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A remark on the optimal transport between two probability

measures sharing the same copula
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Abstract

We are interested in the Wasserstein distance between two probability measures on R
n

sharing the same copula C. The image of the probability measure dC by the vectors of
pseudo-inverses of marginal distributions is a natural generalization of the coupling known
to be optimal in dimension n = 1. It turns out that for cost functions c(x, y) equal to the
p-th power of the Lq norm of x− y in R

n, this coupling is optimal only when p = q i.e. when
c(x, y) may be decomposed as the sum of coordinate-wise costs.

Keywords: Optimal transport, Copula, Wasserstein distance, Inversion of the cumulative dis-
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1 Optimal transport between two probability measures sharing

the same copula

Given two probability measures µ and ρ, the optimal transport theory aims at minimizing
∫

c(x, y)ν(dx, dy) over all couplings ν with first marginal ν ◦ ((x, y) 7→ x)−1 = µ and second
marginal ν ◦ ((x, y) 7→ y)−1 = ρ for a measurable non-negative cost function c. We use the
notation ν<µρ for such couplings. In the present note, we are interested in the particular case of
the so-called Wasserstein distance between two probability measures µ and ρ on R

n :

Wp,q(µ, ρ) = inf
ν<µρ

(
∫

Rn×Rn

‖x− y‖pqν(dx, dy)

)1/p

(1.1)
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obtained for the choice c(x, y) = ‖x− y‖pq . Here Rn is endowed with the norm ‖(x1, . . . , xn)‖q =

(
∑n

i=1 |xi|
q)1/q for q ∈ [1,+∞) whereas p ∈ [1,+∞) is the power of this norm in the cost

function.

In dimension n = 1, ‖x‖q = |x| so that the Wasserstein distance does not depend on q and
is simply denoted by Wp. Moreover, the optimal transport is given by the inversion of the
cumulative distribution functions : whatever p ∈ [1,+∞), the optimal coupling is the image of
the Lebesgue measure on (0, 1) by u 7→ (F−1

µ (u), F−1
ρ (u)) where for u ∈ (0, 1), F−1

µ (u) = inf{x ∈
R : µ((−∞, x]) ≥ u} and F−1

ρ (u) = inf{x ∈ R : ρ((−∞, x]) ≥ u} (see for instance Theorem 3.1.2
in [3]). This implies that Wp

p (µ, ρ) =
∫

(0,1) |F
−1
µ (u)− F−1

ρ (u)|pdu.

In higher dimensions, according to Sklar’s theorem (see for instance Theorem 2.10.11 in Nelsen [1]),

µ

(

n
∏

i=1

(−∞, xi]

)

= C (µ1((−∞, x1]), . . . , µn((−∞, xn]))

where we denote by µi = µ ◦ ((x1, . . . , xn) 7→ xi)
−1 the i-th marginal of µ and C is a copula

function i.e. C(u1, . . . , un) = m (
∏n
i=1[0, ui]) for some probability measure m on [0, 1]n with all

marginals equal to the Lebesgue measure on [0, 1]. The copula function C is uniquely determined
on the product of the ranges of the marginal cumulative distribution functions xi 7→ µi((−∞, xi]).
In particular, when the marginals µi do not weight points, the copula C is uniquely determined.
Sklar’s theorem shows that the dependence structure associated with µ is encoded in the copula
function C. Last, we give the well-known Fréchet-Hoeffding bounds

∀u1, . . . , un ∈ [0, 1], C−

n (u1, . . . , un) ≤ C(u1, . . . , un) ≤ C+
n (u1, . . . , un)

that hold for any copula function C with C+
n (u1, . . . , un) = min(u1, . . . , un) and C

−

n (u1, . . . , un) =
(u1+ · · ·+un−n+1)+ (see Nelsen [1], Theorem 2.10.12 or Rachev and Rüschendorf [3], section
3.6). We recall that the copula C+

n is the n-dimensional cumulative distribution function of the
image of the Lebesgue measure on [0, 1] by R ∋ x 7→ (x, . . . , x) ∈ R

n. Also the copula C−

2 is the
2-dimensional cumulative distribution function of the image of the Lebesgue measure on [0, 1]
by R ∋ x 7→ (x, 1− x) ∈ R

2 and, for n ≥ 3, C−

n is not a copula.

