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Abstract. High-resolution rainfall fields contain numerous
zeros (i.e. pixels or time steps with no rain) which are either
real or artificial – that is to say associated with the limit of
detection of the rainfall measurement device. In this paper
we revisit the enduring discussion on the source of this in-
termittency, e.g. whether it requires specific modelling. We
first review the framework of universal multifractals (UM),
which are commonly used to analyse and simulate geophys-
ical fields exhibiting extreme variability over a wide range
of scales with the help of a reduced number of parameters.
However, this framework does not enable properly taking
into account these numerous zeros. For example, it has been
shown that performing a standard UM analysis directly on
the field can lead to low observed quality of scaling and se-
vere bias in the estimates of UM parameters. In this paper we
propose a new simple model to deal with this issue. It is a UM
discrete cascade process, where at each step if the simulated
intensity is below a given level (defined in a scale invariant
manner), it only has a predetermined probability to survive
and is otherwise set to zero. A threshold can then be im-
plemented at the maximum resolution to mimic the limit of
detection of the rainfall measurement device. While also im-
perfect, this simple model enables explanation of most of the
observed behaviour, e.g. the presence of scaling breaks, or
the difference between statistics computed for single events
or longer periods.

1 Introduction

Obtaining a consistent, robust and reliable mathemati-
cal/physical representation of rainfall at every scale is a kind
of Holy Grail for hydrologists. Indeed, they would need it
to simulate realistic long time series that they commonly use
to design structures such as levee, dams, or sewer networks,
or to improve various rainfall-processing algorithms such as
those merging between radar and rain gauge measurement
devices, or nowcasting, that are more and more commonly
used to improve real-time management of river or sewer sys-
tems. Such a representation of rainfall should be able to grasp
all the features of the rainfall variability, i.e. the intrinsic vari-
ability exhibited over a wide range of spatio-temporal scales
and also the succession of dry and rainy periods. This is an
important point since there are many zeros (a pixel or time
step where no rain has been recorded) in a high-resolution
rainfall data set. For instance, in France typical long (many
years) high-resolution (5 min) rain gauge time series contain
roughly 96–98 % zeros (Hoang et al., 2012) The nature of
these zeros is especially tricky since some are real ones (i.e. it
actually did not rain) whereas others are artificial (i.e. it ac-
tually did rain, but nothing was recorded because the inten-
sity was below the limit of detection of the rainfall measure-
ment device). To stress the importance of this threshold, let
us simply mention that a typical rain gauge limit of detection
is 0.2 mm h−1 (one tipping of a bucket during an hour), and
is roughly 2–3 times greater than the average rainfall in Paris
(roughly 650 mm per year).

Mainly two types of stochastic rainfall models have been
considered. The first one corresponds to point processes
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344 A. Gires et al.: Zero rainfall in a UM framework

where a rainfall time series is represented by a succession of
events whose timing, duration and intensity are modelled by
stochastic processes. The simplest model used for represent-
ing a succession of events is a Poisson process (see Waymire
and Gupta, 1981, for a review). Further refinements relying
on two-level Poisson processes were later introduced to bet-
ter deal with rainfall extremes (Onof et al., 2000 for a re-
view; Rodriguez-Iturbe et al., 1987). The main drawbacks of
these approaches is that they are mainly valid at the scale for
which they are defined and calibrated (although Olsson and
Burlando, 2002, showed that such processes exhibit some
scale-invariance properties on a limited range of scales) and
they are intrinsically 1-D models with difficulties for gener-
alisation in space or space/time (see however Wheater et al.,
2005), and they require numerous parameters which have to
be fitted.

The second type of stochastic models is based on scaling.
At first, it was done in a phenomenological, fractal frame-
work with the help of a “fractal sum of pulses” (Lovejoy and
Mandelbrot, 1985; Lovejoy and Schertzer, 1985), which was
a broad generalisation of the Bartlett–Lewis and Neyman–
Scott point processes. However, scaling was not yet related to
the physical process of interacting (multiplicative) cascades
of the dynamics and the water content (Schertzer and Love-
joy, 1987). This yields a multifractal rainfall field, i.e. the rain
accumulation is no longer a pointwise quantity but a (multi-)
singular measure, and this explains the strong scale depen-
dency of the rain rate, which is not pointwise defined either
(Schertzer et al., 2010).

Since then stochastic multifractals have been extensively
used to analyse, model and simulate rainfall fields (under-
stood here as a time series in 1-D, a matrix of pixels in 2-D, or
a succession of 2-D matrix in 3-D) and more generally geo-
physical fields extremely variable over a wide range of scales
(de Lima and de Lima, 2009; de Lima and Grasman, 1999;
Harris et al., 1997; Lovejoy and Schertzer, 2007; Marsan
et al., 1996; Nykanen, 2008; Olsson and Niemczynowicz,
1996; Royer et al., 2008; Schertzer and Lovejoy, 1987, 1997).
In the discrete case, which is used in this paper, a step of a
cascade consists in dividing a “parent” structure into “daugh-
ter” structures and affecting to them the value of the “par-
ent” structure multiplied by a random factor. Cascades are
scale invariant in that the way structures are divided, and the
probability distribution of the random multiplicative incre-
ment are the same at each step of the process. This process is
physically based in the sense that it is in agreement with the
scale invariance properties of the Navier–Stokes equations
governing atmospheric behaviour, which is assumed to be
transmitted to the unknown equations for rainfall processes
(Hubert, 2001). In the specific framework of universal multi-
fractals (Schertzer and Lovejoy, 1987, 1997), the underlying
cascade process is fully characterised with the help of only
three scale invariant parameters:

– H , the degree of non-conservation, which measures the
scale dependency of the average field (H = 0 for a con-
servative field);

– C1, the mean intermittency co-dimension, which mea-
sures the clustering of the (average) intensity at smaller
and smaller scales.C1 = 0 for an homogeneous field;

– the multifractality indexα (0 ≤ α ≤ 2), which measures
the clustering variability with regards to the intensity
level.

