
HAL Id: hal-00861892
https://enpc.hal.science/hal-00861892v2

Submitted on 17 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A non linear approximation method for solving high
dimensional partial differential equations: Application in

finance
José Infante Acevedo, Tony Lelièvre

To cite this version:
José Infante Acevedo, Tony Lelièvre. A non linear approximation method for solving high dimensional
partial differential equations: Application in finance. Mathematics and Computers in Simulation,
2018, 143, pp.14-34. �10.1016/j.matcom.2016.07.013�. �hal-00861892v2�

https://enpc.hal.science/hal-00861892v2
https://hal.archives-ouvertes.fr

A non linear approximation method for solving high

dimensional partial differential equations: Application in

Finance.

José Infante Acevedo and Tony Lelièvre

Université Paris-Est, CERMICS,

Ecole des Ponts, 6-8 avenue Blaise Pascal, 77455 Marne-la-vallée, France

jose-infante.acevedo@cermics.enpc.fr, lelievre@cermics.enpc.fr

September 17, 2013

Abstract: We study an algorithm which has been proposed in [2, 7] to solve high-dimensional partial
differential equations. The idea is to represent the solution as a sum of tensor products and to compute
iteratively the terms of this sum. This algorithm is related to the so-called greedy algorithm introduced
by Temlyakov in [10]. In this paper, we investigate the application of the greedy algorithm in finance
and more precisely to the option pricing problem. We approximate the solution to the Black-Scholes
equation and we propose a variance reduction method. In numerical experiments, we obtain results for
up to 10 underlyings. Besides, the proposed variance reduction method permits an important reduction
of the variance in comparison with a classical Monte Carlo method.

Key words: Greedy algorithms, Black-Scholes partial differential equation

Acknowledgements: José Infante Acevedo is grateful to AXA Research Fund for his doctoral fellowship.

Introduction

Many problems of interest for various applications (for example material sciences and finance) involve
high-dimensional partial differential equations (PDEs). The typical example in finance is the pricing of
a basket option, which can be obtained by solving the Black-Scholes PDE with dimension the number
of underlying assets.

We propose to investigate an algorithm which has been recently proposed by Chinesta et al. [2] for
solving high-dimensional Fokker-Planck equations in the context of kinetic models for polymers, and by
Nouy et al. [8] in uncertainty quantification framework based on previous works by Ladevèze [5]. This
approach is also studied in [6] to try to circumvent the curse of dimensionality for the Poisson problem in
high-dimension. This approach is a nonlinear approximation method called below the greedy algorithm
because it is related to the so-called greedy algorithms introduced in nonlinear approximation theory,
see for example [10]. The main idea is to represent the solution as a sum of tensor products (referred to
as a separated representation in the following):

u(x1, . . . , xd) =
∑

k≥1

r1k(x1)r
2
k(x2) . . . r

d
k(xd)

=
∑

k≥1

(

r1k ⊗ r2k ⊗ . . .⊗ rdk
)

(x1, . . . , xd) (1)

and to compute iteratively each term of this sum using a greedy algorithm. This greedy algorithm can be
applied to any PDE which admits a variational interpretation as a minimization problem. The practical
interest of this algorithm has been demonstrated in various contexts (see for example [2] for applications
in fluid mechanics).

1

Our contribution is to complete the first application of this algorithm in finance, investigating the
interest of this approach for option pricing. In this work, our aim is to study the problem of pricing
vanilla basket options of European type using two numerical methods: first a discretization technique
for the Black-Scholes PDE and a variance reduction method for the pricing of the same type of financial
products.

For option pricing, we will discuss in particular the key points to be solved to address problems
in finance, compared to the situations studied in [6] or in [2], that is, the treatment of the non zero
boundary conditions and the approximation of the solution to the Black-Scholes PDE as a sequence
of minimization problems. We will study also the practical implementation of the algorithm. We will
not solve the minimization problems associated to the PDE, but the first-order optimality conditions
of these minimization problems, namely the Euler equation. This leads to a system of equations where
the number of degrees of freedom does not grow exponentially with respect to the dimension, and this
fact will be very important in order to attain high-dimensional frameworks in practical applications.
More precisely, the Euler equation writes as a system of d nonlinear equations, where d is the considered
dimension. The maximum dimension that can be treated by this technique is limited by the non-linearity
of the system of d equations that has to be solved.

The variance reduction method relies on the backward Kolmogorov equation which yields an exact
control variate. We propose to solve the high-dimensional Kolmogorov equation using the greedy algo-
rithm. This yields an efficient pricing method which combines deterministic and stochastic techniques.

We would like to point out that in order to circumvent the curse of dimensionality using the greedy
algorithm, the initial condition of the Black-Scholes equation has to be set out in separated representation
with respect to the different coordinates, namely a sum of tensor products. As the initial condition is not
always expressed in a separated representation, we first need to investigate the problem of approximating
the initial condition by a sum of tensor products. This problem will be solved using again the greedy
algorithm. We will provide examples to illustrate that this approximation is suitable.

Other deterministic techniques have been applied to solve the Black-Scholes PDE in a high-dimensional
framework. Classical methods such as finite differences and finite elements are limited in their applica-
tion when the dimension increases (typically d ≤ 4), because the number of degrees of freedom increases
exponentially with respect to the dimension and rapidly exceed the limited storage capacity. Financial
applications of the sparse tensor product methods have been studied by Pommier in [9]. These sparse
methods also use the representation of the solution as a sum of tensor products, and assume that the
solution is regular enough to obviate fine discretizations in each direction. In practice, this method
may be difficult to apply for reasons such as the lack of regularity of the solution and the difficulty to
implement it.

In our numerical experiments, the greedy algorithm gives results for up to 10 underlyings; that
means the dimension d is equal to 10. To the best of our knowledge, this is higher than results obtained
using other deterministic approaches, such as the tensor product method, for which examples up to the
dimension d = 5 have been reported in the literature, see [9]. In addition, the variance reduction method
that we are proposing permits the variance to be reduced in comparison with a classic Monte Carlo
method.

As future research, we have in mind to generalize the method to American options. This has a
theoretical counterpart, namely the generalization of greedy algorithms to free boundary problems that
has already been analyzed in [3].

The plan of the paper is the following. In Section 1, we introduce the general setting for the greedy
algorithm and we give some theoretical results that have been proved in the literature and that ensure
the convergence of the greedy algorithm. Section 2.1 will discuss the practical implementation of the
greedy algorithm in the case of the approximation of a function by a sum of tensor products. Following
this, in Section 2.2 and 2.3, we will present results and applications for the approximation of a basket
put option. The purpose of Section 3 is to apply the greedy algorithm to solve the Black-Scholes PDE.
After introducing the weak formulation of this equation in Section 3.1, we treat the difficulties that arise
when applying the greedy algorithm such as posing the problem in a bounded domain (Section 3.2)
and recasting the PDE as a minimization problem (Section 3.3). The final section (Section 4) contains
numerical results for the solution of the Black-Scholes PDE and for the variance reduction method.

2

1 Greedy algorithms for high dimensional problems

In this section, we define a general framework for the greedy algorithm that we will use to solve the
high-dimensional problems studied in this paper.

The bottom line of deterministic approaches for high-dimensional problems is to represent the solu-
tions as linear combinations of tensor products of one-dimensional functions as in (1). If the number of
terms in the expansion remains small, this enables us to approximate efficiently the solution, avoiding
the curse of dimensionality.

