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ASSESSING THE LIQUEFACTION RISK REDUCTION OF
REINFORCED SOILS: A HOMOGENIZATION APPROACH

Maxime Gueguin, Ghazi Hassen and Patrick de Buhan
Université Paris-Est, Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR, Marne-La-Vallée, France

ABSTRACT: In this contribution, an evaluation is given for the reduction of the liquefaction
risk, which can be expected from reinforcing the soil by a periodic array of inclusions. Following
a definition of the liquefaction risk reduction factor, the link is then established with the increase
of longitudinal shear stiffness of the reinforced soil. Based on the homogenization theory for
elastic periodic media, different geometries of the reinforcing inclusions are examined, with a
particular focus on circular cylindrical (columnar) inclusions on the one hand, two mutually or-
thogonal arrays of trenches (cross trench configuration) on the other hand. A variational method
based on minimum energy principles allows the derivation of theoretical lower and upper bounds
for the reinforced soil longitudinal shear modulus. A comparison with results obtained from nu-
merical simulations performed with a standard finite element code is then presented.

1 INTRODUCTION

Soils reinforced by inclusions may be considered as composite materials and studied using
homogenization methods. These methods are applicable considering the fact that the spacing
between two neighboring columns is small in comparison with the overall dimensions of the
structure. The validity of the homogenization method has been demonstrated as concerned the
evaluation of the macroscopic elastic behaviour of fibre composite materials (Hashin & Rosen
1964; Hashin 1983) as well as, at a much larger scale, for soils strengthened by columnar in-
clusions (Balaam & Booker 1981; Canetta & Nova 1989; Abdelkrim & de Buhan 2007). Yet,
the applications to geotechnical problems have been so far restricted to the evaluation of the set-
tlement of the reinforced foundation under vertical loading and the pure shear loading problem
has been rarely the subject of studies, even if it plays a major role in the response of reinforced
ground subject to earthquake loading.

The present contribution intends to evaluate the liquefaction risk for a reinforced soil un-
der a seismic solicitation, both constituents being considered as isotropic linear elastic materials
with perfect bonding at their interface. First of all, a liquefaction risk reduction factor is defined,
based on the analysis of the behaviour of a reinforced soil subject to a seismic wave, involving
its macroscopic longitudinal shear stiffness (section 2). Two configurations will be more specif-
ically studied. First, section 3 derives the analytical bounds for the longitudinal shear stiffness
of a column-reinforced soil and the associated liquefaction risk reduction factor. Then section 4
develops the same evaluation for a cross trench reinforced soil and a comparison with the pre-
vious configuration is carried out, exhibiting a much greater efficiency in terms of liquefaction
risk reduction for the cross trench configuration than for the columnar configuration.



2 SOIL REINFORCEMENT AS A LIQUEFACTION MITIGATION TECHNIQUE

2.1 Problem statement

Earthquakes induce major troubles on civil engineering structures, which may lead to major
disasters. From a geotechnical point of view, one of the biggest threats is the so-called soil liq-
uefaction phenomenon. Indeed a seismic solicitation involves a cyclic shear strain of the ground,
which generates an excess pore water pressure in the different water-satured materials (sands
or silts), leading to a liquefaction phenomenon, that is a collapse of their resistance. This may
considerably reduce the bearing capacity of the soil.
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Fig. 1. Vertical propagation of a seismic shear wave in a soil layer.

The loading induced by a seismic loading can be schematized by a harmonic shear wave (see
Figure 1) defined as:

ξ (x, t) = δ sin
[
ω
(
t− x3

c

)]
e1 (1)

where δ is the horizontal displacement amplitude and ω the angular frequency which character-
ize the seismic loading.

The shear wave velocity c is a characteristic of the soil and can be linked to the soil mass
density ρ and the longitudinal shear stiffness GL by the following classical relationship:

c =

√
GL

ρ
(2)

where GL is the component of the elastic stiffness tensor of the soil relating the shear stress and
strain in the (e1, e3) plane. For an isotropic elastic material, GL reduces to the classical shear
modulus (Lamé constant).

The cyclic strain field associated with the displacement field given by (1) is then:

ε (x, t) = −δ ω
2c

cos
[
ω
(
t− x3

c

)]
(e1 ⊗ e3 + e3 ⊗ e1) (3)



corresponding to a pure shear strain amplitude γ equal to:

γ = δ
ω

2c
=
δω

2

√
ρ

GL

(4)

The accumulation of excess pore pressure, and thus the risk of liquefaction, is directly connected
to this cyclic shear strain amplitude.