The aim of the paper is to improve the modelling of the nu-
merous zeros of the rainfall fields in this multifractal frame-
work. This topic has been discussed for more than 20 yr. For
example, in the late 1980s there was a theoretical debate over
whether zero values should be considered separately from
the other values (Keddem and Chiu, 1987) or not (Lovejoy
and Schertzer, 1989). Since then numerous authors have sug-
gested methods which are often contradictory between them-
selves. Let us first mention the issue of how to model the ze-
ros. Some authors suggest that the rainfall field results from
the multiplication of a multifractal field by an independent
binary field corresponding to the rainfall support (i.e. the por-
tion of time where some rain is recorded). Different models
have been published for the rainfall support: a so-called ran-
dom cascadeβ model in a discrete (Over and Gupta, 1996)
or continuous (Schmitt et al., 1998) form, or a two-state re-
newal process to represent wet and dry periods (Schmitt et
al., 1998). Olsson (1998) introduces the zeros within the cas-
cade process by explicitly affecting a strictly positive proba-
bility for zero values at each step of the process. Contrary to
the other previously mentioned models, this probability de-
pends on the properties of the simulated rainfall field. More
precisely, it is adjusted according to the intensity of the time
step (it is a 1-D model for time series) and its position in
the sequence of dry and wet periods. Other authors (de Mon-
tera et al., 2009; Lovejoy et al., 2008) disagree and state that
a simple threshold implemented at the maximum resolution
enables reproduction of the observed properties. Some au-
thors report that the threshold introduces a break in the scal-
ing behaviour (de Montera et al., 2009; Larnder, 1995), i.e.
that a unique scaling law does not hold on the whole range
of available scales, and that two different scaling laws are
valid over two distinct range of scales. There is a consen-
sus on the fact that the numerous (either real or artificial)
zeros affect the estimates of UM parameters by introducing
a bias that leads to an underestimation ofα and an overes-
timation ofC1. Nevertheless, there is no agreement on how
to retrieve the correct underlying UM parameters, and var-
ious techniques are found in the literature: taking into ac-
count only the rainfall support which is fractal (Schmitt et
al., 1998), doing event-based analysis to limit the number
of zeros (de Montera et al., 2009; Verrier et al., 2010), a
kind of bootstrap method relying on a first-guess estimate
and using multifractal simulations (Lovejoy et al., 2008), or
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implementing an iterative process whose main step consists
in adding a random simulated multifractal field to simulated
the unobserved small values (Gires et al., 2012b). This iter-
ative process enables improvement of the estimations of the
underlying UM parameters, but a serious limitation is that the
convergence is not ensured and therefore must be stopped af-
ter a predetermined number of steps.

In Sect. 2 the theoretical framework of UM is recapped.
Discrepancies between this framework and observed rainfall
data are presented in Sect. 3. A new simple model to gen-
erate a rainfall field with its associated zeroes is presented
in Sect. 4. Results for a given parameter set are discussed in
Sect. 5. Finally the sensitivity of the new simple model to its
parameters is analysed in Sect. 6.

2 Recapitulation of universal multifractals

Before going on, we will briefly present the theoreti-
cal framework of UM. For more details see Lovejoy and
Schertzer (2007) and Schertzer and Lovejoy (2011). The ex-
planations are given in 1-D, but they are also valid in 2-D or
3-D. If the rainfall support is fractal (Lovejoy and Mandel-
brot, 1895; Olsson et al., 1993), the numberNλ of rainy time
steps at resolutionλ (= L/l, wherel is the observation scale
andL the outer scale of the phenomenon) scales as

Nλ ≈ λDF, (1)

whereDF defines the fractal dimension which is a scale in-
variant notion that characterises how much space a geomet-
rical set occupies (DF is smaller than the space in which
the studied geometrical set is embedded). But in a multifrac-
tal framework,DF becomes strongly dependent (Lovejoy et
al., 1987; Hubert et al., 1995) on the threshold defining the
occurrence or not of rainfall (DF decreases with increasing
thresholds), pointing out that more than one fractal dimen-
sion is needed to fully characterise the rainfall field.

If ελ denotes a multifractal field at resolutionλ , then the
probability of exceeding a scale dependent threshold (λγ ) de-
fined with the help of a singularityγ scales with the resolu-
tion as

Pr(ελ ≥ λγ ) ≈ λ−c(γ ), (2)

wherec(γ ) is the codimension function (Schertzer and Love-
joy, 1987), and it can be shown that this is equivalent to the
scaling of the statistical moment of orderq:

〈ελ〉 ≈ λK(q), (3)

whereK(q) is the moment scaling function. The functions
K(q) andc(γ ) fully characterise the variability across scales
of the fieldελ, and are linked by a Legendre transform (Parisi
and Frish, 1985).