The greedy algorithm proposed in [2, 6, 8] is based on two important points. The first one is that we
need to recast the original problem (in our case, this is the option pricing problem) as a minimization
problem:

u = argmin
v∈V

E(v), (2)

where E : V 7→ R is a functional with a unique global minimizer u ∈ V with V a Hilbert space. For
example, for approximating the solution to a Poisson problem with homogeneous Dirichlet boundary
conditions, one would consider E(v) = 1

2

∫

X |∇v|
2
−
∫

X fv and V = H1
0 (X

d) with X a bounded one-
dimensional domain and d large (see [6]).

The second point is to look iteratively for the best tensor product in the expansion of the solution as
a sum of tensor products of lower-dimensional functions

un(x1, x2, . . . , xd) =

n
∑

k=1

r1k ⊗ r2k . . .⊗ rdk(x1, . . . , xd) (3)

where for all i = 1, . . . , d and k = 1, . . . , n, the functions rik ∈ Vxi
, with Vxi

Hilbert spaces of functions
depending on the one-dimensional variable xi. This sequential search for the terms in the sum (3) is
related to the so-called greedy algorithms introduced in the nonlinear approximation theory by Temlyakov
in [10] and by De Vore and Temlyakov in [4].

In what follows, we assume that V, Vx1
, Vx2

, . . . , Vxd
are Hilbert spaces such that

(H1) Vect{r1 ⊗ r2⊗, . . .⊗ rd, r1 ∈ Vx1
, r2 ∈ Vx2

, . . . , rd ∈ Vxd
} ⊂ V is dense.

To compute un in the separated form (3), un being the approximation of u solution of the problem (2),
we define the greedy algorithm as follows,

Iterating for all n ≥ 1:

(r1n, r
2
n, . . . , r

d
n) ∈ argmin

r1∈Vx1
, r2∈Vx2

,...,rd∈Vxd

E

(

n−1
∑

k=1

r1k ⊗ r2k ⊗ . . .⊗ rdk + r1 ⊗ r2 ⊗ . . .⊗ rd

)

. (4)

The following result given in [6] ensures the convergence of the greedy algorithm defined in (4) for a
functional E of the following form

E(v) = ‖u− v‖2V . (5)

Theorem 1.1. Let us assume that the assumption (H1) holds and that the functional E has the form (5).
Then,

‖un − u‖V −→
n→∞

0. (6)

An estimate of the error is also proposed in [6]. To state this result, we need to introduce the
functional space adapted to the convergence analysis

A1 =

{

u =

+∞
∑

k=1

r1k ⊗ r2k ⊗ . . .⊗ rdk, where rik ∈ Vxi
, i = 1, . . . , d,

+∞
∑

k=1

‖r1k ⊗ r2k . . .⊗ rdk‖V < +∞

}

(7)

and the associated norm which is

3

‖u‖A1 = inf

{

+∞
∑

k=1

‖r1k ⊗ r2k . . .⊗ rdk‖V | u =

+∞
∑

k=1

r1k ⊗ r2k ⊗ . . .⊗ rdk

}

. (8)

Theorem 1.2. Let us assume that the assumption (H1) is verified and that the functional E has the
form (5). Then, for a function u ∈ A1, there exists a constant C > 0 such that

‖un − u‖V ≤ Cn−1/6, (9)

for all n ∈ N
∗.

We note that the convergence rate factor of 1
6 can be improved to 11

62 and that the constant C depends
on the norm ‖u‖A1 , see [6, 4].

Our work relies on these theoretical results because in the setting of this paper, we will consider a
functional E and a Hilbert space V such that E(v) = ‖u− v‖2V , (see equation (44) below).

2 Implementation of the algorithm in the case of the approxima-

tion of a square-integrable function

In this section, we will discuss the implementation of the algorithm defined by (4) in the case of the
approximation of a given function f by a sum of tensor products. We will then provide numerical
examples of this approach. This particular case has the advantage of being an easy example to understand
the implementation of the greedy algorithm. Moreover, this procedure is useful in a preliminary step
to approximate the initial condition of the Black-Scholes PDE (see Section 3), namely in order to get a
separated representation of the payoff function.

2.1 Greedy algorithm for the approximation of a square-integrable function

In order to show the implementation that we use for the algorithm (4), let us present the simple problem
of approximating a square-integrable function f by a sum of tensor products. Mathematically, we
consider the spaces V = L2(Ω1 × Ω2 × . . . × Ωd), Vxi

= L2(Ωi) for i = 1, . . . , d, where Ωi ⊂ R is a
bounded domain for i such that 1 ≤ i ≤ d. We recall that we are looking for a separated representation
f =

∑

k≥1 r
1
k ⊗ r2k ⊗ . . .⊗ rdk. Let us consider the following minimization problem:

Find u ∈ V such that u = arg minv∈V

(

1

2

∫

Ω1×Ω2×...×Ωd

v2 −

∫

Ω1×Ω2×...×Ωd

vf

)

(10)

whose solution is obviously u = f . In this context, the greedy algorithm (4) can be rewritten as follows:

Iterate for all n ≥ 1: Find (r1n, r
2
n, . . . , r

d
n) ∈ Vx1

×Vx2
× . . .×Vxd

such that (r1n, r
2
n, . . . , r

d
n) belongs to

argmin
r1∈Vx1

,...,rd∈Vxd

1

2

∫

Ω1×Ω2×...×Ωd

∣

∣

∣

∣

∣

n−1
∑

k=1

r1k ⊗ r2k ⊗ . . .⊗ rdk + r1 ⊗ r2 ⊗ . . .⊗ rd

∣

∣

∣

∣

∣

2

−

∫

Ω1×Ω2×...×Ωd

(

n−1
∑

k=1

r1k ⊗ r2k ⊗ . . . rdk + r1 ⊗ r2 ⊗ . . .⊗ rd

)

f.

(11)

As proposed in [6], instead of solving the problem (11), we will determine the solutions of the Euler
equation for (11). Notice that, in general, the solutions of the Euler equation are not necessarily the
solutions of the minimization problem, given the nonlinearity of the tensor product space L2(Ω1) ⊗
L2(Ω2)⊗ . . .⊗ L2(Ωd).

The Euler equation for (11) has the following form:

Find (r1n, r
2
n, . . . , r

d
n) ∈ Vx1

×Vx2
× . . .×Vxd

such that for any functions (r1, r2, . . . , rd) ∈ Vx1
×Vx2

×
. . .× Vxd

4

∫

Ω1×Ω2×...×Ωd

(r1n ⊗ r2n ⊗ . . .⊗ rdn)
(

r1 ⊗ r2n ⊗ . . .⊗ rdn + r1n ⊗ r2 ⊗ . . .⊗ rdn + . . .+ r1n ⊗ r2n ⊗ . . .⊗ rd
)

=

∫

Ω1×Ω2×...×Ωd

fn−1

(

r1 ⊗ r2n ⊗ . . .⊗ rdn + r1n ⊗ r2 ⊗ . . .⊗ rdn + . . .+ r1n ⊗ r2n ⊗ . . .⊗ rd
)

(12)

where fn−1 = f −
∑n−1

k=1 r
1
k ⊗ r2k ⊗ . . .⊗ rdk.

