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Abstract. The fundamental matrix is a two-view tensor that plays a
central role in Computer Vision geometry. We address its robust es-
timation given correspondences between image features. We use a non-
parametric estimate of the distribution of image features, and then follow
a probabilistic approach to select the best possible set of inliers among
the given feature correspondences. The use of this perception-based a
contrario principle allows us to avoid the selection of a precision threshold
as in RANSAC, since we provide a decision criterion that integrates all
data and method parameters (total number of points, precision thresh-
old, number of inliers given this threshold). Our proposal is analyzed in
simulated and real data experiments; it yields a significant improvement
of the ORSA method proposed in 2004, in terms of reprojection error and
relative motion estimation, especially in situations of low inlier ratios.

Keywords: stereovision; fundamental matrix; feature matching, a con-
trario model; outlier detection

1 Introduction

Matching between features in two images is an important component of many
methods for 3D reconstruction, camera motion estimation and pattern recog-
nition [7]. An appropriate set of matches can determine the geometry between
two images, also known as epipolar geometry, which for non-planar scenes is
characterized by the fundamental matrix.

The fundamental matrix is a two-image tensor that associates to any point
in the first image an epipolar line of possible corresponding points (matches)
in the second image. In particular, the tensor evaluated at any pair of perfectly
corresponding points is zero (epipolar constraint). All epipolar lines intersect
in a point of the second image, called epipole, that is the projection of the
optical center of the first camera; this algebraically implies that the fundamental
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matrix has rank two. The so-called seven point algorithm exploits such a rank-
two constraint to provide up to three possible solutions for the fundamental
matrix given (the minimal number of) seven matches [7].

Feature correspondences obtained with standard detection and matching al-
gorithms (we use SIFT features [10]) are usually unsuitable for the direct com-
putation of the fundamental matrix due to noise and outliers. The computation
of the fundamental matrix given only inlier matches has been studied elsewhere,
see e.g. [9] for a review.

Given a set of tentative correspondences between two images, containing
noise and outliers in an unpredictable manner, we address the problem of ro-
bustly identifying the set of inlier matches and computing the fundamental ma-
trix. We assume generic scene(s) and camera position(s); dedicated methods
have been devised to deal with nearly-degenerate configurations [18,1,4,5].

The Random Sample Consensus (RANSAC) [3] performs random sampling of
at most N minimal subsets of data (7-uples of matches) to hypothesize models.
Each hypothetical model is evaluated using the point matches whose residual
is under a user-specified threshold τ (these matches are the estimated inliers),
and the model that leads to the maximum number of estimated inliers is chosen
(the final model is then re-estimated using only these inliers). The cost function
that RANSAC tries to optimize assigns 0 to those matches with error under the
threshold τ (inliers) and a constant penalty otherwise [17]. An inlier ratio ε is
usually user-specified to decide the number of random trials N , although this
decision can also be taken adaptively using the best model found so far [7].

The Optimized Random Sampling Algorithm (ORSA) [11] (detailed in Sec-
tion 2) assumes a uniform spatial distribution of the features over the image.
Through random sampling, it looks for a set of matches that is the least expected
in terms of the precision achieved for a given number of inliers (a contrario cri-
terion). It requires as parameter only the maximum number of random trials
to perform (that is, the computational effort allowed by the user). The actual
number of random trials can drop to as little as 10% of the specified one when a
“sufficiently good” model is found early (acceleration strategy). It can be seen as
a non-parametric version of RANSAC, where all possible inlier thresholds τ are
implicitly used (and compared) thanks to the a contrario criterion. Note that
this method was recently adapted to the case of homographies [12].

ORSA has been shown to outperform a fixed-threshold RANSAC approach
and classical methods like M-estimators and LMedS, in particular by its ability
to deal with very high outlier ratios [11,13]. However, performance lacks and
even failure cases can be observed when the data points are far from being
uniformly distributed, in particular when most of them lie in a small region of the
image domain [11]. In the search for an adaptive improvement of ORSA, we here
study the replacement of the uniform distribution of the ORSA method with an
empirical distribution estimated non-parametrically using plug-in methods [16].

We only carry out a preliminary comparison with the RANSAC and ORSA
methods, the latter’s source code being available online4. Comparison with other

4 http://www.mi.parisdescartes.fr/~moisan/epipolar/
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modern methods was not possible due to the lack of available code. A major
difference between the proposed approach and almost all existing ones is that
we build a model of the distribution of 2D image features to recover an optimal
threshold, independently of any matching, whereas other methods propose a
model of (at best) the distribution of the 1D errors associated to the 2D matches.

