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Grammars to express hierarchical decomposition

Sentence
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Complex, non-hierarchic relations between components
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The super computer rules Discovery One 
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Constrained attribute grammars

G = (N,T ,P , S)

⌅ N: nonterminals ($ complex forms) e.g., window, wall

⌅ T : terminals ($ geometric primitives) e.g., polygon, cylinder

⌅ P : production rules ($ hierarchical decomposition and constraints)
⌅ S : start symbols ($ root shapes) e.g., building
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Basic rules

Decomposition of a complex object y of type Y into its constituents
xi of type Xi :

Y y �! X
1

x
1

, . . . ,Xn xn

Example:

step s �! riser r , tread t

Rule application:
⌅ top-down view:

y decomposes into x
1

, . . . , xn
⌅ bottom-up view:

given some x
1

, . . . , xn, create a new object y

riser

tread
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Constraints

Conditional rule application (conjonction of predicates):

Y y �! X
1

x
1

,X
2

x
2

, . . . h cstr
1

(x
1

), cstr
2

(x
1

, x
2

), . . . i

Example:

riser r �! polygon p h vertical(p) i
tread t �! polygon p h horizontal(p) i
step s �! riser r , tread t

h edgeAdj(r , t), above(t, r) i

riser

tread
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Attributes

Features attached to each grammar element:
⌅ at creation time (primitives)
⌅ at rule application (synthetized attributes)

Examples:
⌅ length, width
⌅ bounding box
⌅ ... r.widthr.length
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Predicates

Predicates on grammar elements:
⌅ adj, edgeAdj
⌅ orthogonal, parallel
⌅ vertical, horizontal
⌅ ...
Predicates on attributes:
⌅ �, >, , ...
⌅ =, 6=
⌅ ...

t.length

r.length

Example: r .length == t.length
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Collections of similar elements

Grouping elements via recursion (Y as set of X s):
Y y �! X x

Y y �! X x ,Y y
2

Grouping elements via specific collection operators:
Y y �! coll(X ) xs

Useful operators: maximal collections
⌅ maxconn: maximal set of connected components
⌅ maxseq: maximal sequence
⌅ ...
Example:

stairway sw �! maxseq(step, adjEdge) ss
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Scene interpretation: parse tree

Tree representation of a grammatical analysis of the scene:
⌅ leaves: terminals representing primitives
⌅ non-leaf nodes: instanciations of grammar rules
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Scene interpretations: parse forest

Set of parse trees
with systematic sharing (DAG)

Compact representation
of all possible interpretations
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Ambiguity and the exclusivity constraint

Example (assuming no height ordering constraint):

step s �! riser r , tread t h edgeAdj(r , t) i step 2

step 1

Exclusivity constraint:

at most 1 occurrence
of a grammar element
per interpretation

Stairway

Step 2Step 1

Riser 2 Tread 1 Riser 1

14



Outline

Constrained attribute grammars

Scene interpretation

Bottom-up parsing

Experiments

15



Parse forest computation

Bottom-up parsing:
construction of the parse forest
from leaves (terminals) to roots (start symbols)

⌅ create one terminal for each primitives
⌅ iteratively create new grammar elements from existing ones

⇤
e.g., given grammar rule step s �! riser r , tread t

given existing instances riser r23, tread t18
create new instance step s5

⌅ merge identical trees on the fly
⌅ stop iterating when no rule applies
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Rule application order

⌅ Simple rules: use any order
⌅ Maximal operators: wait for all subelements to ensure maximality

⇤
reverse topological sort of nonterminal dependency graph

maxseq
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Mastering the combinatorial explosion

Usual drawback of bottom-up analysis: combinatorial explosion
⌅ all trees
⌅ all sets, all sequences, ...
⌅ all combinations

Our solution:
⌅ tree sharing: construction of a parse forest (exp. ! lin.)
⌅ maximal operators, with efficient implementation (> exp. ! polyn.)
⌅ constraint propagation: predicate ordering ) early pruning
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Maximal operators

maxseq

vs

allseq
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Maximal operators

maxseq

vs

max(allseq)
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Constraint propagation as predicate ordering
A simple 2D example

pair p �! seg s
1

, seg s
2

, h orthogonal(s
1

, s
2

), adj(s
1

, s
2

), vertical(s
1

) i
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Constraint propagation as predicate ordering
Example of poor ordering
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Constraint propagation as predicate ordering

1. Unary predicates

2. Invertible predicates that are partially instantiated
3. General predicates

= constraints implying only 1 element: complexity O(#element)

Example:
riser r �! polygon p h vertical(p) i
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Constraint propagation as predicate ordering

1. Unary predicates
2. Invertible predicates that are partially instantiated

3. General predicates

= constraints with small cardinality when some arguments are fixed

Example:

step s �! riser r , tread t h edgeAdj(r , t) i
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Constraint propagation as predicate ordering

1. Unary predicates
2. Invertible predicates that are partially instantiated
3. General predicates

= remaining relations

Example:

step s �! riser r , tread t h orthogonal(r , t) i

22



Outline

Constrained attribute grammars

Scene interpretation

Bottom-up parsing

Experiments

23



Semantization pipeline

Semantized
model

Polygon
extraction Parsing

Grammar

CAD Model
(triangle soup)

Point cloud Primitive
detecion
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CAD models
Preprocessing

⌅ Region growing over triangles
for polygon creation

⌅ Computation of exact and
approximate adjacency graphs
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CAD models
Detection of stairs (more examples in supplem. material)
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CAD models
Detection of walls, roofs and openings (more examples in supplem. material)
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Real data: photogrammetry
⌅ Preprocessing (point cloud)

⇤
clustering using RANSAC

(or region growing)

⇤
polygons bounded

by alpha shapes

⌅ Problems:
⇤

missing primitives

⇤
false primitives

⇤
wrong adjacencies

⌅ Solution:
⇤

use of a relaxed grammar

⌅ looser bounds
⌅ 1-2 missing items OK

⇤
22 openings out of 31
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Quasi-real data: simulated LIDAR

⌅ Planes by region growing in depth image
⌅ Polygons as oriented bounding rectangles
⌅ Adjacency based on pixels in depth image
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Size and parsing time (CAD models)

# of # of Parsing time (s)
Name triangles polygons stairs openings
LcG 48332 9705 5 15
LcA 111979 26585 14 42
LcC 385541 111732 33 306
LcD 313012 75257 25 111
LcF 286996 84347 39 322
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Precision and recall (%, CAD models)

# of # of Stairs Openings
Name stairs steps Prec. Rec. # Prec. Rec.
LcG 3 45 100 93 83 100 90
LcA 6 84 100 100 62 98 83
LcC 30 210 100 100 196 100 98
LcD 5 61 93 100 74 100 93
LcF 7 98 100 50 99 100 96
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Future work

⌅ Principled way to deal with partial or missing primitives
⌅ Exploitation of occlusion/visibility information
⌅ Scoring of interpretations: pick best tree(s)
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Conclusion

Constrained attribute grammars:
⌅ appropriate to semantize complex objects
⌅ high-level specification language

⇤
being expert is enough, computer scientist not required

⌅ efficient even on large models

This work:
⌅ well-delimited first step: perfect data
⌅ extensions required for incomplete/noisy data

On the web
⌅ http://imagine.enpc.fr/
⌅ sites.google.com/site/boulchalexandre/
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