Equation (12) can be written equivalently as























‖r2n‖
2‖r3n‖

2 . . . ‖rdn‖
2 r1n =

∫

Ω2×Ω3×...×Ωd

(

r2n ⊗ . . .⊗ rdn
)

fn−1,

‖r1n‖
2‖r3n‖

2‖r4n‖
2 . . . ‖rdn‖

2 r2n =
∫

Ω1×Ω3×Ω4...×Ωd

(

r1n ⊗ r3n ⊗ r4n ⊗ . . .⊗ rdn
)

fn−1,

...

‖r1n‖
2‖r2n‖

2‖r3n‖
2 . . . ‖rd−1

n ‖2 rdn =
∫

Ω1×Ω2×Ω3...×Ωd−1

(

r1n ⊗ r2n ⊗ r3n ⊗ . . .⊗ rd−1
n

)

fn−1,

(13)

where ‖rin‖
2 denotes the square L2-norm: ‖rin‖

2 =
∫

Ωi
|rin|

2.

The system (13) is a non linear coupled system of equations on which a fixed point procedure can

be applied as proposed in [2]. Choose (r
1,(0)
n , r

2,(0)
n , . . . , rd,(0)) ∈ L2(Ω1)×L2(Ω2)× . . .×L2(Ωd), and at

iteration k ≥ 0, compute (r
1,(k)
n , r

2,(k)
n , . . . , rd,(k)) ∈ L2(Ω1)×L2(Ω2)× . . .×L2(Ωd) which is the solution

to











































‖r
2,(k)
n ‖2‖r

3,(k)
n ‖2 . . . ‖r

d,(k)
n ‖2 r

1,(k+1)
n =

∫

Ω2×Ω3×...×Ωd

(

r
2,(k)
n ⊗ . . .⊗ r

d,(k)
n

)

fn−1,

‖r
1,(k+1)
n ‖2‖r

3,(k)
n ‖2‖r

4,(k)
n ‖2 . . . ‖r

d,(k)
n ‖2 r

2,(k+1)
n =

∫

Ω1×Ω3×Ω4...×Ωd

(

r
1,(k+1)
n ⊗ r

3,(k)
n ⊗ r

4,(k)
n ⊗ . . .⊗ r

d,(k)
n

)

fn−1,

...

‖r
1,(k+1)
n ‖2‖r

2,(k+1)
n |2‖r

3,(k+1)
n ‖2 . . . ‖r

d−1,(k+1)
n ‖2 r

d,(k+1)
n

=

∫

Ω1×Ω2×Ω3...×Ωd−1

(

r
1,(k+1)
n ⊗ r

2,(k+1)
n ⊗ r

3,(k+1)
n ⊗ . . .⊗ r

d−1,(k+1)
n

)

fn−1,

(14)

until convergence is reached.

An important point to note is that we start with a linear problem (10) with exponential complexity
with respect to the dimension, and at the end, we obtain a nonlinear problem (13) with at each iteration
linear complexity with respect to the dimension. This is a general feature of the greedy algorithm: the
curse of dimensionality is circumvented, but the linearity of the original problem is lost because the space
of tensor products is non-linear.

In the two-dimensional case, the algorithm given by (11) is related to the Singular Value Decompo-
sition (or rank one decomposition), as it is explained in [6]. In this case, the solutions of the variational
problem (11) are exactly the solutions to the Euler equation (12) that verify the second-order optimality
conditions. This property does not hold in a d-dimensional framework with d ≥ 3.

2.2 Example of a separated representation of a put payoff

In this section we will apply the algorithm (11) to obtain an approximation of the payoff of a basket
put option. For the practical implementation of the greedy algorithm, we need to introduce the space
discretization. In practice, the spaces V ∆x

xi
for i = 1, . . . , d that are used to discretize Vxi

= L2(Ω) with
Ωi = (0, 1) for i = 1, . . . d are the P1 finite elements on a uniform mesh with space step ∆x. The integer
N = 1

∆x is the number of intervals in each direction. For each k and i = 1, . . . , d, we discretize the
functions rik that appear in the approximation of the solution given by the expression (12) as follows:

r
i,∆x
k (xi) =

N
∑

j=0

r
i,j
k φj(xi), r

i,j
k ∈ R, ∀j, k, (15)

5

where φi(x) = φ
(

x−xi

∆x

)

with φ(x) =

{

1− |x| if |x| ≤ 1,
0 if |x| > 0.

This type of discretization and its generalization to the d-dimensional case will be used for all the
numerical simulations of this paper.

Let us now consider the problem (11) with f(x1, . . . , xd) =
(

K − 1
d

∑d
i=1 xi

)

+
. Figure 1 shows how

the algorithm approximates the basket put payoff in a two-dimensional framework (d = 2). We observe
that, as the number of iterations of the greedy algorithm increases, the approximation of the function
f(x1, x2) improves.

-20

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

Put payoff
First iteration of the greedy algorithm

Third iteration of the greedy algorithm

Figure 1: Basket put option with two assets. We consider here the intersection between the surface of
prices and the plane S1 = S2. To obtain this approximation we take 31 points of discretization per
dimension (N= 30). In this figure, we show the approximation given after the first and third iteration
of the algorithm.

Figure 2 shows the convergence curves that we obtain for this problem as the dimension d increases.
We observe that, as the dimension increases, the number of iterations needed to obtain the convergence
increases as well.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30

L2
 E

rr
or

Number of Iterations

L2 Error vs Number of Iterations according to the dimension

2D
3D
4D
5D
6D
7D
8D
9D

10D

Figure 2: Convergence curves for the approximation of a basket put payoff by a sum of tensor prod-
ucts. We observe that if the dimension increases, then the number of iterations needed to obtain the
convergence increases as well. The error calculated is given by the equation (16) below.

We also provide in Table 1 the number of iterations needed in order to obtain a relative error of 10−5

when we consider 11 points of discretization per dimension (N = 10). The relative error calculated is
the discrete L2 error

6

Dimension Number of iterations
1 1
2 2
3 10
4 22
5 101
6 228
7 1077
8 3974

Table 1: Number of iterations needed to obtain a relative error of 10−5 when we take 11 discretization
points per dimension

en =

√

1
N

∑N
i1=1

∑N
i2=1 . . .

∑N
id=1 (f(xi1 , xi2 , . . . , xid)− un(xi1 , xi2 , . . . , xid))

2

√

1
N

∑N
i1=1

∑N
i2=1 . . .

∑N
id=1 f(x1, . . . , xd)2

(16)

where un(x1, x2, . . . , xd) =
∑n

k=1 r
1
k ⊗ r2k ⊗ . . .⊗ rdk is the solution obtained with the greedy algorithm at

the iteration n. It is to be outlined that computing the norm is more costly than the greedy algorithm
itself.

Notice that the full tensor product approximation would require 118 ≃ 2.108 degrees of freedom in
an 8-dimensional case to be compared with the 3974 × 8 × 11 ≃ 350000 degrees of freedom that we
obtained. For the evaluation of this number, we used the fact that at each iteration of the algorithm we
get 8 functions that are determined by 11 discretization points.

In order to reduce the computational time of this calculation, we use the specific form of the pay-
off function to deduce, in a preliminary step, the points that belong to the support of this function.
Therefore, when we calculate numerically the integral term

∫

Ω2×Ω3×...×Ωd

(

r2n ⊗ . . .⊗ rdn
)

f dx2dx3 . . . dxd (17)

in (13), we do not need to pass through the points where the function f vanishes. In practice, we have used
a backtracking algorithm to describe the support of the payoff function. This type of algorithm consists
in constructing candidates sequentially and neglecting them when they do not verify the conditions
required as a solution, in this case to belong to the support of the payoff function. For instance, in a
5-dimensional case, the computational time is reduced by a factor of 4

5 by taking into account the support
of the payoff function in the computations of the integral term.