2.2 Shear strain amplitude localization in reinforced soils

In order to avoid any risk of liquefaction a possible solution is to strengthen the soil by the in-
corporation of inclusions (example of stone or vibro-concrete columns: Baez & Martin (1993)
and Adalier et al. (2003)). The volume fraction occupied by the inclusion is denoted by η. One
should distinguish the macroscopic shear strain amplitude γhom of the reinforced soil, seen as a
homogenized material, and the average of the amplitude 〈γ〉s in the original soil in the presence
of reinforcement.

An isotropic non-reinforced soil with a shear stiffness denoted by Gs is first compared to
a reinforced soil, the macroscopic longitudinal shear stiffness of which is denoted by GL. The
ratio between the shear strain amplitude of these two materials subject to the same shear wave
(1) (γs and γhom respectively) is deduced from (4):

γhom

γs
=

√
Gs

GL

(5)

with the simplifying assumption that the original soil mass density ρs is almost equal to the re-
inforced soil mass density 〈ρ〉 = (1− η)ρs + ηρr. It is clear that this ratio is less than or equal
to one, since the reinforcement strengthens the original soil. The amplitude of the homogenized
soil shear strain is then smaller than that of the original soil (see Fig. 2).
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Fig. 2. Shear strain amplitude: (a) case of non-reinforced soil, (b) case of reinforced soil.

In fact, the relevant comparison is to be made between γs and the average value of the shear
strain 〈γ〉s in the soil in the presence of reinforcement (see Figure 3), defined as:

ε = γhom (e1 ⊗ e3 + e3 ⊗ e1) → 〈γ〉s =
1

Cs

∫
Cs
ε13 dV = λγhom (6)



where Cs denotes the domain occupied by the soil and λ is defined as a localization factor. Its
value depends on the geometry of the inclusions as it will be seen in the following sections,
but will be greater than unity, the original soil having a smaller stiffness Gs than reinforcement
material denoted by Gr.
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Fig. 3. Shear strain amplitude: (a) case of reinforced soil see as a homogenized material, (b) decomposition in both constituants.

The reduction of potential risk of soil liquefaction to be expected from the stiffening of
the reinforcement by inclusions, which will conventionally be called risk reduction factor R, is
defined as:

R =
〈γ〉s
γs

= λ

√
Gs

GL

(7)

This factor, to be compared to unity, expresses the competition between the strenghtening ef-
fect and the localization in the soil. An evaluation of R will be now performed for different
geometries of reinforcement.

3 LONGITUDINAL SHEAR MODULUS AND RISK REDUCTION FACTOR OF
COLUMN-REINFORCED SOIL

The first case investigated is a group of circular cylindrical columnar inclusions introduced in a
soil with a volume fraction η = πρ2, where ρ is the radius of a column, assuming that the side of
the unit cell is taken equal to unity (Figure 4).

Fig. 4. Unit cell for a column configuration of reinforcement.



3.1 Upper bound estimate for GL

It can proved (Gueguin et al. 2013) that, for any macroscopic strain ε and any displacement
field ξ′ kinematically admissible with ε, the minimum principle of the potential energy gives the
following inequality:

∀ε, ∀ξ′ k.a. with ε,
1

2
ε : chom : ε ≤

〈
1

2
ε′(x) : c(x) : ε′(x)

〉
(8)

where c(x) denotes the fourth order tensor of elastic moduli at point x of the unit cell and chom
represents the macroscopic elastic stiffness tensor.

The prescribed macroscopic strain ε being of the form:

ε = Γ (e1 ⊗ e3 + e3 ⊗ e1) (9)

it follows that for this particular shear strain the left member of (8) simplifies to:

1

2
ε : chom : ε = 2GLΓ

2 (10)

so that we obtain an upper bound value for the macroscopic longitudinal shear modulus:

∀ξ′ k.a. with ε = Γ (e1 ⊗ e3 + e3 ⊗ e1) , GL ≤
〈
ε′(x) : c(x) : ε′(x)

〉
4Γ 2

(11)

For an adequate displacement field ξ′, it can be proved that the upper bound is expressed as:

