisely

Theorem 12 (Principle of Hashin and Shtrikman). If the reference medium is stiffer (resp. softer) than the heterogeneous
material, thenHMBC is minimum (resp. maximum) at τ. In other words

1. if C ≤ C0 in Ω, then τ is the unique minimizer ofHMBC, and for all $ ∈ L2(Ω)

1
2 E : Capp

MBC(C0) : E ≤ 1
2 E : C0 : E +HMBC($), (41)

2. if C ≥ C0 in Ω, then τ is the unique maximizer ofHMBC, and for all $ ∈ L2(Ω)

1
2 E : Capp

MBC(C0) : E ≥ 1
2 E : C0 : E +HMBC($), (42)

Proof of Theorem 12. We introduce the bilinear form a, defined as follows for $1,$2 ∈ L2(Ω)

a($1,$2) = $1 : (C − C0)−1 : $2 +$1 :
(
Γ∞0 ∗

(
$2 − χ$2

))
, (43)

so thatHMBC($) = E : $ − 1
2 a($,$). In Appendix E, two alternative expressions of the bilinear form a are proposed

[see Lemma 2, Eq. (E.2) and Lemma 3, Eq. (E.4)], which readily lead to the following inequalities

$ : (C − C0)−1 : $ ≤ a($,$) ≤ $ : S0 : (S0 − S)−1 : S0 : $, (44)

for all $ ∈ L2(Ω). Then, in case 1 (resp. 2), −a($,$) is a positive (resp. negative) quadratic form. Therefore, its
unique critical point is a minimum (resp. maximum).

At this point, it should be emphasized again that, despite the seemingly similar expressions, our approach differs
significantly from the approach of Willis (1977). Indeed, in Ref. (Willis, 1977), HMBC [see Eq. (13)] is used as an
approximation of the functional of Hashin and ShtrikmanHKUBC associated with Problem KUBC [see Eq. (18)]. This
approximation is deemed valid in the limit |Ω| → +∞. In our approach,HMBC is the Hashin and Shtrikman functional
associated with Problem MBC, and Theorem 12 provides rigorous bounds on Capp

MBC(C0) (not Capp
KUBC!), regardless of

the size of the SVE Ω.
Since Capp

MBC(C0)→ Ceff as |Ω| → +∞ (see Sec. 2), the bounds that are derived from the application of Theorem 12
can be regarded as bounds on the effective stiffness in the limit |Ω| → +∞.

The results presented in this section have deep implications for the numerical approximation of Eq. (8). Indeed,
provided that the assumptions of Theorem 12 are verified, any approximation $ of the true polarization τ provides
a bound on the apparent elastic energy [see Eqs. (41) and (42)]. Since HMBC involves the Green operator of the
unbounded domain Γ∞0 only [see Eq. (13)], numerical evaluation ofHMBC($) is rather simple, and optimizations can
be proposed which account for the fact that Γ∞0 is translation-invariant.
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7. Conclusion

A new auxiliary problem for the determination of the effective elastic properties of random heterogeneous materials
has been introduced. It is obtained as follows. The SVE is embedded in an infinite, homogeneous reference medium,
submitted to a uniform strain at infinity. Meanwhile, tractions are applied to the boundary of the SVE [see Eq. (7)],
ensuring that the imposed strain at infinity coincides with the average strain over the SVE.

We have shown that under mild assumptions, this new auxiliary problem is well-posed. This required the
introduction of a suitable mathematical framework for the analysis of elasticity problems in unbounded domains. For
ellipsoidal SVEs, the new auxiliary problem is equivalent to a modified Lippmann–Schwinger equation which involves
the Green operator for strains of the infinite (rather than bounded) body [see Eq. (8)]. In turn, this integral equation can
be associated with an energy principle of the Hashin and Shtrikman (1962a) type, allowing for the computation of
rigorous bounds on the apparent stiffness.

The apparent stiffness defined through this new auxiliary problem is symmetric, positive definite. It is asymptotically
consistent, in the sense that the effective stiffness is retrieved in the limit of large SVEs. This result provides a rigorous
justification to the approximation of the Green operator introduced by Willis (1977).