The paper is organized as follows. After reviewing the ORSA method in
Section 2, we adapt it in Section 3 to the case of an empirical distribution
of image features. We then detail the geometric and motion estimation error
measures that we use. Evaluation follows in Section 5 using simulated and real
data, in both cases with groundtruth available, before we conclude in Section 6.

2 Fundamental Matrix Computation using ORSA

The ORSA method (Algorithm 1) is based on [11]: first, the use of the RANSAC
paradigm, performing several random trials to generate potential true 7-point
matches; second, the use of an a contrario criterion to select the best set of
7-point matches (lines 5–6 in Algorithm 1); third, a final sampling strategy that
adaptively selects the set of potential matches (lines 9–10 in Algorithm 1).

Consider a set T of 7-point matches and one of the (up to 3) fundamental
matrices estimated from it using the normalized 7-point algorithm [7]. For each
of the n point matches, we can estimate a match error according to the selected
fundamental matrix F . Applying a threshold τ to this error will result in a
selection of estimated inliers (error smaller than τ) and outliers (error larger
than τ). Depending on the value of τ , we will thus select a certain number k of
potential inliers, with 7 < k ≤ n. The a contrario criterion associates to each of
these

(

n−7
k−7

)

possible sets S of k inliers (containing the initial set T ) a number of
false alarms

NFA(S) = N(k, n) · P (k, τ) , (1)

that is the product of two terms: a number of tests

N(k, n) = 3(n− 7)

(

n

k

)(

k

7

)

, (2)

which counts all possible couples (F, S) that can be considered, and an upper
bound P (k, τ) of the probability that the maximal reprojection error of the k
estimated inliers remains below τ . Assuming a uniform distribution of the image
points, this upper bound can be chosen as

P (k, τ) = (α0τ)
k−7 , (3)

where α0 is an upper bound for the probability of a random point to have
reprojection error 1 (obtained by considering the relative image area of a band
of width 2 around the image diagonal), and τ is the normalized error threshold
that selects the k inliers (in practice, the k-th smallest error). The form of (1)
is typical of a contrario models (see [2,6]): it guarantees that for any ε > 0, the
expected number of sets S that pass the test NFA(S) < ε is, for random data,
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less than ε. In practice, one often chooses the value ε = 1, so that only one false
alarm is expected, on average, for random data.

Once 7 point matches have been used to compute a fundamental matrix, there
remain n−7 point matches to test, or, more exactly, all 2n−7 possible subsets of
these n− 7 point matches. Hopefully, we do not need to test these 2n−7 possible
subsets, but only n− 7 subsets. The reason is simple: for a given cardinal k, the
criterion used (NFA) is an increasing function of the maximum error τ , so the
best subset with cardinal k is simply the one made of the k point matches that
have the smallest error. Therefore, by sorting the matches by increasing errors,
we can find the minimum NFA over the 2n−7 possible subsets by looking only
at n− 7 subsets (one for each possible value of k).

Algorithm 1 The ORSA Algorithm [11] to minimize the NFA (1)

Require: W the set of n potential matches, N the maximum number of trials
1: U := W ; NFA∗ := ∞; S∗ := ∅; opt := 0; iter := 1; MaxIter := N

2: while iter ≤ MaxIter do
3: Randomly sample a set T of 7-point matches from U

4: for all Fundamental matrix F associated to T do
5: Sort the matches by increasing errors
6: S(F ) := set with minimum NFA in {Sk(F ) = first k matches}7<k≤n;
7: if NFA(S(F )) < NFA∗ then
8: NFA∗ := NFA(S(F )); S∗ := S(F )
9: if opt = 0 and (NFA∗ < 1 or iter > 0.9N) then
10: opt := 1; MaxIter := (iter + 0.1N); U := S∗

11: iter := iter + 1
12: return Best inlier set S∗ and associated fundamental matrix F

If we have k inliers among n matches, the number of samples to be drawn to
have a probability q of selecting an inlier minimal sample of matches is [11]

N = log(1− q)/ log

(

1−
6
∏

i=0

k − i

n− i

)

. (4)

In practice, ORSA considers that a valid fundamental matrix has been found if
a NFA value below 1 is obtained (line 9 in Algorithm 1). In general, this event
will occur much before the predicted number of iterations (4), either because the
sampled subset contains only inliers or because it contains a majority of inliers
and the outliers are close to consistent with the underlying geometry.