Let us now make a few remarks.

Remark 2.1. In our numerical experiments, the initial conditions needed to begin the iterations in the
fixed point procedure are taken randomly. We indeed observed from numerical experiments that it yields
better results in terms of convergence than in the case where constant initial conditions are used.

Remark 2.2. Concerning the computational time, we note that if the dimension increases, one iteration
of the algorithm takes more time to be computed because the number of equations in the Euler system (13)
increases linearly with respect to the dimension. The integral terms of type (17) also demand more time
of execution because the domain has a new variable.

2.3 Pricing of a basket put using the separated approximation of the payoff

As an example to show that the approximation by a sum of tensor products makes sense, we can use
this approximation as a method to obtain prices of options in the Black-Scholes framework. The price
of a European option in the Black-Scholes model (see Section 3.1) is given by

7

Pt = E

[

e−r(T−t)f(S1(T), . . . , Sd(T))|Ft

]

=

∫

Ω1×...×Ωd

e−r(T−t)f(y1, . . . , yd)g(T, y1, . . . , yd|t, S1(t), . . . , Sd(t))dy1 . . . dyd
(18)

where (Ft)t≥0 is the natural filtration generated by the d assets prices Si(t) (i = 1, . . . , d), f is the payoff
of the option, g(T, .|t, S1(t), . . . , Sd(t)) is the joint density of the variables S1(T), . . . , Sd(T) given the
values (S1(t), . . . , Sd(t)) of the underlying assets at time t. This joint density is a log-normal law and
thus has an explicit analytical expression.

Using the greedy algorithm as we saw in the previous section, we can obtain a separable approximation
of the product

f(y1, . . . , yd)g(T, y1, . . . , yd|t, S1(t), . . . , Sd(t)),

and thus the integral (18) can be calculated very efficiently using the Fubini’s rule.
In Figure 3, we apply this idea for the case of a basket put option on seven assets.

 8.7

 8.8

 8.9

 9

 9.1

 9.2

 9.3

 9.4

 9.5

 9.6

 9.7

 0 20 40 60 80 100 120 140 160 180 200

P
rix

Nb of iterations

Price given by the approximation of the product between the density and the payoff
MC1E4
MC1E5
MC1E6

Figure 3: Price of put basket option with 7 assets. The continuous curve gives the price of this financial
product with respect to the number of iterations of the algorithm. The horizontal lines represent the
confidence interval obtained with a Monte Carlo method using respectively 104, 105 and 106 iterations.

3 Greedy algorithm for solving the Black-Scholes partial differ-

ential equation

Now, we will apply the greedy algorithm (4) presented in Section 1 to solve the Black-Scholes equation,
and obtain the price of a European option.

3.1 Weak formulation of the Black-Scholes partial differential equation

The Black-Scholes model in a d-dimensional framework describes the dynamics of d risky assets that
satisfy the following stochastic differential equations:

dSi(t)

Si(t)
= rdt+ σidBi(t) for all i = 1, . . . , d, (19)

with

d〈Bi, Bj〉t = ρijdt. (20)

The number ρij is the correlation between the Brownian motions Bi and Bj that drive the dynamics
of the assets Si and Sj respectively.

8

The coefficient σi represents the volatility of the asset Si at time t, and r is the risk-free instantaneous
interest rate. To simplify, we assume that r and σi for i = 1, . . . d are constant during the period [0, T].
We note that the greedy algorithm that we are proposing can be used when the risk-free interest rate is
a continuous function of time and the volatility is a continuous function of time and of the asset under
standard regularity assumptions (See Chapter 2 in [1]).

We recall that the price of a European option with payoff f and maturity T is given by the following
formula

E

[

er(T−t)f(S1(T), . . . , Sd(T))|Ft

]

.

Using the Markovianity of the process (S1(t), . . . , Sd(t)), it can be written as:

E

[

er(T−t)f(S1(T), . . . , Sd(T))|Ft

]

= P (t, S1(t), . . . Sd(t)), (21)

where P is a deterministic function.
The function P (t, S1, . . . , Sd) satisfies the Black-Scholes PDE which can be obtained using the

Feynman-Kac theorem. The Black-Scholes equation in a d-dimensional framework is a parabolic PDE
that has the following form:

{

∂P
∂t + LP = 0, t < T, (S1, . . . , Sd) ∈ R

d
+,

P (T, S1, . . . , Sd) = f(S1, . . . , Sd), (S1, . . . , Sd) ∈ R
d
+,

(22)

where the operator L is given by

LP =
1

2

d
∑

i,j=1

∂2P

∂Si∂Sj
ρijσiσjSiSj +

d
∑

i=1

rSi
∂P

∂Si
− rP.

Let us recall the standard framework for problem (22). Setting τ := T − t, the time to maturity, we
get the following forward parabolic problem for P̂ (τ, S1 . . . , Sd) = P (t, S1 . . . , Sd)

{

∂P̂
∂τ − LP̂ = 0, 0 < τ ≤ T, (S1, . . . , Sd) ∈ R

d
+

P̂ (0, S1, . . . , Sd) = f(S1, . . . , Sd), (S1, . . . , Sd) ∈ R
d
+.

(23)

We note that it is possible to write the diffusion term in the operator L+ r in a divergence form as
follows:

LP̂ + rP̂ =
1

2

d
∑

i=1

∂

∂Si





d
∑

j=1

ρi,jσiσjSiSj
∂P̂

∂Sj



+

d
∑

j=1

(

rSj −
1

2

d
∑

i=1

∂

∂Si
(ρi,jσiσjSiSj)

)

∂P̂

∂Sj
.

Therefore, if we multiply −LP̂ by a test function Q and then we integrate on R
d
+, we obtain the

following bilinear form:

bt(P̂ , Q) =
1

2

d
∑

i=1

d
∑

j=1

∫

R
d

+

ρi,jσiσjSiSj
∂P̂

∂Sj

∂Q

∂Si

−

d
∑

j=1

∫

R
d

+

(

rSj −
1

2

d
∑

i=1

∂

∂Si
(ρi,jσiσjSiSj)

)

∂P̂

∂Sj
Q+ r

∫

R
d

+

P̂Q.

(24)

Let us now introduce the Hilbert space

V(Rd
+) =

{

v : v ∈ L2(Rd
+), Si

∂v

∂Si
∈ L2(Rd

+), i = 1, . . . , d

}

9

and its norm

‖v‖V =

(

‖v‖2L2(Rd

+
) +

d
∑

i=1

∥

∥

∥

∥

Si
∂v

∂Si

∥

∥

∥

∥

2

L2(Rd

+
)

)

1
2

.

We have the following result for problem (23) (see Theorem 2.11 in [1]).

