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Jérémy Bleyera, Patrick de Buhana
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Abstract

This Note presents an approximation method for convex yield surfaces in the
framework of yield design theory. The proposed algorithm constructs an approx-
imation using a convex hull of ellipsoids such that the approximate criterion can
be formulated in terms of second-order conic constraints. The algorithm can
treat bounded as well as unbounded yield surfaces. Its efficiency is illustrated
on two yield surfaces obtained using up-scaling procedures.
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Résumé

Un algorithme glouton pour l’approximation des surfaces de rup-

ture Cette Note présente une méthode d’approximation pour les convexes de
résistance dans le cadre de la théorie du calcul à la rupture. L’algorithme pro-
posé construit une approximation utilisant une union convexe d’ellipsoides de
sorte que le critère approché puisse être formulé à l’aide de contraintes coniques
du second ordre. L’algorithme est capable de traiter le cas de surfaces bornées
ou non bornées. Son efficacité est illustrée sur deux surfaces de rupture obtenues
par des procédures de type changement d’échelle.
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Version française abrégée

1. Introduction

Yield design theory has proved to be a very efficient tool for assessing the
yield strength of different types of structures without performing cumbersome
elastoplastic analyses. It relies, indeed, on checking the compatibility between
equilibrium equations and satisfaction of the local strength criterion. As regards
heterogeneous periodic media, yield design-based homogenization procedures
have been proposed by Suquet [1] or de Buhan [2] in the context of reinforced
soil mechanics. The solution of an auxiliary yield design problem formulated
on the unit periodic cell leads to the construction of a macroscopic strength
criterion.
In the case of elastic homogenization procedures, the homogenized quantity to
be determined is the macroscopic stiffness tensor which can entirely be described
by the value of its components. On the contrary, the homogenized quantity of
interest in yield design is a macroscopic yield surface. Such yield surfaces can be
very complex (due to the heterogeneous yield criterion, strength anisotropy...)
and, therefore, can no longer be easily described by analytic formulas. For this
simple reason, computation of limit loads on homogeneous equivalent structures
has been limited to simple cases where analytic formulas were available.
Fortunately, the development of efficient algorithms for optimization problems
now makes it possible to tackle problems involving a quite large number of vari-
ables [3]. Being able to use complex macroscopic yield surfaces associated to
efficient optimization solvers would then be of paramount interest as regards
engineering applications.

The aim of this Note is to propose a simple formulation and related compu-
tational tools describing such complex numerically determined yield surfaces. In
section 2, the proposed formulation using a convex hull of ellipsoids is presented
and justified in the scope of mathematical programming techniques currently at
hand. Section 3 is devoted to the description of a constructive algorithm to ap-
proximate a general yield surface (determined for example by a homogenization
or up-scaling procedure) with the previous formulation. Finally, two examples
illustrating the algorithm efficiency will be presented in section 4.

2. Yield surface approximation

The main difficulty arising in the numerical formulation of yield design prob-
lems lies in the verification of the yield criterion at each point of the structure.
When considering the upper bound kinematic approach, it corresponds to the
implementation of the (usually non-linear) support function of the yield crite-
rion in the global optimization problem.
As a consequence, simplified descriptions of the yield criterion (or, equivalently,
approximations of the support function) are often required to implement the
problem in an appropriate numerical solver.
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2.1. Numerical challenges

Piecewise linearization (PWL) of yield criteria has often been proposed in
the literature to overcome this difficulty [4, 5, 6]. In this case, the support func-
tion can be expressed using Nv linear inequalities, where Nv corresponds to the
number of vertices of the approximating polytope. Replacing the original yield
criterion by a piecewise linear approximation, the corresponding optimization
problem reduces to a linear programming (LP) problem. This formulation has
been highly attractive due to the performance of LP solvers using interior point
algorithms. However, PWL approximations of yield surfaces can require an im-
portant number of vertices to obtain a good accuracy [7]. Since the support
function has to be evaluated at each Gauss points of the structure, the total
number of inequalities can become very important for complex structures.

Interior points algorithm have been extended to the case of second-order cone
programming (SOCP) problems which include non-linear conic constraints. Re-
markably, SOCP encompasses a large class of convex optimization problems
(including LP) and most usual strength criteria can be formulated using SOCP
constraints [8]. Thus, yield design problems in plane strain, plane stress [9, 10] or
for plates in bending [11, 12] have been successfully solved using SOCP formula-
tions without any linearization procedure. Therefore, two important advantages
can be foreseen from approximating yield surfaces using conic constraints : first,
it is expected that conic approximation would require less constraints than lin-

ear approximation allowing to tackle more complex problems; secondly, highly
efficient SOCP solvers can be used to treat the global optimization problem.