3 Using an Empirical Feature Distribution

We now try to improve the ORSA method by testing different empirical distribu-
tions for the image points. Since we are interested in using the empirical distri-
bution on the image to detect matches between images, the computed matches
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cannot be used for the distribution estimation. Instead, we will only use the
points in the second image and model their 2D distribution using a mixture of
Gaussian kernels centered at the data points. Their covariance matrix is modeled
as isotropic (a diagonal matrix with a single parameter σ) or anisotropic (a
symmetric positive definite 2× 2 matrix H).

3.1 Method Overview

Given a set of putative matches, we first estimate the 2D density of the image
points in the second image (Section 3.2) and then pre-compute the integrated
density in any domain delimited by the image frame and a segment whose end-
points lie on the image frame (Section 3.3). Using a random sampling procedure,
for each tested model we sort the matching probabilities (instead of the matching
errors), and then apply the a contrario methodology (Section 3.4). The computa-
tion of such probabilities is fast thanks to the pre-computation mentioned above.
We use the same sampling strategy as in ORSA: after a first significant inlier set
is found or after 90% of the total iterations have been made, the procedure is
restarted for 10% of the iterations, with new samples drawn only from the best
inlier set found so far.

3.2 Kernel Density Estimation of the Image Distribution

The first step of our method consists in estimating the density of the points
{x1, . . . , xn} in the second image. We use Kernel Density Estimation (KDE)
for such purpose, meaning that we model this density as a mixture of two-
dimensional kernels K centered at the image points:

f(x) =
1

n|H|

∑

K
(

H−1(x− xi)
)

. (5)

The matrix H is known as bandwidth and it is the smoothing parameter of the
density estimator. We recommend the paper [15] for a complete description of
KDEs in the 1D case, from which the 2D case is just a generalization.

Among the several possible kernel functionsK, we chose for simplicity reasons
the Gaussian density function. In order to have a fully non-parametric density
estimation, and following the final recommendations from [15], we decided to
use 2D plug-in methods for the automatic selection of the bandwidth matrix H.
We discarded cross-validation due to the possibility of having few data points.

Plug-in methods search for the estimator with minimum asymptotic mean
integrated squared error (AMISE) by replacing (or pluging-in) an unknown high
order term in its formula by an approximation made by normal reference. We
chose two different parametric forms for the bandwidth matrix:

1. Hiso = h · Id, isotropic bandwidth. In practice, the 1D parameter h is esti-
mated by averaging the 1D plug-in estimations (pilot estimation of deriva-
tives) [16] on a set of radially equidistributed 2D directions, and then apply-
ing a dimension change factor equal to n1/30.
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2. Hani a full 2×2 symmetric positive definite matrix, anisotropic bandwidth,
which we estimate in practice using a 2D plug-in method.

Instead of implementing the corresponding 1D and 2D plug-in methods, we
used the following R functions5 from the ks (kernel smoothing) package6: bw.SJ()
and Hpi(). The R functions can be embedded into C++ using RInside7.

3.3 Line Distribution Pre-computation

The method of Section 3.1 involves the repeated computation of the probabil-
ities associated to the residual errors. That is, for each error ε = dist(x′, Fx)
associated to a correspondence (x, x′), we need to integrate the density map on
the line band {z; d(z, Fx) ≤ ε} to obtain the probability Prob {dist(Z,Fx) ≤ ε}
(Z being a random variable following the distribution of Section 3.2). It can be
computed as the difference of the integrated densities in two domains delimited
by the image frame and one boundary of the band, which is the reason why
we pre-compute these sums. In practice, we consider only domains delimited by
segments whose endpoints have integer coordinates. Thus, any epipolar line is
approximated to the closest line in this set to estimate the associated probability.

3.4 A Contrario Step

We follow the main a contrario framework of the ORSA method, based on the
minimization of the number of false alarms NFA in (1). However, we need to
adapt this framework to take into account that we now consider a more complex
(that is, non-uniform) a priori distribution for the points of the second image.