Theorem 3.1. Let us assume that the matrix Ξ defined by Ξi,j = ρi,jσiσj is positive-definite. Then for

all f ∈ L2(Rd
+), there exists a unique function P̂ ∈ L2(0, T ;V)∩C0([0, T];L2(Rd

+)), with ∂P̂
∂t ∈ L2(0, T ;V ′)

such that, for any function φ ∈ D(0, T), for all v ∈ V,

−

∫ T

0

φ′(t)

(

∫

R
d

+

P̂ (t)v

)

dt+

∫ T

0

φ(t)bt(P̂ (t), v)dt = 0 (25)

and

P̂ (t = 0) = f. (26)

This result shows the existence and uniqueness of a weak solution for the problem (23).
In this work, our goal is to obtain the curve of prices for a put basket option which has a square-

integrable payoff. The price of call basket options can be obtained by the well-known put-call parity. So,
as initial condition we consider the payoff function:

f(S1, . . . , Sd) =

(

K −
1

d

d
∑

i=1

Si(0)

)

+

(27)

where the constant K is the strike of the option.
Three new difficulties appear when we want to apply the greedy algorithm (4) to solve the problem

(23) when we compare it with the application of the greedy algorithm to the case of the Poisson problem
studied in [6]:

1. It is a problem posed on an infinite domain.

2. It is a time-dependent problem.

3. We cannot simply recast the weak formulation (25) of the problem (23) as a minimization problem
because the bilinear form (24) is non-symmetric.

3.2 Formulation on a bounded domain

The financial assets Si for i = 1, . . . , d take values in [0,∞). Consequently, we have to deal with an
infinite domain. Let us then introduce the following transformations:

Ψ : R+ 7→ [0, 1], s 7→
s

s+ K
d

, (28)

Ψ−1 : [0, 1] 7→ R+, x 7→
xK

d(1− x)
. (29)

As remarked by Pommier in [9], the change of variables (28) maps bijectively R+ to the interval [0, 1]
and appears to be efficient in practice since it leads to a refined mesh around the singularity line of the
payoff function. In [9], Pommier explains that if we set a classical localized boundary-domain then the
volume next to this singularity decays exponentially with the dimension. This change of variables allows
us not to impose artificial boundary conditions contrary to classical truncation techniques. Proposi-
tion 3.1 below shows that with the change of variables (28), we get a well-posed problem in a bounded
domain without boundary conditions.

Applying the change of variable (28) into the equation (22), we obtain:

10

{

−∂u
∂t + L̃u = 0,

u(0, x1, . . . , xd) = (K − K
d

∑d
i=1

xi

1−xi
),

(30)

where u(t, x1, . . . , xd) = P (t, S1, . . . , Sd) with Si = Ψ(xi),(x1, . . . , xd) ∈ Ω = (0, 1)d and

L̃u = div(A∇u) +

d
∑

i=1



r + σ2
i xi − σ2

i +
σi

2

d
∑

j=1,j 6=i

ρi,jσj(2xj − 1)



xi(1 − xi)
∂u

∂xi
− ru,

with the matrix A given by

Ai,j(x1, . . . , xd) :=
ρi,jσiσj

2
xixj(1− xi)(1− xj). (31)

Then let us introduce the following Hilbert space

Ṽ(Ω) =

{

v ∈ L2(Ω) | ∀ 1 ≤ i ≤ d, (1− xi)xi
∂v

∂xi
∈ L2(Ω)

}

, (32)

endowed with the norm

‖v‖Ṽ =
(

‖v‖2L2(Ω) + |v|2
Ṽ

)
1
2

(33)

where

|v|2
Ṽ
=

d
∑

i=1

∥

∥

∥

∥

xi(1− xi)
∂v

∂xi

∥

∥

∥

∥

2

L2(Ω)

. (34)

In what follows, we need the following lemma:

Lemma 3.1. The space C∞
c (Ω) is dense in Ṽ(Ω).

This lemma can be directly deduced from Lemma 2.6 in [1].

Corollary 3.1. The following integration by parts formula holds:

∫

Ω

div(A∇u)v = −

∫

Ω

(A∇u)∇v, ∀u, v ∈ Ṽ(Ω). (35)

Proof. It follows from Lemma 3.1. �

Therefore, multiplying −L̃u by a test function v ∈ C∞
c (Ω) and then using (35), we get the following

bilinear form:

b̃t(u, v) =

∫

Ω

(A∇u)∇v −

∫

Ω

(a∇u)v +

∫

Ω

ruv. (36)

where a = (a1, . . . , ad) : Ω 7→ R
d is the vector field with i-th component given by

ai(x1, . . . , xd) = xi(1− xi)



r + σ2
i xi − σ2

i +
σi

2

d
∑

j=1,j 6=i

ρijσj(2xj − 1)



 , (37)

The following result holds for the the bilinear form defined in (36)

Lemma 3.2. The bilinear form b̃t is continuous from Ṽ × Ṽ, that is, there exists a constant c that does
not depend on t such that for all functions v, w ∈ Ṽ

b̃t(v, w) ≤ c‖v‖Ṽ |w|Ṽ (38)

Moreover, the bilinear form b̃t verifies a Garding inequality, that is, there exist two positive constants
c > 0 and λ > 0 such that for all functions v ∈ Ṽ

b(v, v) ≥ c|v|2
Ṽ
− λ‖v‖2L2(Ω) (39)

11

Proof. The Garding inequality is obtained by observing that the first order term satisfies the
following:

∣

∣

∣

∣

∫

Ω

p(x1, . . . , xd)
∂v

∂xi
v

∣

∣

∣

∣

≤
1

2

∣

∣

∣

∣

∫

Ω

∂p

∂xi
(x1, . . . , xd)v

2

∣

∣

∣

∣

,

where p(x1, . . . , xd) is a polynomial. The proof of the continuity uses the same arguments. �

Thus, we obtain the following result concerning the existence and uniqueness of the solution for the
weak formulation associated to the problem (30).

Proposition 3.1. For all function g ∈ L2(Ω), there exists a unique u ∈ L2(0, T ; Ṽ) ∩ C0([0, T];L2(Ω)),
with ∂u

∂t ∈ L2(0, T ; Ṽ ′) such that for any function φ ∈ D(0, T), for all function v ∈ Ṽ,

−

∫ T

0

φ′(t)

∫

Ω

u(t)vdt+

∫ T

0

φ(t)b̃(u, v)dt = 0, (40)

and
u(t = 0) = g (41)

Moreover, u solution of (40) is related to P̂ solution of (25) by the functions defined in (28) and (29).

This proposition can be deduced from Lemma 3.2 using standard techniques, see [1].

3.3 The IMEX scheme and the Black-Scholes equation as a minimization

problem

To apply the greedy algorithm (4), our goal is to rewrite the problem (30) as a minimization problem. As
a first step, we propose to use an Euler scheme to discretize the problem in time. Let us consider a time
discretization grid of M+1 points, τ0 = 0 ≤ . . . ≤ τM = T , where τi = i∆t and ∆t = T

M . We introduce a
time discretization of the variational formulation (40) where we treat explicitly the non-symmetric part
of b̃t and implicitly its symmetric terms (IMEX scheme).

For i = 1, . . . ,M , find ui ∈ Ṽ such that

∫

Ω

uiv +
∆t

1 + r∆t

∫

Ω

(A∇ui)∇v −
∆t

2(1 + r∆t)

[∫

Ω

(a∇ui)v +

∫

Ω

(a∇v)ui

]

=
1

1 + r∆t

∫

Ω

ui−1v +
∆t

2(1 + r∆t)

[∫

Ω

(a∇ui−1)v −

∫

Ω

(a∇v)ui−1

]

, ∀v ∈ Ṽ.