The following subsection proposes a formulation using a convex hull of ellip-
soids, which can be treated using conic constraints.

2.2. An interesting formulation using a convex hull of ellipsoids

Let E ⊂ R
3 be an ellipsoid centered at point c, the principal axes of which

are given by u, v and w forming an orthogonal basis. Its support function is
then given by :

πE(d) = sup
σ∈E

σ · d =
√
(u · d)2 + (v · d)2 + (w · d)2 + c · d = ‖A · d‖+ c · d

with A = T [uvw]. Moreover, if G is a convex hull of n ellipsoids Ei with matrix
Ai and centers ci, then its support function is given by :

πG(d) = max
i=1,...,n

(πEi
(d)) = max

i=1,...,n
(‖Ai · d‖+ ci · d)

This formulation is quite interesting in the scope of numerical yield design, since
it can be expressed in terms of conic constraints by introducing n+ 1 auxiliary
scalar variables (t0, t1, . . . , tn) such that :

ti + ci · d ≤ t0
‖Ai · d‖ ≤ ti

∀i = 1, . . . , n
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This new formulation involves n linear inequalities and n second-order cone
inequalities such that, when minimizing t0 under the previous constraints, we
have t0 = πG(d) at the optimum.

As a consequence, if G can be expressed as a convex hull of ellipsoids, the
corresponding minimization problem of the kinematic approach can be writ-
ten as a second-order cone programming problem and efficiently solved using
dedicated solvers. This formulation deserves two comments :

– the cost to pay is obviously related to the number of additional optimiza-
tion variables ti and to the linear or conic inequality constraints;

– the same kind of results can be established when considering the lower
bound static approach of yield design. Therefore, with such a formulation,
both approaches can be efficiently tackled using SOCP solvers.

3. An algorithm to approximate a yield surface by a convex hull of

ellipsoids

This section is aimed at deriving a relatively simple algorithm which com-
putes a series of optimal ellipsoids such that their convex hull is an approxi-
mation of the initial yield surface. This algorithm uses the dual description of
the convex yield surface characterized by its support function π. It is therefore
particularly well suited to macroscopic yield surfaces obtained from a homoge-
nization upper bound approach.

3.1. General assumptions and notations

The considered yield surfaces are supposed to be a convex bounded set
G ⊂ R

3 containing the origin. It is to be noted that this algorithm can be
extended without difficulty to the case of unbounded convex sets, as discussed
in the second illustrative example of section 4.2.
The intuitive algorithm constructs an approximation from the inside of the
original yield surface. However, provided that this approximation is sufficiently
accurate, it is always possible to expand the inner approximation by an appro-
priate factor to obtain an outer approximation. Both approximations can be
valuable regarding their use in a yield design problem at the structure scale,
considering either the lower bound static approach or the upper bound kine-
matic approach.
In the following, it will be assumed that M values of the support function πj at
directions 1 dj on the unit sphere S are known. The directions dj are supposed
to be uniformly distributed on the unit sphere. We will note D the M×3 matrix
of the directions dj and π the M × 1 vector made by the corresponding values
of the support function.
A two-dimensional example will serve to illustrate the principle of the algorithm

1. We will use the term directions for the values at which support functions are evaluated.
These values correspond, indeed, to normal vectors of supporting hyperplanes.
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Figure 1: Illustrative 2D example. The considered convex set G (in red) is the convex hull of
two ellipses (E1 and E2) and a segment L. The supporting planes for different directions dj
are represented in blue.

throughout the discussion. The considered convex set G is obtained as the con-
vex hull of two ellipses (E1 and E2) and a segment L (figure 1). Its support
function has the following simple analytical expression :

πG(dx, dy) = max {πE1
(dx, dy), πE2

(dx, dy), πL(dx, dy)}

where the support functions of the ellipses and the segment are given by :