In the specific framework of universal multifractals, to-
wards which most multiplicative processes converge (this a

broad generalisation of the central limit theorem, Schertzer
and Lovejoy, 1987, 1997),K(q) is given by

K(q) =
C1

α − 1

(

qα − q
)

(4)

for a conservative field :〈ελ〉 = 1, i.e.K(1)=0.,
whereC1 and α have been defined in the introduction.

Equation (4) yields a more mathematical definition for UM
parameters:K ′(1) = C1 andK ′′(1) = αC1.

UM parametersC1 andα are estimated with the help of
the double trace moment (DTM) technique (Lavallée et al.,
1993). This technique is based on the fact that ifελ is a mul-
tifractal field, then the fieldε(η)

λ , obtained by upscaling the
ηth power of the field at maximum resolution, scales like

〈(

ε
(η)
λ

)q〉

≈ λK(q,η) (5)

with

K(q,η) = K(ηq) − qK(η). (6)

For universal multifractals, this yields

K(q,η) = ηαK(q). (7)

Therefore the multifractality indexα corresponds to the slope
of the so-called DTM curve, which is the log–log plot of
K(q,η) vsη for fixedq.

Finally, let us mention the standard framework to deal with
a non-conservative field, denotedϕλ (i.e. we have〈ϕλ〉 6= 1).
In that case it is usually assumed that it can be written as
(with an equality in probability distribution)

ϕλ = ελλ
−H , (8)

whereελ is a conservative field (〈ελ〉 = 1) of moment scaling
functionKc(q) (the sub-index “c” refers to the conservativity
of ελ), andH the non-conservation parameter.Kc(q) only
depends on UM parametersC1 andα. H characterises the
scale dependence of the average field, i.e.

〈ϕλ〉 ≈ λ−H . (9)

H is equal to zero for a conservative field. The moment scal-
ing functionK(q) of ϕλ is given by

K(q) = Kc(q) − Hq. (10)

The DTM technique should theoretically be implemented on
ελ; however, ifH < 0.5, it can be implemented directly on
ϕλ and will not generate biased estimates. In case of greater
H , ελ should be used. Retrievingελ from ϕλ theoretically
requires a fractional integration of orderH (equivalent to a
multiplication bykH in the Fourier space). A common ap-
proximation, which provides reliable results (Lavallée et al.,
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1993), consists in takingε3 as the absolute value of the fluc-
tuations ofϕλ at the maximum resolution and renormalising
it, i.e.:

ε3 =
|ϕ3(i + 1) − ϕ3(i)|

〈|ϕ3(i + 1) − ϕ3(i)|〉
in1− D. (11)

Thenελ is obtained by upscalingε3.
H can be estimated with the help of the following for-

mula (Tessier et al., 1993), in whichβ is the spectral slope
that characterises the power spectrum of a scaling field,
which follows a power law over a wide range of wave num-
bers:

E(k) ∝ k−β . (12)

3 Discrepancies between observed behaviour and
standard UM theoretical framework

The first discrepancy with this theoretical framework, which
assumes scale invariance, is the occurrence of scaling breaks,
enabling the distinguishing of two or more ranges of scales
over which the theoretical framework is validated with dif-
ferent parameters. For instance, most authors report a break
in Eq. (1) (de Lima and Grasman, 1999; Hubert et al., 1995;
Olsson et al., 1993). It appears that for the large scales, the
fractal dimension is equal to the dimension of the embed-
ding space (1 in 1-D with time series, 2 in 2-D with maps),
indicating that there is some rain everywhere. A break is also
often observed in Eq. (3). For instance, Gires et al. (2011) re-
ported one at 16 km on radar data of a heavy rainfall event
(a Cevenol episode) that occurred in the south of France
5–9 September 2005. Such a break was also observed on
3 rainfall events in the Paris area (Tchiguirinskaia et al.,
2012). In temporal analysis, Fraedrich and Larnder (1993)
reported a break at 2–3 h, and one at 3 days on Postdam (Ger-
many) rainfall time series. De lima and Grassman (de Lima
and Grasman, 1999) also reported one at roughly 1 h on a
15 min resolution long rainfall time series of Val Poroso, Por-
tugal. Concerning the UM parameter estimates, it appears
thatα is greater andC1 smaller for small scales than for large
scales.

Secondly, let us mention the issue ofH > 0, indicating
a non-conservative, smoother and more correlated field. In-
deed, numerous authors reportH > 0 for various rainfall
events. For instance, de Montera et al. (2009) estimatedH

roughly equal to 0.5 for high-resolution time series of dif-
ferent French rainfall events. Verrier et al. (2010) foundH

roughly equal to 0.4 in a multifractal spatial analysis on
African monsoon radar data. Nykanen (2008) and Nykanen
and Harris (2003) analysed radar data of 5 heavy rainfall
events in the Rocky Mountains. In these papers they com-
puted the time evolution ofH , which ranges from 0.31 to
0.61. Gires et al. (2012a, 2011) foundH roughly equal to
0.3–0.6 for a Cevenol episode and rainfall event over the

London area. It appears that no physical explanation for this
non-zeroH is provided by these authors. One of the goals of
the simple model presented in Sect. 4 is to suggest one.