(42)

Thus, using that the left hand side of the equation (42) is symmetric in ui and v, we are led to solve
the following sequence of minimization problems

For i = 1, . . . ,M :

Find ui ∈ Ṽ(Ω) such that ui = argmin
u∈Ṽ(Ω)

Ei(u) (43)

where

Ei(u) =
1

2

∫

Ω

|u|2 +
∆t

2(1 + r∆t)

[∫

Ω

(A∇u)∇u −

∫

Ω

(a∇u)u

]

−
1

1 + r∆t

∫

Ω

ui−1u−
∆t

2(1 + r∆t)

[
∫

Ω

(a∇ui−1)u−

∫

Ω

(a∇u)ui−1

]

.

(44)

Let us introduce the bilinear symmetric form â(u, v)

â(u, v) =

∫

Ω

uv +
∆t

1 + r∆t

∫

Ω

(A∇u)∇v −
∆t

2(1 + r∆t)

[∫

Ω

(a∇u)v +

∫

Ω

(a∇v)u

]

, ∀u, v ∈ Ṽ (45)

12

and the linear form

Li−1(v) =
1

1 + r∆t

∫

Ω

ui−1v +
∆t

2(1 + r∆t)

[∫

Ω

(a∇ui−1)v −

∫

Ω

(a∇v)ui−1

]

, ∀v ∈ Ṽ. (46)

We have that Ei(u) =
1
2 â(u, u)− Li−1(u).

3.4 Stability analysis for the IMEX scheme

In this section, we study the L2-stability of the IMEX scheme (42). Let us consider un the solution of
the problem (43) at time τn. In our context, the meaning of stability is given in the following definition.

Definition 3.1. The numerical scheme (42) is L2-stable if there exists a constant C > 0 that does not
depend on the discretization parameter ∆t such that for any initial condition u0 and for all n ≥ 0

‖un‖L2 ≤ C‖u0‖L2

We will see that the scheme (42) is L2-stable under a condition on the time step ∆t. For the sake of
simplicity we take r = 0. Let us begin with the following lemma:

Lemma 3.3. Let us assume that the matrix Ξ defined by Ξi,j = ρi,jσiσj , i, j = 1, . . . , d, is positive-
definite. Then there exists a constant α > 0 such that

∫

Ω

(A∇u)∇u ≥ α|u|2
Ṽ
, ∀u ∈ Ṽ. (47)

Proof. Using that the matrix Ξ is positive-definite, we have

∫

Ω

d
∑

i,j=1

ρijσiσj

2
xi(1− xi)

∂u

∂xi
xj(1− xj)

∂u

xj
=

∫

Ω

Y TΞY ≥

(

min
λ∈Sp(Ξ)

λ

)

|u|2
Ṽ

where Sp(Ξ) denotes the set of eigenvalues of the matrix Ξ and Y is the vector such that Yi = xi(1−xi)
∂u
∂xi

.
This proves (47) with α = minλ∈Sp(Ξ) λ. �

Now, we can state the following proposition:

Proposition 3.2. The scheme proposed in (42) is L2-stable under the following condition on the time
step ∆t

∆t <
1

2
(

4(‖ã‖∞+‖ div(a)‖∞)
α + α

2

) (48)

where the constant α is defined in Lemma 3.3 and ã is the vector such that for all i = 1, . . . d

ãi =



r + σ2
i xi − σ2

i +
σi

2

d
∑

j=1,j 6=i

ρi,jσj(2xj − 1)



 .

Proof.

Let us take r = 0 and v = ui in the variational formulation (42). Thus, we obtain

1

2∆t

(
∫

Ω

|ui|2 − |ui−1|2
)

+
1

2∆t

∫

Ω

|ui − ui−1|2 +

∫

Ω

(A∇ui)∇ui −

∫

Ω

(a∇ui)ui

=
1

2

[∫

Ω

(a∇ui−1)ui −

∫

Ω

(a∇ui)ui−1

]

⇔
1

2∆t

(∫

Ω

|ui|2 − |ui−1|2
)

+
1

2∆t

∫

Ω

|ui − ui−1|2 +

∫

Ω

(A∇ui)∇ui

−
1

2

∫

Ω

(a∇(ui + ui−1))ui −
1

2

∫

Ω

(a∇ui)(ui − ui−1) = 0. (49)

13

Moreover, we note that ai = xi(1− xi)ãi and that ã ∈ L∞(Ω).
Thus, for all ǫ > 0 we have that

∣

∣

∣

∣

∫

Ω

(a∇ui)(ui − ui−1)

∣

∣

∣

∣

≤ ǫ|ui|2
Ṽ
+

‖ã‖∞
4ǫ

∫

Ω

|ui − ui−1|2. (50)

Besides, using the integration by parts given by (35) to study the term
∫

Ω
(a∇(ui + ui−1))ui, we

observe that

∣

∣

∣

∣

∫

Ω

a∇ui(ui + ui−1)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

a∇ui
(

2ui + (ui−1 − ui)
)

∣

∣

∣

∣

,

≤ ǫ|ui|2
Ṽ
+

‖ã‖∞
4ǫ

(∫

Ω

2|ui − ui−1|2 +

∫

Ω

8|ui|2
) (51)

and

∣

∣

∣

∣

∫

Ω

div(a)ui(ui + ui−1)

∣

∣

∣

∣

≤
‖ div(a)‖∞

4ǫ

(∫

Ω

2|ui − ui−1|2 +

∫

Ω

8|ui|2
)

+ ǫ

∫

Ω

|ui|2. (52)

Then, using (50), (51) and (52), we deduce from (49) that

[

1

2∆t
−

‖ã‖∞
ǫ

−
‖ div(a)‖∞

ǫ
−

ǫ

2

] ∫

Ω

|ui|2 + (α − ǫ)|ui|2
Ṽ

+

[

1

2∆t
−

‖ã‖∞
4ǫ

−
‖ div(a)‖∞

4ǫ

] ∫

Ω

|ui − ui−1|2 ≤
1

2∆t

∫

Ω

|ui−1|2.

(53)

So, if we assume the condition (48) and we choose ǫ = α
2 , then we can deduce the following three

inequalities:

α > ǫ,
1

2∆t
−

‖ã‖∞ + ‖ div(a)‖∞
ǫ

−
ǫ

2
> 0 and

1

2∆t
>

‖ã‖∞ + ‖ div(a)‖∞
4ǫ

. (54)

Consequently, we get

∫

Ω

|ui|2 ≤
1

1− C∆t

∫

Ω

|ui−1|2

≤ (1 + 2C∆t)

∫

Ω

|ui−1|2

≤ (1 + 2C∆t)M
∫

Ω

|u0|2

≤ e2CT

∫

Ω

|u0|2,

where C = 2
(

(‖ã‖∞+‖ div(a)‖∞)
ǫ + ǫ

2

)

is a constant which is independent of the discretization parame-

ter ∆t. �

3.5 Implementation of the greedy algorithm for the Black-Scholes PDE

To simplify the notation we consider the case of only three dimensions, but the definition of the algorithm
and all the equations below can be easily generalized to a d-dimensional framework.

We recall that the greedy algorithm will generate the function ui in the separated representation:

ui(x1, x2, x3) =
∑

k≥1

rik ⊗ sik ⊗ tik(x1, x2, x3).

14

The greedy algorithm (43) is defined as follows: For i = 1, . . . ,M , iterate on n ≥ 1

(rin, s
i
n, t

i
n) ∈ argmin

r ∈ Ṽ(Ω1),

s ∈ Ṽ(Ω2),

t ∈ Ṽ(Ω3)

1

2
â(r⊗s⊗ t, r⊗s⊗ t)−Li−1(r⊗s⊗ t)− â

(

n−1
∑

k=1

rik ⊗ sik ⊗ tik, r ⊗ s⊗ t

)

(55)

where â is defined by (45) and Li−1 by (46).