πE1
(dx, dy) =

1

2

√
d2x + 4d2y + dxdy − 2dx − dy

πE2
(dx, dy) =

√
d2x + d2y + dxdy

πL(dx, dy) = max{−2dx +
1

2
dy ,

1

2
dx − dy}

3.2. Outline of the algorithm

At each step, the proposed iterative algorithm constructs an ellipsoid ap-
proximating G in a given region, which is then added to the convex hull (CH)
approximation of the previous step. Supposing that at step n, an approxima-
tion Pn = CH(Ei) with ellipsoids Ei for 1 ≤ i ≤ n is available, the support
function Πn of Pn has a simple analytical expression in function of the geo-
metric parameters of the different Ei. Therefore, it is possible to compute the
difference between the original support function and the current approximation
πj −Πn(dj) for all j in order to find the direction d0 for which the difference is
the largest.
Given this direction d0, the decisive step of the algorithm will be to find a new
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ellipsoid En+1 approximating G a neighborhood 2 of d0. Once En+1 is found,
it is added to the convex hull to form the new approximation at step n + 1 :
Pn+1 = CH(Pn; En+1).

3.3. Using the support function to characterize the local geometry

The key ingredient of the algorithm is based on a characterization of the local
geometry of G in the neighborhood of d0. For this purpose, the support function
provides very useful information on the local geometry. All properties on the
curvature can, indeed, be obtained from the Weingarten map W (curvature
tensor), the eigenvectors and eigenvalues of which are the principal directions of
curvatures and principal curvatures of G respectively. Moreover, the following
relation between the support function π(d) and the Weingarten map holds true
[13, 14] :

W = − (Hess S π(d) + π(d)Id)
−1

with Hess S π(d) being the Hessian of π(d) with respect to the unit sphere S

if π(d) is of class C2. Therefore, if λ is an eigenvalue of Hess S π(d), then
its associated eigenvector is a principal direction of curvature with a radius of
curvature given by ρ = |λ+ π(d)|.
Thus, provided that the Hessian can be computed, all information concerning
the local curvature are available. A natural idea is then to fit an ellipsoid with
the same curvature to obtain a local approximation of G with an higher order
of accuracy than just a point.

3.4. Computation of the best ellipsoid with prescribed curvature

Let σ0 be a tangent point between G ∈ R
3 and the supporting plane with

normal d0. Denoting by d1 and d2 the principal directions of curvature, we will
look for an ellipsoid of principal axes {d0, d1, d2} contained in G, tangent to G
at σ0 and such that its radii of curvature at σ0 are given by ρ1 = |λ1 + π(d0)|
and ρ2 = |λ2 + π(d0)|.
Besides, if the principal axes semi-lengths of the ellipsoid are denoted by a0, a1
and a2 and choosing σ0 as the point of coordinates (a0, 0, 0) in the local frame of
the ellipsoid with the origin at its center, the radii of curvature of the ellipsoid
at σ0 are given by the following relations :

ρ1 =
a21
a0

and ρ2 =
a22
a0

Therefore, ρ1 and ρ2 being kept fixed, the only remaining degree of freedom
is, for example, a0 (see figure 2). Admissible values of a0 are those corre-
sponding to ellipsoids contained in G. For such values, we determine the set of

2. Here again, due to the retained dual description via support functions, a neighborhood
of d0 will represent supporting planes whose normal directions are close to d0 (in the sense of
the scalar product for example). Hence, a neighborhood of d0 does not necessarily correspond
to a neighborhood of a given point on G.
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Figure 2: Series of ellipsoids with prescribed curvatures at σ0

directions where the corresponding ellipsoid improves the previous approxima-
tion Pn. Then, we compute the root mean squared (RMS) error between its
support function and the original one on this given set. The best ellipsoid is the
one for which the RMS error is minimal.

3.5. Implementation details

– Initialization : Initialization can be performed using any point in G : the
origin, the center of G defined as the point minimizing the distance be-
tween all supporting planes, etc... This choice did not seem to influence
the quality of the approximation.

– Neighborhood of d0 : The determination of the neighborhood of d0 is per-
formed by sorting the scalar products dj · d0 ∀j by descending order and
taking the first m directions except d0 itself.

– Computation of Hess S π(d0) : We perform a second order Taylor expan-
sion of π(d) for all d in the neighborhood of d0. However, we recall that
directions d are required to belong to the unit sphere so that the Taylor
expansion has the following expression [15] :

π(d) ≈ π(d0)+〈grad S π(d0),Log d0
(d)〉+

1

2
〈Log d0

(d),Hess S π(d0)Log d0
(d)〉

where 〈·, ·〉 is the scalar product on the tangent plane to S at d0, grad Sπ(d0)
is the gradient of π(d) with respect to S and Log d0

(d) is the logarithmic
mapping (see figure 3) from d to the tangent plane such that ‖Log d0

(d)‖ =
dist S(d, d0) where dist S(d, d0) is the geodesic distance on S. On S, this
reduces to [16] :

Log d0
(d) =

(
d · e1

θ

sin θ
, d · e2

θ

sin θ

)
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Figure 3: Logarithmic mapping on S

with dist S(d, d0) = θ = arccos(d · d0) and {e1, e2} an orthonormal basis of
the tangent plane.