For SVEs of finite size, the value of the apparent stiffness depends on the stiffness of the reference medium.
For infinitely soft reference media, it coincides with the apparent stiffness defined through static uniform boundary
conditions. Conversely, for infinitely stiff reference media, it coincides with the apparent stiffness defined through static
uniform boundary conditions. In this sense, it “interpolates” between these two extreme values.

The results presented in this paper raise a number of questions, which will be investigated in future work. First,
the convergence rate (with respect to the size of the SVE) of the apparent stiffness to the effective stiffness should be
estimated. Second, the apparent stiffness defined through the new auxiliary problem depends on the stiffness of the
reference medium. How to select the “best” (in a sense to be made more precise) reference medium remains an open
question. Third, this apparent stiffness depends on the shape of the SVE, although this dependence vanishes in the limit
of large SVEs. In the case of matrix–inclusions composites, this dependence should be assessed in conjunction with
the shape of the inclusions.

Finally, it should be noticed that the modified Lippmann–Schwinger equation introduced in the present paper can
readily be discretized through Galerkin techniques. The resulting numerical scheme is close to the standard Equivalent
Inclusion Method proposed by Moschovidis and Mura (1975), with the additional possibility of computing rigorous
bounds on the apparent stiffness (provided the reference medium satisfies the assumptions of the principle of Hashin
and Shtrikman, see Theorem 12). Such a numerical scheme, based on piecewise polynomial polarizations, will be
presented in a separate publication.
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Appendix A. On the infinite body Green’s operator for strains

For a sufficiently regular prestress $, the Green’s operator for strains Γ∞0 associated with the isotropic reference
medium C0 is classically decomposed into a singular part P0 and a regular part Q0(

Γ∞0 ∗$
)

(x) = P0 : $(x) + lim
δ→0

∫
y∈Rd

‖y−x‖≥δ
Q0(x − y) : $(y)dy.

Literal expressions of P0 and Q0(r) can be found in reference textbooks for isotropic reference media (see e.g.
Torquato, 2002; Buryachenko, 2007; Kanaun and Levin, 2008). For the sake of completeness, they are recalled below,
for d = 2 (plane strain elasticity), and d = 3 (three-dimensional elasticity). P0 is the Hill tensor of the d-dimensional
sphere

d = 2 : P0 =
1 − 2ν0

4µ0 (1 − ν0)
J +

3 − 4ν0

8µ0 (1 − ν0)
K,

d = 3 : P0 =
1 − 2ν0

6µ0 (1 − ν0)
J +

4 − 5ν0

15µ0 (1 − ν0)
K,
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where µ0 (resp. ν0) is the shear modulus (resp. Poisson ratio) of the reference medium; J = 1
d i ⊗ i (resp. K = I − J) is

the classical spherical (resp. deviatoric) fourth-rank projection tensor (i: second-rank identity tensor; I: fourth-rank
identity tensor). For d = 2, the regular part of Γ∞0 reads

Q0(r) =
1

8πµ0 (1 − ν0) r2

[
−δi jδkl + (1 − 2ν0)

(
δikδ jl + δilδ jk

)
+ 2

(
δi jnknl + δklnin j

)
+2ν0

(
δikn jnl + δiln jnk + δ jkninl + δ jlnink

)
− 8nin jnknl

]
ei ⊗ e j ⊗ ek ⊗ el,

and for d = 3

Q0(r) =
1

16πµ0 (1 − ν0) r3

[
−δi jδkl + (1 − 2ν0)

(
δikδ jl + δilδ jk

)
+ 3

(
δi jnknl + δklnin j

)
+3ν0

(
δikn jnl + δiln jnk + δ jkninl + δ jlnink

)
− 15nin jnknl

]
ei ⊗ e j ⊗ ek ⊗ el,

where r = ‖r‖ and n = r/r.

Appendix B. On the generalized theorem of Eshelby

Lemma 1. Let $1,$2 ∈ L2(Rd); then 〈$1,Γ
∞
0 ∗$2〉 = 〈$2,Γ

∞
0 ∗$1〉.

Proof of Lemma 1. For i = 1, 2, let εi = −Γ∞0 ∗$i ∈ K and σi = C0 : εi + $i ∈ S. Then, using Theorem 4 with σ1
and ε2

〈$1,Γ
∞
0 ∗$2〉 = 〈C0 : ε1 − σ1, ε2〉 = 〈C0 : ε1, ε2〉,

which completes the proof, since the expression in the right-hand side is symmetric in ε1 and ε2.