Then, the Euler equation associated with the problem (55), that is used in practice to implement the
algorithm, is given by:

Find (rin, s
i
n, t

i
n) ∈ Ṽ(Ω1)×Ṽ(Ω2)×Ṽ(Ω3) such that for any functions (r, s, t) ∈ Ṽ(Ω1)×Ṽ(Ω2)×Ṽ(Ω3)

â(rin ⊗ s
i
n ⊗ t

i
n, r ⊗ s

i
n ⊗ t

i
n + r

i
n ⊗ s⊗ t

i
n + r

i
n ⊗ s

i
n ⊗ t) = Li−1(r ⊗ s

i
n ⊗ t

i
n + r

i
n ⊗ s⊗ t

i
n + r

i
n ⊗ s

i
n ⊗ t)

+â

(

r ⊗ s
i
n ⊗ t

i
n + r

i
n ⊗ s⊗ t

i
n + r

i
n ⊗ s

i
n ⊗ t,

n−1
∑

k=1

r
i
k ⊗ s

i
k ⊗ t

i
k

)

(56)

Henceforth, we will consider without loss of generality s = 0 and t = 0 in order to study in detail each
term of this Euler equation (56). We recall that the Euler equation is solved using a fixed point procedure
as in (14).

Remark 3.1. All the high-dimensional integrals in (56) are easily calculated using Fubini’s rule because
the functions in these integrals are separable except for i = 1 where the term u0 appears as follows:

∫

Ω1×Ω2×Ω3

r ⊗ sin ⊗ tin(x1, x2, x3)u
0(x1, x2, x3)dx1, dx2dx3, (57)

The idea used to overcome this practical obstacle is to approximate, in a preliminary step, the initial
condition u0 of the Black-Scholes PDE by a sum of tensor products as explained in Section 2.2. Once
the initial condition u0 has a separated approximation:

u0(x1, x2, x3) =
∑

k≥1

r0k ⊗ s0k ⊗ t0k(x1, x2, x3).

the integral (57) is easy to compute using Fubini’s rule.

Using the space discretization described in Section 2.2 and the notation given by (15), the following
vectors will be used:

r
i

n
= [rin,0, . . . , r

i
n,N]T , s

i

n
= [sin,0, . . . , s

i
n,N]T , t

i

n
= [tin,0, . . . , t

i
n,N]T ,

Given the fact that all the terms in the equation (56) admits a separated representation, the equa-
tion (56) can be written in a matrix form.

The following matricial expressions allow us to deduce the matricial form for the equation (56):

∫

Ω1×Ω2×Ω3

(rin ⊗ sin ⊗ tin)(r ⊗ sin ⊗ tin) = [tin
T
Mt

i

n][s
i

n

T
Ms

i

n]Mr
i

n,

∫

Ω1×Ω2×Ω3

(

A∇(rin ⊗ s
i
n ⊗ t

i
n)
)

∇(r ⊗ s
i
n ⊗ t

i
n) =

(

σ2
2

2
[tin

T
Mt

i

n][s
i

n

T
Ls

i

n] +
σ2
3

2
[tin

T
Lt

i

n][s
i

n

T
Ms

i

n]

)

Mr
i

n

+
(ρ1,2σ1σ2

2
[tin

T
Mt

i

n][s
i

n

T
Ds

i

n] +
ρ1,3σ1σ3

2
[tin

T
Dt

i

n][s
i

n

T
Ms

i

n]
)

(D +D
T)rin +

σ2
1

2
[sin

T
Ms

i

n][t
i

n

T
Mt

i

n]Lr
i

n,

15

∫

Ω1×Ω2×Ω3

(

a∇(rin ⊗ s
i
n ⊗ t

i
n)
)

(r ⊗ s
i
n ⊗ t

i
n) = [sin

T
Ms

i

n][t
i

n

T
Mt

i

n]Br
i

n +
(ρ1,2σ1σ2

2
[sin

T
Cs

i

n][t
i

n

T
Mt

i

n]

+
ρ1,3σ1σ3

2
[tin

T
Ct

i

n][s
i

n

T
Ms

i

n]
)

Dr
i

n +
(ρ1,2σ1σ2

2
[tin

T
Mt

i

n][s
i

n

T
Ds

i

n]

+
ρ1,3σ1σ3

2
[tin

T
Dt

i

n][s
i

n

T
Ms

i

n]
)

Cr
i

n +
(

[tin
T
Mt

i

n][s
i

n

T
Bs

i

n]

+
ρ2,3σ2σ3

2
[tin

T
Ct

i

n][s
i

n

T
Ds

i

n] + [tin
T
Bt

i

n][s
i

n

T
Ms

i

n]

+
ρ2,3σ2σ3

2
[tin

T
Dt

i

n][s
i

n

T
Cs

i

n]
)

Mr
i

n

where the matrices M,L,B,C,D are explicitly computable tridiagonal matrices of size N ×N , with N

the number of intervals in each direction. The computation of the components for these matrices boils
down to one-dimensional integrals.

In this way, solving (56) with a fixed point procedure allows us to obtain for a fixed i such that
1 ≤ i ≤ N , the n-th term of the sum

∑n
k=1 r

i
k ⊗ sik ⊗ tik which is an approximation of the solution at

time ti = i∆t of the problem (30).

4 Numerical results

4.1 Testing the method against an analytical solution

In this part, we apply our greedy algorithm (55) to solve the problem (30) with the following initial
condition:

u(0, x1, . . . , xd) =

(

K −

d
∏

i=1

xi

(1 − xi)

)+

(58)

for which the solution is analytically known.

Using the Feynman-Kac theorem (21) we get that the solution of the PDE (23) is given by E

[

e−rT (K −
∏d

i=1 S
i
T)

+
]

,

which is possible to calculate analytically in the Black-Scholes model. We have:

E

[

e−rT (K −

d
∏

i=1

Si
T)

+

]

= e−rTKP

(

K >

d
∏

i=1

Si
T

)

− e−rT
E

[

d
∏

i=1

Si
T1{K>

∏
d

i=1
Si

T}

]

(59)

We get the quantity P

(

K >
∏d

i=1 S
i
T

)

as follows:

P

(

K >

d
∏

i=1

Si
T

)

= P

(

e
∑

d

i=1
Xi

T <
K

∏d
i=1 S

i
0

)

= P

(

Y < log

(

K
∏d

i=1 S
i
0

))

where X i
T = (r−

σ2
i

2)T + σiW
i
T and Y =

∑d
i=1 X

i
T is a normal random variable with mean equals to

∑d
i=1

(

r −
σ2
i

2

)

T and variance given by
∑d

i=1

∑d
j=1 ρijσiσjT .

Besides, we remark that:

E

[

d
∏

i=1

Si
T1{K>

∏
d

i=1
Si

T}

]

= E

[

eY 1{eY < K
∏

d
i=1

Si
0

}

] d
∏

i=1

Si
0

where the last term can be calculated analytically. We remark that the analytic solution (59) is not
separable with respect to each coordinate.

We present in figure 4 a numerical example of the solution obtained with our algorithm and the
analytic solution. In figure 5 we see the same surface but intersected with the plane x1 = x2.