GL ≤ Gub
L,col = Gs

[
1 +

2η (Gr −Gs)

(Gr +Gs)− 4η
π

(Gr −Gs)

]
(12)

3.2 Lower bound estimate for GL

Using the minimum principle of the complementary energy with a macroscopic stress Σ as load-
ing parameter, a lower bound can be found for the same problem. For any stress field σ′ statically
admissible with Σ, this principle may be written as:

∀Σ, ∀σ′ s.a. with Σ,
1

2
Σ : shom : Σ ≤

〈
1

2
σ′(x) : s(x) : σ′(x)

〉
(13)

where shom =
(
chom

)−1 and s(x) = (c(x))−1 are the macroscopic and local elastic compliance
tensors, respectively.

For a macroscopic pure shear stress Σ of the form:

Σ = T (e1 ⊗ e3 + e3 ⊗ e1) (14)

the inequality (13) gives:

∀σ′ s.a. with Σ = T (e1 ⊗ e3 + e3 ⊗ e1) ,
T 2

2GL

≤
〈

1

2
σ′(x) : s(x) : σ′(x)

〉
(15)



As a result, for an appropriately selected stress field (Gueguin et al. 2013), a lower bound for
the longitudinal shear modulus of a column reinforced soil may be written as:

GL ≥ Glb
L,col = Gs

[
1− 2η (Gr −Gs)

(Gr +Gs) + 4η
π

(Gr −Gs)

]−1

(16)

3.3 Comparison with numerical results for R

Two different estimates R+
col and R−col of the risk reduction factor can be obtained from the dis-

placement and stress fields previously used for deriving the bounds of GL. Both are represented
in Figure 6 as functions of the reinforcement volume fraction. After calculations, the first risk
reduction factor estimate obtained from the displacement field is:

R+
col = λ+

col

√
Gs

Gub
L,col

(17)

with

λ+
col =

1

1− η

1− 2η(
1 + Gr

Gs

)
+ 4η

π

(
1− Gr

Gs

)
 (18)

The second risk reduction factor estimate derives from the stress field used for deriving the
lower bound of GL and can be expressed as:

R−col = λ−col

√
Gs

Glb
L,col

(19)

where

λ−col =
Glb
L,col

Gs

1

1− η

1− 2ηGr

Gs(
1 + Gr

Gs

)
− 4η

π

(
1− Gr

Gs

)
 (20)

R+
col and R−col can also be compared with numerical simulations performed with the standard

finite element code Cast3M (2003). Owing to the symmetries of geometry and loading, it can
be proved that calculations may be done on a ”slice” of the half unit cell. For this comparison,
typical values of material parameters are adopted, namely a shear stiffness ratio between the
column and the soil Gr

Gs
equal to 10 and a reinforcement volume fraction varying from η = 0% to

η = 40%. An exaggerated deformed configuration of the reinforced soil is sketched in Figure 5
(with η = 12.6%) and an evaluation of R is numerically performed under shear loading.

It can be seen from Figure 6 that the two estimates R+
col (plain curve) and R−col (dashed curve)

bracket the numerical values (square symbols) even though they cannot be rigorously interpreted
as bounds on R. It is worth noting that their average value (dashdotted curve) is a very accurate
estimate for the reduction factor, numerical and analytical estimates show that column reinforce-
ment technique is almost useless in terms of risk liquefaction reduction. Indeed the different
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Fig. 5. Deformed configuration of a column reinforced soil under longitudinal shear loading (f.e.m calculation).

estimates of R being greater than unity, a slight increase in risk may be even observed for a
column reinforced soil.
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Fig. 6. Evaluations of the liquefaction risk reduction factor for a column reinforced soil.

4 THE CASE OF CROSS TRENCH CONFIGURATION

Performance of the most frequently used configuration of reinforcement by columnar inclusions
being poor, a potentially innovative reinforcement technique (which is beginning to develop in
practice) consists in improving the soil by a network of two perpendicular arrays of trenches,
forming a ”honeycomb structure” embedded in the soil. This geometry is sketched in Figure 7
and will be called cross trench configuration. The thickness of a trench is noted t and the side of
the unit cell is taken equal to unity so that the reinforcement volume fraction is η = t(2− t).



Fig. 7. Unit cell for a cross trench configuration of reinforcement.