Proof of Theorem 2. Let $′ be a constant, symmetric tensor. Then, using Lemma 1

$′ : Γ∞0 ∗$ = (χ$′) : (Γ∞0 ∗$) = |Ω|−1〈χ$′,Γ∞0 ∗$〉 = |Ω|−1〈$,Γ∞0 ∗
(
χ$′

)〉.
Observing that $ is supported in Ω, it is found that the last scalar product reduces to a volume average over Ω.

Then, from Theorem 1 (Ω being ellipsoidal)

$′ : Γ∞0 ∗$ = $ :
(
Γ∞0 ∗ (χ$′)

)
= $ : PΩ : $′ = $′ : PΩ : $,

which completes the proof, since the above identity holds for all $′.

Appendix C. On the minimum energy principles

Proof of Theorem 8. We first consider a solution ε ∈ E + K† of Problem MBC, and show that the potential energyW
is minimum at ε. To do so, we pick δε ∈ K† and show thatW(ε) ≤ W(ε + δε). From Eq. (9)

W(ε + δε) =W(ε) + 1
2 〈δε,C : δε〉 + 〈σ − C0 : E, δε〉,

and the last term vanishes from Theorem 5 since σ − C0 : E ∈ S† and δε ∈ K†. Therefore,

W(ε + δε) =W(ε) + 1
2 〈δε,C : δε〉,

which proves thatW is minimum at ε, since the second term is positive.
Conversely, we now consider ε ∈ E + K† which minimizesW over E + K†, and show that ε solves Problem MBC.

We define σ = C : ε; since ε is a solution to (33), for all δε ∈ K†,
0 = 〈σ − C : E, δε〉 + |Ω|E : (C − C0) : δε = 〈σ − C : E, δε〉 + 〈(C − C0) : E, δε〉

= 〈σ − C0 : E, δε〉,
in other words, σ − C0 : E ∈ (K†)⊥. Theorem 5 then shows that σ is statically admissible with E, and that ε solves
Problem MBC.
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Proof of Theorem 9. We first consider a solution ε ∈ E + K† of Problem MBC, and show that the complementary
energyW∗ is minimum at σ = C : ε ∈ C0 : E + K†. To do so, we pick δσ ∈ S† and show thatW∗(σ) ≤ W∗(σ + δσ).
From Eq. (10)

W∗(σ + δσ) =W∗(σ) + 1
2 〈δσ,S : δσ〉 + 〈ε − E, δσ〉,

and the last term vanishes from Theorem 5 since ε − E ∈ K† and δσ ∈ S†. Therefore,

W∗(σ + δσ) =W∗(σ) + 1
2 〈δσ,S : δσ〉,

which proves thatW∗ is minimum at σ, since the second term is positive.
Conversely, we now consider σ ∈ C0 : E + S† which minimizesW∗ over C0 : E + S†, and show that ε = S : σ

solves Problem MBC; since σ is a solution to (37), for all δσ ∈ S†,
0 = 〈ε − S : C0 : E, δσ〉 + |Ω|E : (C0 : S − I) : δε

= 〈ε − S : C0 : E, δσ〉 + 〈(S : C0 − I) : E, δε〉 = 〈ε − E, δσ〉,
in other words, ε − E ∈ (S†)⊥. Theorem 5 then shows that ε is kinematically admissible with E, and that ε solves
Problem MBC.

Appendix D. On the apparent stiffness when the stiffness of the reference medium takes extreme values

In the present section, it will prove convenient to (strictly) include the bounded domain Ω in a larger domain Ω̃.
Furthermore, the positive definite stiffness Caux of an auxiliary material is introduced; Caux is fixed (independent of C0).

Proof of Theorem 10. In order to invoke the principle of minimum potential energy (see Theorem 8), we define on Rd

a kinematically admissible trial strain εtrial as follows:

1. In Ω, εtrial = εSUBC, where εSUBC is the strain arising from Problem SUBC [see Eqs. (1) and (2)], and Σ is chosen
so as to ensure that εSUBC = E.