Figure 6 shows the convergence curves, i.e, the L2 relative error with respect to the number of
iterations of the algorithm according to the dimension. We note that the number of iterations needed to
obtain convergence increases as the dimension of the problem increases.

16

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Analytical solution and solution obtained by the greedy method

exacte
greedy

x

y

Figure 4: The analytical solution and the numerical one obtained with our method for the problem (23)
with the initial condition (58) in a two-dimensional framework. For this example, we consider ∆t = 1

100
and ∆x = 1

30 .

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1

Analytic solution
Approximated solution by greedy algorithm

Figure 5: The analytical solution and the numerical one obtained with our method for the problem (23)
with the initial condition (58) in a two-dimensional framework. We represent the intersection between
the surface in figure 4 and the plane x1 = x2. For this example, we consider ∆t = 1

100 and ∆x = 1
30 .

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
er

ro
r

Number of iterations

Convergence curves for the analytic solution

2D
3D
4D
5D
6D
7D
8D

Figure 6: Convergence curves for the solution at time T of the equation (23) with initial condition given
by (58). To obtain this curves, we consider ∆x = 0.1 for each dimension and ∆t = 0.01.

17

4.2 Results on the Black-Scholes equation

In this section, we show the results that we obtained applying our greedy algorithm described in the
previous section to the Black-Scholes equation.

Figure 7 represents the approximation of the solution at time T to the problem (23) with initial
condition (27) obtained using our greedy algorithm defined by the equations (56)

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

-10

 0

 10

 20

 30

 40

 50

 60

Price Basket Put Option at the maturity

x

y

Figure 7: The approximated solution obtained with our method for the problem (23) with the initial
condition (27).

Figure 8 represent the price of a basket put option when all the assets take the same value, i.e. S1 =
. . . = Sd. Precisely, Figure 8 compares prices obtained with different discretizations ∆x.

 1

 2

 3

 4

 5

 6

 7

 40 45 50 55 60

∆x=1/10
∆x=1/20
∆x=1/30

Monte Carlo

Figure 8: The approximated solution obtained with our method for the problem (23) with the initial
condition (27) in a four-dimensional framework. For these results, we set ∆x = 0.1, 0.2 and ∆t = 0.01.

In terms of computational time, the greedy approach (55) is not competitive compared to Monte
Carlo methods when one is interested in the price of only one value of the spot, but on the other side
the curve of prices is obtained for any time t ∈ [0, T] and any price spot.

4.3 Application as a variance reduction method

In this part, we show that we can use the solution obtained by the greedy method described above in
order to find a control variable to reduce the variance when calculating the price an of option.

We can re-write the equations (19) and (20) which define the Black-Scholes model as follows:

dSi
t

Si
t

= rdt + σi
d
∑

j=1

Hi,jdW
j
t (60)

18

Dimension Without variance reduction With variance reduction
4 0.1233 0.0012
5 0.1204 0.0034
6 0.1197 0.0078
7 0.1245 0.0113
8 0.1257 0.0254

Table 2: Variance with a correlation parameter ρi,j = 0.9 constant between all the assets.

where W is a d-dimensional Brownian motion and the matrix H verifies HHt = Σ where Σ is a d × d

matrix such that Σi,j = 1 if j = i and Σi,j = ρij otherwise.
We recall that the price of a basket put option is given by

E
[

e−rTf(S1
T , S

2
T , . . . , S

d
T)
]

where f(S1
T , S

2
T , . . . , S

d
T) =

(

K − 1
d

∑d
i=1 S

i
T

)

+
.

Now, for the sake of simplicity, let us consider r = 0. Generalization to r 6= 0 is straightforward. Let
us introduce the Kolmogorov equation:

{

∂tP̂ − 1
2A : ∇2P̂ = 0

P̂ (0, x) = f(x)
(61)

where A = FH(FH)T and F is a diagonal matrix such that Fi,i = σiSi for i = 1, . . . , d. Notice that

P̂ (T, S0) = E
[

f(S1
T , S

2
T , . . . , S

d
T)
]

.

Therefore, we have

P̂ (0, ST)− P̂ (T, S0) =

∫ T

0

FH ∇P̂ (T − t, St)dBt

and thus,

P̂ (T, S0) = f(ST)−

∫ T

0

FH ∇P̂ (T − t, St)dBt (62)

The random variable Y =
∫ T

0
FH ∇P̂ (T − t, St)dBt has zero mean and is a perfect control variable

since

Var [f(ST)− Y] = 0.

As we do not know the solution P̂ , in practice, we calculate an approximation P̂ ⋆ of P̂ using the
greedy algorithm presented in Section 3. Therefore, we obtain an approximated control variable Y ⋆ =
∫ T

0 FH ∇P̂ ⋆(T−t, St)dBt and we can compute an approximation of P̂ (T, S0) by Monte Carlo, computing
the following quantity:

E

[

f(ST)−

∫ T

0

FH ∇P̂ ⋆(T − t, St)dBt

]

.

We remark that this idea can be applied to any payoff function and that for a new value of S0 we use
the same approximation P̂ ⋆.

In Table 2 and 3 we present the performance of our variance reduction method compared with the
variance obtained with the classical method, i.e. calculating directly E[f(ST)].

For two typical values of the correlation, we observe that the reduction of the variance is important,
for example, up to a factor 6 in dimension 8.

19

Dimension Without variance reduction With variance reduction
4 0.1256 0.0023
5 0.1248 0.0045
6 0.1230 0.0096
7 0.1199 0.0158
8 0.1232 0.0296

Table 3: Variance with a correlation parameter ρi,j = 0.1 constant between all the assets.

References

[1] Y. Achdou and O. Pironneau. Computational methods for option pricing, volume 30 of Frontiers in
Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2005.

[2] A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings. A new family of solvers for some classes of
multidimensional partial differential equations encountered in kinetic theory modeling of complex
fluids. J. Non-Newtonian Fluid Mech., 139:153–176, 2006.

[3] E. Cancès, V. Ehrlacher, and T. Lelievre. Convergence of a greedy algorithm for high-dimensional
convex nonlinear problems. Mathematical Models and Methods in Applied Sciences, 21(12):2433–
2467, 2011.

[4] R. A. DeVore and V. N. Temlyakov. Some remarks on greedy algorithms. Adv. Comput. Math.,
5:173–187, 1996.

[5] P. Ladevèze and J. G. Simmonds. Nonlinear computational structural mechanics: new approaches
and non-incremental methods of calculations. Springer, 1999.

[6] C. Le Bris, T. Lelièvre, and Y. Maday. Results and questions on a nonlinear approximation approach
for solving high-dimensional partial differential equations. Constructive Approximation, 30(3):621–
651, 2009.

[7] A. Nouy. A generalized spectral decomposition technique to solve a class of linear stochastic partial
differential equations. Comput. Methods Appl. Mech. Engrg., 196:4521–4537, 2007.

[8] A. Nouy. Proper generalized decompositions for a priori model reduction of problems formulated in
tensor product spaces: Alternative definitions and algorithms. Proceedings of the Seventh Interna-
tional Conference on Engineering Computational Technology, Civil-Comp Press, 2010.

[9] D. Pommier. Méthodes numériques sur des grilles sparse appliquées à l’évaluation d’options en
finance. PhD thesis, Université Pierre et Marie Curie, 2008.

[10] V. N. Temlyakov. Greedy approximation. Acta-Numerica, 17:235–409, 2008.

20