Thirdly, it appears that the UM parameters found in the
spatial analysis of radar rainfall maps are quite different from
the ones found in temporal analysis of rain gauge time series.
Indeed, in spatial analysis, common values areα ≈ 1.5−1.7,
C1 ≈ 0.05−0.2 andH ≈ 0.3−0.6 (Gires et al., 2011, 2012a;
Tessier et al., 1993; Verrier et al., 2010), whereas in tem-
poral analysis they areα ≈ 0.5− 0.7, C1 ≈ 0.3− 0.5 and
H ≈ 0−0.3 (de Lima and de Lima, 2009; de Lima and Gras-
man, 1999; Fraedrich and Larnder, 1993; Ladoy et al., 1993;
Olsson, 1995; Tessier et al., 1996). Since time series and
maps are simply a temporal or spatial cut of the same un-
derlying spatio-temporal process, the results of the analysis
performed on both should be related. The simplest space–
time-scaling model of rainfall, which corresponds to the lin-
ear general scale invariance (Schertzer and Lovejoy, 1985),
relies on a unique anisotropy scaling exponentHt between
space and time. In this framework (Deidda, 2000; Gires et
al., 2011; Macor et al., 2007; Marsan et al., 1996; Radkevich
et al., 2008), one should find

Kspace(q) =
Ktime(q)

1− Ht

, (13)

and hence

αspace= αtime (14)

and

C1,space

C1,time
=

Hspace

Htime
=

1

1− Ht

. (15)

With the help of Kolmogorov theory (Kolmogorov, 1941)
and assuming that rain cells have the same lifetime as eddies,
it can be shown thatHt is expected to be equal to 1/3 (Marsan
et al., 1996). The standard UM parameters found in spatial
and temporal analysis are not in agreement with this sim-
plest model. This might be due to a bias inherent to the fact
that studied radar data have been selected to correspond to
rainfall events, whereas rain gauge time series are usually
long (a few months or years) and therefore include many dry
periods, which are not appropriately represented in the stan-
dard UM framework or correspond to low values of the mul-
tifractality indexα. When the studied period corresponds to a
rainfall event in a time series, temporal UM parameters sim-
ilar to “usual” spatial ones are retrieved. For instance, Mon-
tera et al. (2009) analysed 30 s resolution rainfall time series
of a few rainfall events and foundα = 1.7, C1 = 0.13 and
H = 0.53.

Lastly, it should be mentioned that implementing a thresh-
old on a UM field has a significant impact on the estimates
of the UM parameters one can retrieve from this field. To
illustrate this, let us consider two simulated conservative
UM field with different sets of UM parameters:α = 1.7 and
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Fig. 1. Illustration of the cascade processes to generateWλ andRλ.

C1 = 0.2 for case 1, andα = 0.6 andC1 = 0.45 for case 2.
Two hundred independent samples of mean (on all the sam-
ples) equal to one are generated for both cases (a sample is
the output field obtained by a run of the discrete cascade
process; here, 12 cascade steps are implemented leading to
samples of size 4096). A threshold of respectively 9 and 10
(which corresponds to a threshold singularity of respectively
0.26 and 0.27) is implemented in case 1 and 2, leading to
98.1 % of zeros in both cases. This percentage is commonly
observed on high-resolution (typically time steps lower than
5 min) long (few years) rain gauge time series. The DTM is
then applied to these thresholded fields. The obtained esti-
mates areα = 0.55 andC1 = 0.38 for case 1, andα = 0.45
andC1 = 0.44 for case 2. This is due to the fact that a thresh-
old implemented on a multifractal field results in a multifrac-
tal phase transition (on this notion, see Schertzer and Love-
joy, 2011) that affects low moments and introduces a strong
bias in the estimates (see Gires et al., 2012b, for a detailed
analysis of this effect). It should be noted that the scaling ob-
served (linearity of Eq. 3 in a log–log plot) for both cases is
rather good, with coefficients of determination greater than
0.99. This illustrates that thresholding two UM processes
with very different statistical properties yields rather simi-
lar parameter estimates. More precisely, thresholding can be
seen as introducing a bias in the original UM parameter esti-
mates that can be easily much more effective forα < 1 than
for α < 1, which is not surprising because, as we have al-
ready mentioned,α < 1 corresponds to a UM field with nu-

merous zeros. At first thought the case 1 withα = 1.7 and
C1 = 0.2 seems a better candidate to explain the parameter
estimates for both the event analysis and the longer time se-
ries analysis. However, a simple threshold (associated either
with a limit of detection or a physical limit) at the maximum
resolution does not explain in a satisfactory way the presence
of a scaling break, meaning that there is a need for develop-
ing a new model that explains both the scaling properties and
the zeros.

4 Development of a simple model (UM+ 0) to represent
zero rainfall in a UM framework

In the previous section we highlighted the fact that the stan-
dard framework of UM implemented on rainfall data does not
properly explain the presence of scaling breaks, the observa-
tion of non-conservative fields and the discrepancies between
spatial (usually event based) or temporal analysis (usually on
long time series). In this section we present a new simple
model, denoted UM+ 0, to generate rainfall and its zeros in
a multifractal framework. Before introducing it, let us briefly
remind how to build a discrete universal multifractal field.
We will denote it asW here (see below for an explanation,
Fig. 1 for an illustration).