2. In Ω̃ \Ω, εtrial = E + εaux, where εaux is the solution to the following problem of elastic equilibrium

x ∈ Ω̃ \Ω : ∇x · (Caux : εaux) = 0, (D.1a)

x ∈ Ω̃ \Ω : εaux(x) = ∇s
xuaux, (D.1b)

x ∈ ∂Ω : uaux(x) = uSUBC(x) − E · x, (D.1c)

x ∈ ∂Ω̃ : uaux(x) = 0. (D.1d)

It should be emphasized that the above auxiliary problem [see Eqs. (D.1)] is merely introduced as a convenient
way to construct a kinematically admissible strain which interpolates between displacements imposed at ∂Ω and
∂Ω̃.

3. Outside Ω̃, εtrial = E.

It can readily be verified that εtrial ∈ E+K†. Using Eq. (9) to computeW(εtrial), and observing that (i) the integrand
vanishes outside Ω̃, and (ii) C = C0 in Ω̃ \Ω, we find

W(εtrial) =

∫
Ω

(
1
2εSUBC : C : εSUBC − E : C0 : εSUBC + 1

2 E : C0 : E
)

+

∫
Ω̃\Ω

1
2εaux : C0 : εaux.

From Hill’s lemma in the bounded domain Ω∫
Ω

εSUBC : C : εSUBC = |Ω|σSUBC : εSUBC = |Ω|σSUBC : εSUBC = |Ω|E : Capp
SUBC : E,

and ∫
Ω

E : C0 : εSUBC = |Ω|E : C0 : εSUBC = |Ω|E : C0 : E,
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which leads to the following expression of the potential energyW(εtrial)

W(εtrial) = 1
2 |Ω|E :

(
Capp

SUBC − C0

)
: E +

∫
Ω̃\Ω

1
2εaux : C0 : εaux.

Since εtrial ∈ E + K†, the principle of minimum potential energy (see Theorem 8) applies, and we have [using Eq.
(34)]

1
2 |Ω|E :

(
Capp

MBC(C0) − C0

)
: E ≤ W(εtrial),

and finally

0 ≤ E :
(
Capp

MBC(C0) − Capp
SUBC

)
: E ≤ 1

|Ω|
∫

Ω̃\Ω
εaux : C0 : εaux ≤ γSUBCβ0,

where

γSUBC =
1
|Ω|

∫
Ω̃\Ω

εaux : εaux,

It is recalled that εaux solves a well-posed problem of linear elasticity in a bounded domain [see Eqs. (D.1)];
furthermore, this problem does not depend on C0. As a consequence, γSUBC is finite, and does not depend on C0.

Proof of Theorem 11. In order to invoke the principle of minimum complementary energy (see Theorem 9), we define
on Rd the statically admissible trial stress σtrial as follows:

1. In Ω, σtrial = σKUBC, where σKUBC is the stress arising from Problem KUBC [see Eqs. (1) and (3)]; by
construction, σKUBC = Capp

KUBC : E.
2. In Ω̃ \Ω, σtrial = C0 : E + σaux, where σaux is the solution to the following problem of elastic equilibrium

x ∈ Ω̃ \Ω : ∇x · σaux = 0, (D.2a)

x ∈ Ω̃ \Ω : σaux(x) = Caux : ∇s
xuaux, (D.2b)

x ∈ ∂Ω : σaux(x) · n(x) =
(
σKUBC(x) − σKUBC

) · n(x), (D.2c)

x ∈ ∂Ω̃ : σaux(x) · ñ(x) = 0, (D.2d)

where n (resp. ñ) denotes the outward normal to ∂Ω (resp. ∂Ω̃). In order to be well-posed, the above problem is
complemented with appropriate additional displacement boundary conditions (not specified here).

3. Outside Ω̃, σtrial = C0 : E.

It can readily be verified that σtrial ∈ C0 : E + S†. Using Eq. (10) to computeW∗(σtrial), and observing that (i) the
integrand vanishes outside Ω̃ and (ii) S = S0 in Ω̃ \Ω, we find

W∗(σtrial) =

∫
Ω

(
1
2σKUBC : S : σKUBC − E : σKUBC + 1

2 E : C0 : E
)

+

∫
Ω̃\Ω

1
2σaux : S0 : σaux.