In dimension n = 1, the unique copula function is C(u) = u and therefore the optimal coupling
between µ and ρ, which necessarily share this copula, is the image of the probability measure
dC by u 7→ (F−1

µ (u), F−1
ρ (u)). It is therefore natural to wonder whether, when µ and ρ share the

same copula C in higher dimensions, the optimal coupling is still the image of the probability
measure dC by (u1, . . . , un) 7→ (F−1

µ1 (u1), . . . , F
−1
µn (un), F

−1
ρ1 (u1), . . . , F

−1
ρn (un)). We denote by

µ ⋄ ρ this probability law on R
2n. It turns out that the picture is more complicated than in

dimension one because of the choice of the index q of the norm.

Proposition 1.1 Let n ≥ 2, µ and ρ be two probability measures on R
n sharing the same

copula C and Wp,q(µ, ρ) = infν<µρ

(

∫

Rn×Rn
‖x− y‖pqν(dx, dy)

)1/p
.

• If p = q, then an optimal coupling between µ and ρ is given by ν = µ ⋄ ρ and

Wp
p,p(µ, ρ) =

∫

[0,1]n

n
∑

i=1

|F−1
µi (ui)−F

−1
ρi (ui)|

pdC(u1, . . . , un) =

∫

[0,1]

n
∑

i=1

|F−1
µi (u)−F

−1
ρi (u)|pdu.
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• If p 6= q, the coupling µ ⋄ ρ is in general no longer optimal. For p < q, if C 6= C+
n , we

can construct probability measures µ and ρ on R
n admitting C as their unique copula such

that
(
∫

Rn×Rn

‖x− y‖pqµ ⋄ ρ(dx, dy)

)1/p

>Wp,q(µ, ρ).

For p > q, the same conclusion holds if n ≥ 3 or n = 2 and C 6= C−

2 .

Remark 1.2 Let µ and ρ be two probability measures on R
n and ν <

µ
ρ . For n = 1, ν is

said to be comonotonic if ν((−∞, x], (−∞, y]) = C+
2 (µ((−∞, x]), ρ((−∞, y])). Puccetti and

Scarsini [2] investigate several extensions of this notion for n ≥ 2. In particular, they say that
ν is π-comonotonic (resp. c-comonotonic) if µ and ρ have a common copula and ν = µ ⋄ ρ
(resp. ν maximizes

∫

Rn×Rn
〈x, y〉ν̃(dx, dy) over all the coupling measures ν̃<µρ). Looking at some

connections between their different definitions of comonotonicity, they show in Lemma 4.4 that
π-comonotonicity implies c-comonotonicity. Since

∫

Rn×Rn

‖x− y‖22ν̃(dx, dy) =

∫

Rn

‖x‖22µ(dx) +

∫

Rn

‖y‖22ρ(dy)− 2

∫

Rn×Rn

〈x, y〉ν̃(dx, dy),

this yields our result in the case p = q = 2.

2 Proof of Proposition 1.1

The optimality in the case q = p, follows by choosing d1 = . . . = dn = d′1 = . . . = d′n = d′′1 =
. . . = d′′n = 1, ci(yi, zi) = |yi − zi|

p, α = dC, and ϕi = F−1
µi , ψi = F−1

ρi in the following Lemma.

Lemma 2.1 Let α be a probability measure on R
d1 ×R

d2 × . . .×R
dn with respective marginals

α1, . . . , αn on R
d1 , . . . ,Rdn and ϕi : R

di → R
d′i , ψi : R

di → R
d′′i and ci : R

d′i × R
d′′i → R+ be

measurable functions such that

∀i ∈ {1, . . . , n}, inf

νi<
αi◦ϕ

−1
i

αi◦ψ
−1
i

∫

R
d′
i×R

d′′
i

ci(yi, zi)νi(dyi, dzi) =

∫

R
di

ci(ϕi(xi), ψi(xi))αi(dxi). (2.1)

Then setting ϕ : x = (x1, . . . , xn) ∋ R
d1 × . . . × R

dn 7→ (ϕ1(x1), . . . , ϕn(xn)) ∈ R
d′
1
+...+d′n and

ψ : x ∋ R
d1 × . . .× R

dn 7→ (ψ1(x1), . . . , ψn(xn)) ∈ R
d′′
1
+...+d′′n, one has

inf
ν<α◦ϕ

−1

α◦ψ−1

∫

R
d′
1
+...+d′n×R

d′′
1
+...+d′′n

n
∑

i=1

ci(yi, zi)ν(dy, dz)

=

∫

Rd1+...+dn

n
∑

i=1

ci(ϕi(xi), ψi(xi))α(dx) =

n
∑

i=1

∫

R
di

ci(ϕi(xi), ψi(xi))αi(dxi).