At each step of the cascade process, each time step is di-
vided into λ1 time steps. Although it is not mandatoryλ1
is usually equal to two. Aftern steps the field is denoted

www.nonlin-processes-geophys.net/20/343/2013/ Nonlin. Processes Geophys., 20, 343–356, 2013
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Wn,i , wherei =1,. . . ,λn
1. The value affected to each sub-pixel

(Wn,i) is the value of the parent pixel (Wn−1,j ) multiplied by
a random valueµwn,i , i.e.

Wn,i = Wn−1,jµwn,i . (16)

i is an index that identifies a structure aftern steps of cas-
cade process, and hence it varies from 1 toλn

1. j is an index
that identifies a structure aftern−1 steps of cascade process,
and hence it varies from 1 toλn−1

1 . i andj are chosen to en-
sure the connection between parent and daughter structures,
i.e. for a givenj , i takesλ1 different values (for simplic-
ity sake of notation, we do not make explicit the liaison be-
tweeni andj ). The random variables corresponding to each
multiplicative incrementµwn,i are independent and identi-
cally distributed. To generate a UM field (Eqs. 3 and 4 valid)
with parametersC1 andα, one must choose as random mul-

tiplicative incrementµw = exp

[

(

C1 ln(λ1)
|α−1|

)1/α

L(α)

]

/λ

C1
α−1
1

with L(α) being an extremal Ĺevy-stable random variable
of indexα (i.e. 〈exp(qL(α))〉 = exp(qα)), that can be gen-
erated with the help of the procedure given by Chambers et
al. (1975) or the generalised central limit theorem for Levy
variables (Schertzer and Lovejoy, 1987). More details about
generation of discrete and the more general continuous UM
fields can be found in Pecknold et al. (1993) and Lovejoy and
Schertzer (2010).

Let us now explain how the zeros of rainfall are introduced
to simulate a rain rate fieldR from the UM fieldW . As said in
the introduction, mainly two techniques have been suggested,
either to multiply by an independent random binary field that
would correspond to the rainfall support or to threshold the
simulated field at the maximum resolution. Both techniques
have serious limitations: the independence assumption in the
first one is theoretically inconsistent, and both treat in a sim-
ilar way real and artificial zeros despite their different origin.
In this paper we suggest to introduce the zeros within the cas-
cade process (as done in Olsson, 1998) and not independently
from the simulated values, and then to threshold the field at
the maximum resolution. The two underlying assumptions
are the following:

– The conserved quantity is not directly the rain rate but
the total flux of water in all its phases (A. Tuck, pri-
vate communication, 2011) in the atmosphere, and only
a portion of it corresponds to rain. The UM+ 0 cascade
process provides a scale-invariant way of determining
which portion and where. This is why the UM field is
denotedW , and the one with the zerosR. They stand re-
spectively for “water flux” and “rain rate”. This should
not be taken accurately but more as a general idea.

– At each step of the cascade process, if the rainfall pro-
cess is below a certain intensity (defined with the help
of a singularityγ0), then it is not certain to “survive”
(defined with the help of a probabilityp0). This would
represent a kind of physical limit to rainfall processes.

Fig. 2. Computation of the fractal dimension (Eq. 1 in a log–log
plot) of Rλ for C1 = 0.1, α = 1.9, γ0 = 0.1 andp0 = 0.5.

More preciselyR is derived fromW as follows (µr andµw

denote the random multiplicative increment for, respectively,
R andW ):

– R0 = W0, R1 = W1.

– If Wn−1 ≤

(

λn−1
1

)γ0
, thenµrn,i = µwn,i with probabil-

ity p0 or µrn,i = 0 with probability 1− p0.

– If Wn−1 >
(

λn−1
1

)γ0
, thenµrn,i = µwn,i anyway.

γ0 andp0 are parameters that characterise the process gener-
ating the actual zeros of the rainfall field. It should be noted
that since it is a multiplicative process, once the rainfall pro-
cess has been set to zero at a given resolution, it will remain
equal to zero at the higher resolutions. This aims at represent-
ing long dry periods. Finally, a threshold (T) is implemented
at the maximum resolution to mimic the limit of detection of
any rainfall measurement device.

5 Results of UM+ 0 for a set of parameters

The aim of this section is to discuss the results of a multifrac-
tal analysis performed on a field generated with the UM+ 0
cascade process. The UM parameters used areC1 = 0.1 and
α =1.9, the resolution of the cascade is3 =4096. The choice
of such a high value ofα is theoretically motivated to bet-
ter assess the estimate bias resulting from the threshold-
ing and corresponds to an upper bound of empirical esti-
mates on portions of time series or maps where there are
(almost) no zeros. For example, de Montera et al. (2010) re-
portedC1 = 0.13 andα = 1.7 for a 30 s time series, Manda-
paka et al. (2009) reportedC1 = 0.18 andα = 1.9 for spatial
and temporal analysis performed on high-resolution (2.5 m,
1 s) lidar data, and Verrier et al. (2010) reportedC1 = 0.12
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Fig. 3. (a)Scaling ofWλ, (Eq. 3 in log-log plot)(b) scaling ofRλ, (c) K(q) for Rλ, and(d) determination curve ofC1 andα, for simulation
parametersC1 = 0.1, α = 1.9, γ0 = 0.1 andp0 = 0.5.