From Hill’s lemma in the bounded domain Ω∫
Ω

σKUBC : S : σKUBC = |Ω|σKUBC : εKUBC = |Ω|σKUBC : εKUBC = |Ω|E : Capp
KUBC : E,

and ∫
Ω

E : σKUBC = |Ω|E : σKUBC = |Ω|E : Capp
KUBC : E

which leads to the following expression of the complementary energyW∗(σtrial)

W∗(σtrial) = 1
2 |Ω|E :

(
C0 − Capp

KUBC

)
: E +

∫
Ω̃\Ω

1
2σaux : S0 : σaux.
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Since σtrial ∈ C0 : E + S†, the principle of minimum complementary energy (see Theorem 9) applies, and we have
[using Eq. (38)]

1
2 |Ω|E :

(
C0 − Capp

MBC(C0)
)

: E ≤ W∗(σtrial)

and finally

0 ≤ E :
(
Capp

KUBC − Capp
MBC(C0)

)
: E ≤ 1

|Ω|
∫

Ω̃\Ω
σaux : S0 : σaux ≤ γKUBC

α0
,

where

γKUBC =
1
|Ω|

∫
Ω̃\Ω

σaux : σaux.

It is recalled that σaux solves a well-posed problem of linear elasticity in a bounded domain [see Eqs. (D.2)];
furthermore, this problem does not depend on C0. As a consequence, γKUBC is finite, and does not depend on C0.

Appendix E. On the principle of Hashin and Shtrikman

In the present section, two alternative expressions of the bilinear form a introduced in Eq. (43) are proposed [see
Eqs (E.2) and (E.4)]. Eq. (44), upon which the proof of Theorem 12 is based, is a direct consequence of these two
alternative expressions.

Lemma 2. Let $1,$2 ∈ L2(Ω), εi = −Γ∞0 ∗
(
$i − χ$i

)
and σi = C0 : εi +$i (i = 1, 2). Then

$1 :
(
Γ∞0 ∗

(
$2 − χ$2

))
= |Ω|−1〈ε1,C0 : ε2〉, (E.1)

and

a($1,$2) = $1 : (C − C0)−1 : $2 + |Ω|−1〈ε1,C0 : ε2〉. (E.2)

Proof of Lemma 2. Recalling that $1 is supported in Ω

|Ω|$1 :
(
Γ∞0 ∗

(
$2 − χ$2

))
= 〈$1,Γ

∞
0 ∗ ($2 − χ$2)〉 = −〈$1, ε2〉

= 〈C0 : ε1 − σ1, ε2〉 = 〈ε1,C0 : ε2〉 − 〈σ1, ε2〉,

and the last term vanishes from Theorem 5 (since σi ∈ S† and εi ∈ K†, i = 1, 2, see Sec. 4.2), which proves Eq.
(E.1).

Lemma 3. Let $1,$2 ∈ L2(Ω), εi = −Γ∞0 ∗
(
$i − χ$i

)
and σi = C0 : εi +$i (i = 1, 2). Then

$1 :
(
Γ∞0 ∗

(
$2 − χ$2

))
= −|Ω|−1〈σ1,S0 : σ2〉 +$1 : S0 : $2, (E.3)

and

a($1,$2) = $1 : S0 : (S0 − S)−1 : S0 : $2 − |Ω|−1〈σ1,S0 : σ2〉. (E.4)

Proof of Lemma 3. First, recalling that $1 is supported in Ω

|Ω|$1 :
(
Γ∞0 ∗

(
$2 − χ$2

))
= 〈$1,Γ

∞
0 ∗

(
$2 − χ$2

)〉 = 〈$1,S0 : ($2 − σ2)〉
= −〈$1,S0 : σ2〉 + |Ω|$1 : S0 : $2,
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then

〈$1,S0 : σ2〉 = 〈σ1 − C0 : ε1,S0 : σ2〉 = 〈σ1,S0 : σ2〉 − 〈σ2, ε1〉,

where the last term vanishes from Theorem 5 (since σi ∈ S† and εi ∈ K†, i = 1, 2, see Sec. 4.2); thus, Eq. (E.3) is
proved. Proof of Eq. (E.4) follows from the identity (Willis, 1977)

(C − C0)−1 : C0 = S0 : (S0 − S)−1 − I,

resulting in

$1 : (C − C0)−1 : $2 = $1 : S0 : (S0 − S)−1 : S0 : $2 −$1 : S0 : $2.
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