Forming vectors y = (y1, y2) = Log d0
(d), dπ = π(d) − π(d0) and ma-

trix B = [y1 y2 y21/2 y22/2 y1y2], we solve the following least-square
problem :

r∗ = argmin ‖Br − dπ‖

This operation can be efficiently performed in MATLAB with the back-
slash \ operator. The Hessian is then given by the following matrix

H =

[
r∗3 r∗5
r∗5 r∗4

]
.

– Tangent point σ0 : The tangent point σ0 between G and the supporting
plane with normal d0 is found by solving the following linear programming
optimization problem :

σ0 = arg max
x,Dx≤π

x · d0

This operation can be easily performed with MATLAB linear program-
ming solver linprog or other software packages like Mosek [17] for exam-
ple.

– Optimal value of a0 : The retained strategy for finding the optimal value
of a0 consists in estimating the maximal value which can take a0. For
example, we can choose the half of the diameter of G in the direction d0
given by :

amax =
1

2
(π(d0) + π(−d0))

Then, the segment [0; amax] is discretized in Nd values. Nd different el-
lipsoids tangent at σ0 and with prescribed curvature are obtained. The
optimal ellipsoid is determined as discussed before. This stage is repre-
sented in figure 4.

– Actualization before next step : Once the optimal ellipsoid E has been
determined, its geometric parameters (center c0 = σ0−a0d0 and principal
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Figure 4: Different ellipses with the same curvatures as G at σ0.

axis) are saved and E is added to the previous approximation for the next
step. Hence, the support function of the new approximation will be :

Πn+1(d) = max(Πn(d), πE (d))

where πE (d) is the support function of the optimal ellipsoid given by :

πE(d) =
√
(a0d0 · d)2 + (a1d1 · d)2 + (a2d2 · d)2 + c0 · d

The first 6 steps of the algorithm are illustrated in figure 5. We can observe
that, starting with the center of G (represented by a black cross), the algorithm
constructs, step-by-step, optimal ellipsoids in the regions which are the farthest
away from the previous approximation.
It can clearly be seen that the local curvature is correctly computed and that in
regions with corners, the determination of the Hessian correctly accounts for the
fact that the radius of curvature is zero, which results in elongated ellipsoids.
Finally, we can also mention that this algorithm is greedy since, at each stage,
it performs optimal operations but cannot find the globally optimal solution,
which consists, here, in the two ellipsoids and the segment used to construct G.
Nevertheless, this example illustrates its performance, since it can approximate
G with a very good accuracy in 6 steps only.

4. Illustrative examples

In this section, the efficiency of the proposed algorithm is demonstrated
on two different numerically computed yield surfaces. In the first example, a
bounded yield surface is approximated whereas the second example involves an
unbounded yield surface.
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Figure 5: First six steps of the algorithm on the illustrative example of figure 1. The black
line represents the approximating convex at each step, obtained by taking the convex hull of
the computed ellipsoids. Black dots represent the computed tangent points σ0.
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4.1. Interaction surface of a reinforced concrete beam section

The first example considers the interaction surface of a beam section sub-
ject to combined bending moments My,Mz and axial force N . The considered
section is a L-shaped concrete section reinforced by steel bars (figure 6).
The bending moments and axial force in equilibrium with a stress field σ, are
given by :

N =

∫

S

σxx(y, z)dS

My = −

∫

S

zσxx(y, z)dS

Mz = −

∫

S

yσxx(y, z)dS

where S is the transverse section of the beam.
Let S1 (resp. S2) denote the region occupied by the concrete (resp. steel rein-
forcement), σ1

c (resp. σ2
c ) the uniaxial compressive strength in the x-direction

and σ1
t (resp. σ2

t ) the uniaxial tensile strength in the x-direction of the concrete
(resp. steel reinforcement). The interaction surface G is obtained by considering
statically admissible uniaxial stress fields of the form : σ = σ(y, z)ex⊗ ex with :