and α = 1.78 for spatial analysis of radar data (1 km res-
olution). Concerning the additional parameters introduced
in the new model,γ0 =0.1 andp0 = 0.5 are tested in this
section. Tests are performed with or without a threshold of
10 implemented on the field UM+ 0 previously normalised
to one on average and which corresponds to a singularity
γT = 0.27. The thresholded field is denoted UM+ 0+ T in
the following. The influence of these parameters will be dis-
cussed in Sect. 5. The analysis is performed on an ensemble
of 1000 independent 1-D samples (i.e. the output field of a
realisation of the UM+ 0 cascade process) of length 4096.
Unless otherwise mentioned, the analysis is performed on the
dressed field, i.e. the one obtained by re-aggregating the field
from its maximum resolution. Only few parameters are com-
puted on thebare fields, i.e. the ones obtained at each resolu-
tion through the cascade process which is not accessible with
actual rainfall data.

The percentage of zero is equal to 95 % and 97 % for
the UM+ 0 and UM+ 0+ T field, respectively. This would
mean that with such a limit of detection, the rainfall mea-
surement devices miss slightly more than a third of the rainy
time steps due to the fact thatγT > γ0. Fractal analysis (Eq. 1
in a log–log plot) is performed and displayed in Fig. 2 for
the UM+ 0 field. By taking into account the whole range of
scales,DF is estimated to 0.67 (with a coefficient of determi-
nationR2 greater than 0.99), which is in agreement with stan-
dard values. However, when considering a break atλ = 128,

one findsDF = 0.78 for small scales andDF = 0.59 for large
scales. This does not reproduce the behaviour of actual rain-
fall fields, which usually exhibit greater fractal dimensions
for large scales than for small ones. This is a serious limita-
tion of this model. As expected the estimated fractal dimen-
sions are slightly smaller with a threshold (0.72 and 0.57 for
respectively small and large scales), but they exhibit similar
overall behaviour.

TM (Eq. 3 in a log–log plot) and DTM analysis are per-
formed on the field dressed from the maximum resolution of
4096, as it is done with actual rainfall data. Figure 3a dis-
plays TM analysis for the UM field. As expected the scal-
ing is excellent (R2 < 0.997 for all the statistical moment or-
ders), and the DTM analysis (Fig. 3d) yieldsC1 = 0.094 and
α = 1.91, which is very close to the parameters inputted in
the simulations. With the UM+ 0 field the scaling is wors-
ened, as can be seen on Fig. 3b, where a curvature is visible
for all the statistical moment orders. For example, theR2 for
q = 2 without considering any break is equal to 0.95. In the
following this parameter will be taken as an indicator of the
quality of the scaling. When taking into account a break at
λ = 128, this sameR2 is equal to 0.98 and 0.97 for small and
large scales, respectively.K(q) (see Fig. 3c) of the UM+ 0
field for small scales remains rather similar to the one of
UM field except for small moments where the multifractal
phase transition associated with numerous zeros introduces
a bias. For large scales, the discrepancies are much greater
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Fig. 4.Estimation of the non-conservation parameterBare H (a) andDressed H through the spectral behaviour(b) for simulation parameters
C1 = 0.1, α = 1.9, γ0 = 0.1 andp0 = 0.5.

Fig. 5.Considering only the heaviest rainfall:(a) scaling ofRλ, (b) K(q) and(c) determination curve ofC1 andα, for simulation parameters
C1 = 0.1, α = 1.9, γ0 = 0.1 andp0 = 0.5.

even for great moments, and the curvature ofK(q), which
reflects the multifractality of the associated field, is almost
lost. The determination curve of UM parameters in the DTM
analysis (Eq. 7 in a log–log plot) are displayed Fig. 3d, where
the linear portion used to estimateC1 andα is highlighted.
This leads toC1 = 0.32 andα = 0.69 for large scales and
C1 = 0.11 andα = 1.33 for small scales. When a threshold is
implemented, the quality of the scaling remains similar and
the UM parameters are slightly more affected. Indeed, one
findsC1 = 0.33 andα = 0.65 for large scales andC1 = 0.13
andα = 1.22 for small scales. This simple model reproduces

the scaling break and the main variations of UM parameters
between small and large scales. Finally, it should be noted
the behaviour observed on small scales enables much more
accurate retrieval of the estimates of the underlying UM field.

One of the main features of the UM+ 0 cascade pro-
cess is that it is not conservative, i.e. since some time steps
(with small singularities) are set to zero at each step, the
average mean decreases with the number of cascade steps.
To analyse more precisely this effect, Fig. 4a displays the
mean of the process computed on the bare field, for the
UM and UM+ 0 process, vs. the resolution in a log–log
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plot. Linear regressions are furthermore performed to eval-
uate non-conservation parametersH as defined in Eq. (8) (it
will be called bareH in the following) . As expected for the
UM field which is conservative, bareH is roughly equal to
0. For the UM+ 0 field the mean naturally decreases with
the resolution. However, the curve does not exhibit a linear
behaviour in this log–log plot, indicating that the standard
framework of Eq. (8) with a singleH for the whole range
of scales is not appropriate for this model (and may be not
also for rainfall). Estimating the bareH on two ranges of
scales (which is not perfectly accurate since the curve ex-
hibits more a curvature than two linear portions), one finds
H = 0.09 for small scales andH = 0.25 for large ones. This
is not what is observed in the literature where the estimates
of H are usually smaller for large scales. It should be men-
tioned that smaller values ofH are found when estimated on
the dressed field with the help of the spectral slope (Eq. 12)
(it will be called dressedH in the following). Figure 4b dis-
plays the power spectrum for the UM+ 0 field. A break was
considered (fork = 128, which corresponds toλ = 128) to
be consistent with the TM analysis, but similar values ofβ