Instead of measuring the max error τ of a set S of k potential inliers, we now
decide to measure the max probability

δ(S) = max
(x,x′)∈S

GFx (dist(x
′, Fx)) , (6)

where for any line D of the second image, GD(τ) represents the probability
that a point Z drawn according to the distribution of Section 3.2 falls below a
distance τ from D, that is,

GD(τ) = Prob {dist(Z,D) ≤ τ} . (7)

Now, remarking that one has Prob {GD(dist(Z,D)) ≤ δ} ≤ δ (use, e.g., [6]
Lemma 1 with X = −dist(Z,D)), it follows that the NFA property (control
of the number of false alarms in case of random matches) is preserved provided
that we replace, for any set S of k matches, the formula (1) of ORSA by

NFA(S) = N(k, n) ·Q(k, δ(S)) with Q(k, δ) = δk−7. (8)

5 http://www.r-project.org/
6 http://cran.r-project.org/web/packages/ks/
7 http://dirk.eddelbuettel.com/code/rinside.html
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4 Error Measures

4.1 Optimal Reprojection Error

In order to evaluate a given fundamental matrix F and a set of n matches
(xi, x

′
i)1≤i≤n we use the implementation of Kanatani [8] 8 to compute the optimal

matches for the given data; we use as measure the RMSE of the reprojection
error associated to these optimal matches.

4.2 Comparing a Fundamental Matrix with Ground Truth

Given a groundtruth fundamental matrix F0, we generate a set of 500 exact
matches under F0, their coordinates on each image being either uniformly dis-
tributed or following a local distribution around the groundtruth inliers. Then,
we evaluate a new fundamental matrix F by computing the RMSE error (in pix-
els) of these matches under F . The generation of uniformly distributed matches
was done following [19], where this procedure was used. We denote by Err1 the
evaluation of the RMSE Gold error (in pixels) on those “global” matches.

In order to generate matches according to estimated densities, we first gener-
ated random features on the left image from a mixture of Gaussian kernels using
the R function rmvnorm.mixt(). Then, for each of these features, we used the
groundtruth calibration to obtain an epipolar line on the right image. We took
10 equidistributed points on each line and used the density of the second image
on those points (re-weighted to sum 1) for generating a point on the line, giving
in most cases an outlier correspondence. We denote by Err2 the evaluation of
the RMSE Gold error (in pixels) on these ”local” matches.

4.3 Comparing a Relative Camera Motion with a Groundtruth

Reconstruction

Assume as known a groundtruth camera reconstruction (camera internal and
external camera parameters),

P0 = K0R
T
o (Id,−C0) , P1 = K1R

T
1 (Id,−C1) , (9)

Then, given a fundamental matrix F , we can compute the essential matrix us-
ing K0,K1 and so the relative camera motion R, t. We evaluate the error of
camera motion with the help of the best similarity H taking the groundtruth
reconstruction to the following one:

Q0 = K0(Id, 0) , Q1 = K1(R, t) . (10)

Two measures are proposed:

1. Rotational error (in degrees). The distance between RT
0 and RTRT

1 , i.e. the
rotation angle (in degrees) of RTRT

1 R0;
2. Translational error (in %). The absolute error between the similarity-corrected

camera centers and the groundtruth ones, divided by the absolute distance
between the groundtruth camera centers, and multiplied by 100.

8 Source code available at http://www.iim.ics.tut.ac.jp/~sugaya/public-e.html
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5 Evaluation

5.1 Simulation

The proposed methods (Hiso, Hani) can compare favorably to ORSA in the case
where the image matches are concentrated in a small part of the image and, of
course, there exist no matches compatible with false epipolar geometries.

In order to exemplify this assumption, we used images with groundtruth
calibration available and took 100 matches with Gold error smaller than 1 pixel;
then, we estimated their density (as explained in Section 3.2) and then sampled
outlier matches from that density (using the R function rmvnorm.mixt()) to
create an input dataset with an approximately controlled inlier ratio. We tested
the following inlier ratios: 75%, 25%, 15% and 10%; in all cases, the approximate
number of inliers was 100, and the final dataset size was inversely proportional
to the inlier ratio (sample input datasets are shown in Figure 1).

Fig. 1. Example simulation input datasets with inlier ratios 0.75 (top) and 0.25 (bot-
tom). We show the two images with the data matches (green for inlier and red for
outlier), and the estimated density (green scale). Groundtruth calibration is available
at http://roboimagedata.imm.dtu.dk/data.html.

For each inlier ratio we simulated a dataset, and using it we ran each tested
method 200 times and computed the average results (Table 1). Whereas the
methods perform similarly for 0.75 and 0.25 inlier ratios, ORSA considers as
inliers a big set of outliers for smaller inlier ratios. The other two methods
improve ORSA’s performance, mainly due to the localization of matches in a
small image region; a slightly better performance of Hiso can be explained by
the fact that the data was simulated using isotropic kernels.