σ(y, z) =

{
σi
t if δ − zχy − yχz > 0 and (y, z) ∈ Si

−σi
c if δ − zχy − yχz < 0 and (y, z) ∈ Si

∀i = 1, 2

where χy, χz and δ are the generalized strains (curvatures and axial strain)
associated with My,Mz and N . Hence, the support function of G is given by :

π(χy , χz, δ) =
∑

i=1,2

∫

Si

sup
{
σi
t (δ − zχy − yχz) ;−σi

c(δ − zχy − yχz)
}
dS

The corresponding interaction surface is represented on figure 7(a) in the (my,mz, n)−space
with my = My/My0, mz = Mz/Mz0 and n = N/N0 where Σ0 = (maxΣ −
minΣ)/2 for Σ = My,Mz or N . Numerical values of strength were σc = 30
MPa and σt = 1.8 MPa for concrete and σc = σt = 435 MPa for steel reinforce-
ment.

The above-described algorithm has been tested on this surface by taking
m = 10 for the number of directions in a neighborhood and Nd = 200 for
the number of discretization values for a0. The surface has been approximated
using up to 50 ellipsoids. The surface obtained with N = 30 ellipsoids is rep-
resented on figure 7(b). One can clearly see that the quality of reconstruction
obtained with 30 ellipsoids is very good. More precisely, the evolution of the rel-
ative error with respect to the original support function is represented in figure
8(a) as a function of the number of ellipsoids. Two different error norms were
plotted : the maximal error and the root mean squared (RMS) error. It can
clearly be seen that the error is rapidly decreasing with the number of ellipsoids
used in the approximation. For instance, with N = 30 ellipsoids the maximum
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relative error made on the support function is less than 4% whereas the RMS
error is around 0.5%. With N = 50 ellipsoids, the maximal error is less than 2%.

In order to compare the speed-up gained with this approximate description
of the initial convex set, an artificial optimization problem, characteristic of
those arising in numerical yield design computations, has been imagined, in-
volving either the initial convex set of figure 7(a) consisting of approximately
Np = 5100 points aj or the approximate set of N ellipsoids. Fixing a value NS

characterizing the size of the problem and random vector F of size 3NS , the
optimization problem can be written as :

min
D∈R3NS

NS∑

i=1

π(D3i−2→3i)

s.t. F ·D = 1

where π(d) represents the support function of the considered convex set. In the
case of the initial convex set, the optimization problem reads as the following
linear programming problem :

min
D∈R3NS

NS∑

i=1

ti

s.t. F ·D = 1
aj ·D3i−2→3i ≤ ti ∀j = 1, . . . , Np

whereas, with the previous notations, the problem with the approximate set of
N ellipsoids will read as the following SOCP problem :

min
D∈R3NS

NS∑

i=1

t0,i

s.t. F ·D = 1
‖Aj ·D3i−2→3i‖ ≤ tj,i

tj,i + cj ·D3i−2→3i ≤ t0,i
∀j = 1, . . . , N

Considering different values of NS , both problems are solved with the Mosek
software package and the corresponding interior-point computation times are
reported in table 1. It can be observed that the approximate problems with
N = 30 orN = 50 ellipsoids are solved approximately three times faster than the
initial problem without any approximation procedure. Besides, it was impossible
to solve the largest considered optimization problem (NS = 500) with the initial
convex set because too much memory space was required for the problem to be
formulated. Therefore, the proposed approximation procedure is advantageous
in terms of computational time saving as well as memory requirement.

Besides, the algorithm can also be degenerated to compute an approxima-
tion of the yield surface using points 3 only. A convergence analysis between

3. The points correspond to σ0 at each step.
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Figure 6: Geometry in the (y, z)−plane of the RC section : concrete in gray, steel reinforce-
ments in red (units : meters, millimeters for reinforcement diameters)

Figure 7: Reconstruction of the interaction surface for the reinforced concrete L section of
figure 6 : original surface in red, approximated surface with N = 30 ellipsoids in gray

ellipsoid-based and point-based approximations was performed on this exam-
ple. Evolution of relative error norms are plotted in figure 8(b) with respect
to the number of primitives (ellipsoids or points). As expected, the approxi-
mation using ellipsoids presents higher convergence rates (almost 1.5 higher for
both error norms) than approximation using points only, thereby illustrating
the efficiency of this method.