are found for both ranges of scales (roughlyβ = 1), which
indicates that there is basically no need for a break. This cor-
responds to the theoretical fact that we did not introduce a
characteristic scale in theR process. However, we numeri-
cally find H = 0.09 for small scales andH = 0.17 for large
ones. These differences between both ranges of scales are not
due to a change inβ but to a change of the multifractal cor-
rectionKc(2) in Eq. (12). Furthermore, the estimates ofβ are
basically equal to those on the UM field, indicating that the
simple model does not modify the spectral behaviour. Sim-
ilar results are found on the UM+ 0+ T fields. This simple
model does not reproduce the spectral behaviour and the val-
ues ofH for the dressed field according to the range of scales
reported in the literature. Nevertheless, this model provides a
framework to explain the fact thatH 6= 0 on many observed
rainfall fields, which is not the case for the models consisting
in a simple threshold or a multiplication by an independent
support. A possible improvement of this simple model could
be to introduce a vertical velocity component, as suggested
in Lovejoy and Schertzer (2008), where the authors devel-
oped a rain rate model, consisting in a product of a liquid
water content and a vertical velocity, which reproduced the
spectral properties of actual rainfall fields.

In order to mimic what is done when a rainfall-event-
based analysis is performed (i.e. only considering a rainy
portion of a time series corresponding to a rainfall event),
a multifractal analysis is performed only on the portion of
the field with the heaviest simulated rainfall. To achieve this,
the 128 consecutive time steps with the maximum cumulated
rainfall depth are selected for each of the 1000 independent
samples of length 4096. Then only the 50 with the great-
est depth are kept for the analysis. Figure 5a displays
the TM analysis, and shows that no scaling break should
be considered (R2 > 0.99 for q > 0.5). ConcerningK(q),

the curves obtained with only the heaviest rainfalls of the
UM + 0 and UM+ 0+ T fields are rather similar to the one
of the UM field (see Fig. 5b). Concerning the UM param-
eters estimates (Fig. 5c), one findsC1 = 0.094 andα =

1.60 for the heaviest rainfall of the UM+ 0 field. The es-
timates are slightly more biased for the heaviest rainfall of
the UM+ 0+ T field (C1 = 1.01 andα = 1.49), but remain
much closer to the estimates of the underlying UM field than
when the analysis is performed on the whole field. It is inter-
esting to note that this simple model reproduces UM parame-
ters estimates found in the literature for both long time series
analysis (with its large-scale results when the whole field is
considered) and event-based analysis (by selecting only the
heaviest rainfalls). Finally, it should be mentioned that such
analysis on the heaviest rainfall was performed on simulated
UM fields withC1 = 0.5 andα = 0.5 as parameter values of
the simulation and lead toC1 = 0.31 andα = 0.57 as esti-
mates. These values are quite different from the standard one
for rainfall events, which confirms that the standard UM pa-
rameters retrieved from long time series cannot be used to
explain event-based ones.

6 Sensitivity of UM + 0 to its various parameters

In this section the sensitivity of the model to the parame-
ters γ0 and p0 is analysed. All the possible combinations
with γ0 = −0.1;0;0.1;0.2 and p0 = 0.1;0.3;0.5;0.7;0.9
are tested, always keepingC1 = 0.1 andα = 1.9. Concerning
the threshold, we proceed as follows: (i) normalisation of the
generated UM+ 0 field on average at the maximum resolu-
tion (as it is commonly done before performing a multifrac-
tal analysis) and (ii) implementation of a thresholdT = 10
(the same for all the parameter sets), which corresponds to
a singularityγT = .27. Figure 6a displays the percentage of
zeros at the maximum resolution (3 = 4096). As expected
without any threshold, the percentage of zeros increases with
γ0 and decreases withp0. For smallp0 (roughly< 0.5) the
influence is not really significant. When a threshold is im-
plemented, the differences basically disappear between the
different fields, with percentage of zeros always greater than
95 %. The fractal dimensions for large and small scales are
displayed in Fig. 6b and c, respectively. For small scales,
without any threshold, as expectedDF decreases withγ0
and the influence ofp0 is not really significant. An inverse
behaviour is observed with a threshold. The differences be-
tween fields thresholded and those not are much greater for
small γ0 andp0, i.e. when the proportion of “real” zeros is
greater. For example, forp0 = 0.1, the fields withγ0 = 0.2
(i.e. closer toγT) exhibit the same small-scale fractal dimen-
sion, whereas forγ0 = −0.1, DF is equal to 0.93 for the un-
thresholded field and to 0.50 for the thresholded one. Ba-
sically, similar behaviour is observed for large scales, with
values slightly smaller than for small scales, which is (as
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Fig. 6.Analysis of the sensitivity toγ0 andp0: percentage of zero(a) , DF for large scales(b) andDF for small scales(c).

mentioned in the previous section) contrary to the observa-
tions on actual rainfall.