4.1 Bounds and numerical estimates

Both variationnal methods already used for the column reinforced soil are implemented for the
cross trench reinforcement configuration. On the basis of analytical calculations developed by
Gueguin et al. (2013), it can be established that a first estimate of the risk reduction factor de-
duced from (8) is:

R+
ct = λ+

ct

√
Gs

Gub
L,ct

(21)

with

Gub
L,ct = Gr

[ √
1− η + Gr

Gs

(
1−√1− η)(

η− 1 +
√

1− η)+ Gr

Gs

(
2− η−√1− η)

]
(22)

and

λ+
ct =

(
2− η−

√
1− η +

Gs

Gr

(
η− 1 +

√
1− η

))−1

(23)

Using (13) with an appropriate stress field, a second estimate of the risk reduction factor of
a cross trench reinforced soil can be written as:

R−ct = λ−ct

√
Gs

Glb
L,ct

(24)

with

Glb
L,ct = Gs

[
1− η

(1− η) + Gs

Gr

(√
1− η− (1− η)) +

Gr

Gs

(
1−

√
1− η

)]
(25)

and

λ−ct =

(√
1− η +

Gs

Gr

(
1−

√
1− η

))−1

(26)

A numerical simulation can also be made for this configuration and results are compared to
both previous estimates of R. Figure 8 illustrates the fact that the reinforcing trench placed in the
loading plane fully contributes to the reinforced shear stiffness, while the other trench perpen-
dicular to the loading plane undergoes much less deformation. The cross trench reinforcement
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Fig. 8. Deformed configuration of a cross trench reinforced soil under longitudinal shear loading.

provides a kind of ”bracing effect” to the shear loading.

Figure 9 displays the comparison between these estimates of R for a cross trench reinforced
soil. A first remark is that the average value of R+

ct and R−ct provides an excellent evaluation of
this risk reduction factor. It is also worth noting that R is decreasing when η increases and is
always less than unity. The efficience of the cross trench reinforcement is highlighted here, the
risk being reduced by 24% for η = 20%.
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Fig. 9. Evaluations of the liquefaction risk reduction factor for a cross trench reinforced soil.

4.2 Parametric study for the risk reduction factor

The shear stiffness ratio Gr

Gs
and the reinforcement volume fraction η mainly influence the per-

formance of the reinforcement technique in terms of liquefaction risk. For the cross trench con-
figuration, a study has been made, choosing some fixed values of one parameter and expressing
R as function of the other (see Figures 10 and 11). For the sake of clarity, only the average value



of the two estimates of this risk reduction factor are represented.
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Fig. 10. Risk reduction factor of cross trench configuration as function of shear stiffness ratio Gr
Gs

for fixed values of η.

For different fixed values of η, the beneficial effect of the reinforcement is highlighted in
Figure 10. However, it is worth noting that, for a shear stiffness ratio equal to 50, the risk reduc-
tion factor decreases from 0.68 to 0.48 when η goes from 5% to 15% while its decreases from
0.48 to 0.32 when η goes from 15% to 50%. This suggests that there is no need to increase the
thickness of the trenches indefinitely, since the gain in terms of liquefaction risk being alternated.

In the same way, for different fixed values of Gr

Gs
, the need to increase η is more obvious

for small shear stiffness ratio. Indeed, for Gr

Gs
= 50, the risk reduction factor rapidly decreases

for small volume reinforcement fraction, then much more smoothly for higher volume fractions
(Fig. 11).

5 CONCLUSIONS

Using the homogenization method for elastic periodic media, it has been possible to produce dif-
ferent estimates for the liquefaction risk reduction factor for a column reinforced soil as well as
for a cross trench configuration. Analytical calculations allow to bracket the longitudinal shear
stiffness for both techniques of reinforcement. An interesting result is that the reinforcement by
columnar inclusions doesn’t reduce the liquefaction risk, whereas the cross trench configuration
provides an accurate reduction of this risk.

A short parametric study has been developed here for the cross trench reinforced soil de-
pending on the two material and geometrical key parameters, namely the reinforcement volume
fraction and the shear modulus ratio. All estimates being given by analytical formulas, charts
may be easily drawn for different values of those characteristics which could be highly usefull
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Fig. 11. Risk reduction factor of cross trench configuration as function of η for fixed values of Gr
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.

from an engineering design viewpoint. These results provide a strong theoretical background to
the development of the cross trench reinforcement technique.
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