Finally, it is to be noted that, in this particular example, both primal (in
generalized stress space) and dual (via support function) descriptions of G were
available. Nevertheless, in both descriptions, it was impossible to derive a simple
analytical formula describing G, to be used in an optimization tool. Thus, an
approximation procedure is required to use this interaction surface, in order to
compute the limit load of a structure made of such sections.
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(a) Evolution of RMS and max relative error
with the number of ellipsoids

(b) Comparison of convergence rates be-
tween ellipsoid-based and point-based ap-
proximations

Figure 8: Convergence analysis of the approximation procedure on the reinforced concrete L
section interaction surface

Problem size Initial Approximate N = 30 Approximate N = 50
NS = 50 3.93 0.64 1.07
NS = 100 7.83 1.85 2.23
NS = 200 15.76 5.03 6.16
NS = 500 * 12.4 33.6

Table 1: Computing time (in seconds) for the interior-point solver on a Intel-P4 2.4 GHz with
Mosek v6.0. The symbol ”*” signifies that Mosek was unable to solve the problem due to
insufficient available memory.
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4.2. Macroscopic yield surface of a stone column reinforced soil

The second example involves an unbounded yield surface corresponding to
the macroscopic strength properties of a purely cohesive soil reinforced by a
periodic distribution of stone columns made of a highly frictional granular ma-
terial. This macroscopic yield surface was determined in [18] on the basis of a
yield design homogenization approach using a series of numerical elastoplastic
simulations performed on a unit cell of the reinforced soil.
As an example, the determination of such a complex criterion is the first step to
the evaluation of the bearing capacity of stone columns reinforced foundations.
However, due to the criterion complexity, an approximation procedure is nec-
essary to implement a numerical formulation of the corresponding yield design
problem on the equivalent homogeneous reinforced soil.

As already mentioned, the proposed algorithm can easily be extended to the
case of unbounded yield surfaces. Indeed, instead of considering directions of
the supporting plane normals describing the whole unit sphere S, one has only
to consider the subset of directions for which the yield surface is bounded. The
only other modification relies on the evaluation of amax since the diameter in
the direction d0 can be infinite for some d0. For example, in the case when the
yield surface is bounded in direction d0 but not in −d0, it was decided to replace
−d0 in the definition of amax by −d̂0 which is the closest direction to −d0 for
which the yield surface is bounded.

Using the same optimization parameters as before, the algorithm was tested
on the yield surface numerically determined in [18]. The original yield surface
as well as the obtained approximation using N = 30 ellipsoids were represented
in the space of ”plane-strain” macroscopic stresses Σxx,Σyy and 2Σxy (figure
9). Evolution of the error norms was also plotted in figure 10. One can observe
that the maximal error is around 4% with N = 30 ellipsoids whereas the RMS
error is around 1%.

5. Conclusions and future work

An efficient algorithm has been proposed to approximate general yield sur-
faces using a convex hull of ellipsoids. This algorithm uses the dual description
of a convex yield surface by its support function, to compute the local curvature
of the surface and to find an optimal ellipsoid. The main characteristics of this
algorithm are the following.

– Bounded and unbounded surfaces can be approximated by controlling the
number of ellipsoids.

– the resolution of a linear programming problem is the only stage requiring
a specific solver. In particular, this algorithm does not require any non-
linear solver for which convergence issues may appear.

– Approximations from the inside are obtained.
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Figure 9: Reconstruction of the macroscopic unbounded yield surface for a stone column
reinforced soil (computed from [18]) : original surface in red, approximated surface with
N = 30 ellipsoids in gray

Figure 10: Evolution of RMS and max relative error with the number of ellipsoids for the
macroscopic yield surface
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– The support function of the obtained approximation can be analytically
computed from the geometrical parameters determined by the algorithm.
Moreover, it can be easily formulated in terms of second-order cone con-
straints, which allows to formulate corresponding yield design problems
as SOCP, which have recently proved to be very efficient to solve these
problems.

It was also illustrated on one example that the convergence rate of the error
was sensibly higher when using a convex hull of ellipsoids rather than a convex
hull of points to approximate the yield surface. This is highly valuable if such
yield surfaces are used on yield design problems at the structure level since such
formulations will require less constraints compared to a piecewise linearization
procedure.
Concerning the presented algorithm, further work could be conducted to in-
vestigate the influence of the number of directions in the neighborhood or to
imagine more sophisticated strategies to improve its efficiency. Nevertheless, it
has been demonstrated that its performances are highly satisfactory. Moreover,
since our primary interest lies in the computation of limit loads on heterogeneous
structures, our future work will therefore be aimed at using this algorithm to
formulate yield design problems on complex structures made of heterogeneous
materials, using SOCP.
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