For the extreme inlier ratio 0.10, our proposed methods did not always man-
age to find a solution: Hiso succeeded 108/200 times, and Hani 123/200; the
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ORSA method always returned a solution as valid, which in most cases turned
out to be wrong. In some of the successful cases, the obtained fundamental matri-
ces were not compatible with the groundtruth internal calibration matrices and
thus the camera motion could not be extracted. This happened 57/200 times
for ORSA with 0.15 inlier ratio, and for the 0.10 inlier ratio it happened 42/200
times for ORSA and 2/123 times for Hani. In conclusion, the proposed methods
returned a consistent solution in case of success.

Rat Met #it Thr #in RMSE Err1 Err2 Rerr Terr

0.75 ORSA 1001.03 0.55 94.24 0.11 2.35 0.83 2.48 1.31
Hiso 1001.25 0.84 98.67 0.19 2.33 0.84 2.86 1.53
Hani 1001.41 0.56 98.95 0.20 3.75 1.34 3.81 1.49

0.25 ORSA 1001.05 0.54 93.94 0.11 2.19 0.79 2.53 1.26
Hiso 1101.48 0.54 103.53 0.28 3.48 1.13 4.20 1.57
Hani 1115.51 0.59 102.99 0.21 3.56 1.59 4.44 1.76

0.15 ORSA 1001.88 40.92 533.77 11.98 36.06 14.40 36.79 16.16
Hiso 3578.09 0.51 108.94 0.46 2.99 1.01 3.59 2.00
Hani 4896.33 0.46 103.80 0.66 5.02 1.83 5.50 1.97

0.10 ORSA 1001.54 36.87 763.74 11.18 37.10 15.42 125.99 14.22
Hiso 9166.88 1.57 92.98 1.08 8.13 4.12 13.95 5.70
Hani 9308.27 1.08 101.16 1.35 9.61 4.91 15.71 5.14

Table 1. Average results over 200 runs with S = 10000 maximal trials each for the
tested methods: ORSA, Hiso and Hani (Section 3.2). For the different inlier ratios
(Rat), we show the (average) number of iterations (#it), chosen threshold (Thr),
RMSE optimal reprojection error of the found inliers (Section 4.1), the evaluation
errors Err1, Err2 (in pixels, Section 4.2), and the relative motion errors Rerr (in
degrees), and Terr (in %), explained in Section 4.3.

5.2 Real Images

We used images with groundtruth calibration available and computed their SIFT
matches taking as valid a match such that the ratio of scores to the following
candidate match was smaller than 0.9. This parameter is usually set to 0.6, but
with our selection we are able to obtain much more matches and, interestingly,
we are able to obtain smaller final errors (independently of the selected method).

We used the first images in the Strecha’s castle-P19 sequence, available
at http://cvlabwww.epfl.ch/data/multiview/denseMVS.html. The selected
image pairs are very different (see Figure 2) in terms of inlier ratios and feature
distribution. We provide in the first column of Table 2 a rough estimation (Rat*)
of the inlier ratio, which was obtained by taking as inlier any correspondence
with error (w.r.t. the groundtruth fundamental matrix) below 3 pixels; this value
is just a proxy for the inlier ratio (an unclear concept when dealing with real
data) and it was not used for further evaluation.

We tried to reduce the effect of random sampling by averaging the results
over 200 runs of each method. We show the main output given by the consid-
ered methods in columns 3 to 6 in Table 2. We added to RANSAC the sampling
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strategy from ORSA (see beginning of Section 2), so that the number of itera-
tions was comparable. Note that the optimization criteria are different for each
method, and so the thresholds are hardly comparable.

Evaluation errors (see Section 4) are shown in the last 4 columns of Table 2.
Pair (0,5) is not reasonably solved on average by any of the methods, although
occasionally all of them found a good solution. We highlight in bold the best
results among the three non-parametric methods (ORSA, Hiso, Hani) excluding
RANSAC, but at the same time we keep the RANSAC output in the table for the
reader to see the sometimes dramatic effect of parameter selection. According
to our preliminary experiments, ORSA gives slightly better average results than
our proposals for medium-to-high inlier ratios, being worst on average otherwise,
depending on the feature distribution – see for instance results on pair (0,4).