Figure 7a displays the coefficient of determinationR2 of
the linear regression which givesK(q) (Eq. in a log–log plot)
for q = 2 when no break is taken into account. It is an indica-
tor of the quality of the scaling and the necessity to consider
a break. It decreases with greaterγ0 and smallerp0. There
is a slight but not significant improvement when a threshold
is implemented. In any case the values remain always rather
low, and a break atλ = 128 is therefore taken into account
in the following. For small scales (Fig. 7c and e), when there
is no threshold the estimate ofα decreases and the one of
C1 increases with greaterγ0 and smallerp0. The differences
are smaller forC1 than forα. Similar behaviour is retrieved
for large scales with stronger bias (Fig. 7b and d). When a
threshold is implemented, inverse behaviour is observed, in-
dicating that estimates are more biased when the proportion
of zeros due to the threshold (i.e. false ones) is greater. It
should be noted that with a threshold the disparities due toγ0
andp0 are damped. Finally, it should be mentioned that the
curves withγ0 = 0.2 exhibit quite different patterns than the
others, especially when a threshold is implemented. This is
likely to be due to the fact that in that caseγ0 > C1, mean-
ing that a too significant proportion of the field was removed
by the UM+ 0 process and that therefore the threshold has a
smaller influence.

The non-conservation bare and dressedH exponents of the
UM + 0 fields are displayed Fig. 8. For both small and large
scales they naturally increase with greaterγ0 and smallerp0

(i.e. with more real zeros generated). However, the depen-
dency inp0 for small scales is not significant. As discussed
in the previous section,H is greater for large scales than for
small scales, which is contrary to what is observed on ac-
tual rainfall fields. The values found on the dressed fields are
smaller than the bare ones and do not reach the ones found in
the literature (0.3–0.6). Considering the bare ones, it seems
that one should havep0 > 0.5 andγ0 > 0.1 for actual rainfall
fields.

Figure 9 displaysC1 andα estimated only on the heaviest
rainfalls. The same comment concerning the dependencies in
γ0 andp0 as for the estimates ofC1 andα computed on the
whole field (i.e. not only the heaviest event) could be made.
The main difference is that the estimates are much less bi-
ased.

Finally, it should be said that the same analysis was per-
formed with UM parametersC1 = 0.2 andα = 1.7 instead
of C1 = 0.1 andα = 1.9, and that similar results were found.
The main differences consist in a slightly better scaling (that
nevertheless requires the introduction of a scaling break),
smaller estimates ofH (which suggests the UM parameter
set presented more in details in this paper is more relevant
even though obtained values ofH are smaller needed), and
of course slightly smaller values ofα and greater ones for
C1.
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Fig. 7. Analysis of the sensitivity toγ0 andp0: coefficient of determinationR2 of the linear regression in the TM analysis forq = 2 (a) , α

andC1 for large and small scales(b, c, d, e).

Fig. 8.Analysis of the sensitivity toγ0 andp0: Bare H andDressed H.
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Fig. 9.Analysis of the sensitivity toγ0 andp0: C1 (a) andα (b) for the heaviest rainfall.

7 Conclusions

In this paper a new simple model to simulate the numerous
zeros of rainfall fields in the framework of discrete univer-
sal multifractal cascades is presented. The real zeros are ex-
plicitly distinguished from the artificial ones. These zeros
are generated within the cascade process, in a scale invari-
ant way, and not independently from the rainfall values. It
basically consists in setting to zero with a probability 1-p0
the rainfall field if it is smaller than a given singularityγ0,
at the previous step of the cascade process. This process is
called UM+ 0. The underlying assumptions are that the con-
served quantity is the total flux of water in all its phases in
the atmosphere and not the rain rate, and that if there is not
enough water, then the rainfall process is not certain to occur.
In that way the model can be physically justified. Finally, the
field is thresholded at its maximum resolution to mimic the
limit of detection of any rainfall measurement device.

This rather simple scale-invariant model enables us to re-
trieve many of the properties observed on actual rainfall
fields: a scaling break, non-conservation (only a portion of it
is explained), differences between UM parameters for small
and large scales and discrepancies between event-based anal-
ysis and long time series analysis. Nevertheless, some of
the properties of the generated fields are not in agreement
with those of actual rainfall fields: the spectral behaviour is
not modified, the exponent of non-conservation is greater
for large scales than for small scales and its dressed val-
ues are too small, and the fractal dimension is greater for
small scales than for large ones. This means that this UM+ 0
model should be considered as nothing more than an interest-
ing and encouraging simple model.

More generally the results found with this simple model
suggest that the underlying UM parameters for rainfall are
rather constant (α = 1.7−1.9 andC1 = 0.1−0.2), and what
would change from one place to another or from one data set

to another is the way the zeros are generated. This process
would explain most of the discrepancies between the theoret-
ical multifractal framework and observed rainfall behaviour.

To confirm these results further investigation are needed:
(i) empirical multifractal analysis of the total water flux in
all its phases in the atmosphere, and not only rain rate should
be performed; (ii) the model generating zeros should be re-
fined to retrieve all the observed properties; (iii) a way to
accurately estimate the parameters of the model should be
developed. A goal of this paper is to foster research on these
issues.
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