Fig. 2. Pairs (0,1) on top and (0,4) on bottom of the used Strecha’s Castle-P19 se-
quence. For visualization purposes, the data matches were classified as inliers (green)
and outliers (red) using an arbitrary threshold of 3 pixels on groundtruth errors.

6 Conclusion

The two proposed non-parametric robust methods for computation of the fun-
damental matrix consist in modifying the ORSA method by using an empirical
reference distribution of the image features. Preliminary experiments (only a
sample of them are included in this paper) show that these methods improve
ORSA for low inlier ratios in terms of reprojection error and relative motion pre-
cision. Incorporating chromatic information (see e.g. [14]) could lead to further
improvement.
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castle-P19 Method #it Thr #in RMSE Err1 Err2 Rerr Terr

Pair (0,1) RANSAC 1001.6 1.00 1550.13 0.14 1.06 0.46 0.14 0.26
2570 matches 1001.3 2.00 1628.81 0.23 2.29 0.96 0.26 0.58
Rat* = 0.66 1001.3 3.00 1659.90 0.36 5.61 2.35 0.35 1.32

ORSA 1001.1 0.70 1493.42 0.12 0.97 0.39 0.11 0.25
Hiso 1001.1 1.20 1588.92 0.62 1.45 0.50 0.20 0.44
Hani 1001.1 1.37 1585.06 0.59 1.64 0.59 0.21 0.49

Pair (0,2) RANSAC 1002.3 1.00 1099.76 0.16 1.93 0.54 0.27 1.04
2112 matches 1001.8 2.00 1169.30 0.24 1.91 0.57 0.32 0.92
Rat* = 0.58 1001.6 3.00 1194.65 0.31 1.90 0.55 0.38 0.95

ORSA 1001.1 0.77 1067.75 0.14 1.80 0.48 0.26 0.96
Hiso 1001.2 0.99 1122.86 1.24 1.89 0.45 0.35 0.98
Hani 1001.3 0.94 1115.74 1.16 1.65 0.45 0.33 1.00

Pair (0,3) RANSAC 1002.8 1.00 810.10 0.18 15.34 2.34 2.68 9.30
1818 matches 1001.9 2.00 918.29 0.27 3.05 0.59 0.59 2.15
Rat* = 0.53 1001.7 3.00 947.54 0.35 3.41 0.68 0.64 2.48

ORSA 1001.2 1.07 833.39 0.19 13.22 2.55 2.36 7.44
Hiso 1001.4 18.52 923.50 1.28 3.05 0.52 0.61 2.51
Hani 1001.4 1.77 918.85 1.01 3.47 0.51 0.62 2.97

Pair (0,4) RANSAC 9984.2 1.00 62.15 21.12 39.38 10.18 6.13 18.60
1070 matches 9716.8 2.00 132.41 1.84 11.57 2.49 1.80 6.54
Rat* = 0.15 7962.1 3.00 146.35 0.52 15.60 3.77 2.68 7.97

ORSA 1028.7 0.16 26.14 0.03 127.53 92.11 115.76 37.69
Hiso 1086.0 8.35 172.69 8.61 25.09 9.58 17.90 11.15
Hani 1100.4 6.91 144.67 8.36 13.63 3.63 3.50 4.83

Pair (0,5) RANSAC 10000.0 1.00 45.26 31.67 104.97 101.47 93.21 44.33
1055 matches 10000.0 2.00 58.54 31.23 100.78 97.75 94.34 41.66
Rat* = 0.10 10000.0 3.00 67.31 29.68 100.33 77.98 86.98 43.35

ORSA 1030.3 0.01 15.50 0.00 137.34 126.96 128.27 41.89
Hiso 1134.1 43.37 91.33 2.23 187.73 225.49 133.83 63.37
Hani 1589.3 13.62 125.43 3.43 110.73 113.46 93.45 41.14

Table 2. Average results on Strecha’s castle-P19 data over 200 runs with S = 10000
maximal trials each for the tested methods; Rat* being a rough estimation of the inlier
ratio (see text). For each pair and method, we show the (average) number of iterations
(#it), the threshold (Thr) either being a RANSAC’s input or a method’s output,
RMSE optimal reprojection error of the found inliers (Section 4.1), the evaluation
errors Err1, Err2 (in pixels, Section 4.2), and the relative motion errors Rerr (in
degrees), and Terr (in %), explained in Section 4.3.
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