Proof of Lemma 2.1. We give two alternative proofs of the Lemma. The first one is based
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on basic arguments.

∫

Rd1+...+dn

n
∑

i=1

ci(ϕi(xi), ψi(xi))α(dx)

≥ inf
ν<α◦ϕ

−1

α◦ψ−1

∫

R
d′
1
+...+d′n×R

d′′
1
+...+d′′n

n
∑

i=1

ci(yi, zi)ν(dy, dz)

≥

n
∑

i=1

inf
ν<α◦ϕ

−1

α◦ψ−1

∫

R
d′
1
+...+d′n×R

d′′
1
+...+d′′n

ci(yi, zi)ν(dy, dz)

≥

n
∑

i=1

inf

νi<
αi◦ϕ

−1
i

αi◦ψ
−1
i

∫

R
d′
i×R

d′′
i

ci(yi, zi)νi(dyi, dzi)

=

n
∑

i=1

∫

R
di

ci(ϕi(xi), ψi(xi))αi(dxi)

=

∫

Rd1+...+dn

n
∑

i=1

ci(ϕi(xi), ψi(xi))α(dx),

where we used that

• the probability measure α ◦ (ϕ−1, ψ−1) on R
d′1+...+d

′

n ×R
d′′1+...+d

′′

n has respective marginals
α ◦ ϕ−1 and α ◦ ψ−1 on R

d′1+...+d
′

n and R
d′′1+...+d

′′

n , for the first inequality,

• the infimum of a sum is greater than the sum of infima, for the second inequality,

• the respective marginals of α ◦ϕ−1 and α ◦ψ−1 on R
d′i and R

d′′i are αi ◦ϕ
−1
i and αi ◦ψ

−1
i ,

for the third one,

• and the hypotheses for the first equality.

The second proof is given to illustrate the theory of optimal transport. It requires to make the
following additional assumption on the cost function ci, for all 1 ≤ i ≤ n:

there exist measurable functions gi : R
d′i → R+ and hi : R

d′′i → R+ such that

ci(yi, zi) ≤ gi(yi) + hi(zi),

∫

R
di

gi(ϕi(xi))αi(dxi) <∞,

∫

R
di

hi(ψi(xi))αi(dxi) <∞. (2.2)

Basically, this assumption ensures that
∫

R
d′
i×R

d′′
i
ci(yi, zi)νi(dyi, dzi) < ∞ for any coupling

νi<
αi◦ϕ

−1

i

αi◦ψ
−1

i

.

We now introduce some definitions that are needed, and refer to the Section 3.3 of Rachev and
Rüschendorf [3] for a full introduction. Let c̄ : Rd

′

× R
d′′ → R. A function f : Rd

′

→ R̄ is
c̄-convex if there is a function a : Rd

′′

→ R̄ such that f(y) = supz∈Rd′′ c̄(y, z) − a(z). For

y ∈ R
d′ , we define the c̄-subgradient:

∂c̄f(y) = {z ∈ R
d′′ s.t. ∀ỹ ∈ domf, f(ỹ)− f(y) ≥ c̄(ỹ, z) − c̄(y, z)},
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where domf = {y ∈ R
d′ , f(y) <∞}.

We are now in position to prove the result again. Let X = (X1, . . . ,Xd) be a random variable
with probability measure α. We define Yi = ϕi(Xi), Zi = ψi(Xi) and c̄i = −ci. From (2.1), we
know that (Yi, Zi) is an optimal coupling that maximizes E[c̄i(Yi, Zi)]. From Theorem 3.3.11 of
Rachev and Rüschendorf [3], this implies the existence of a c̄i-convex function fi : R

d′i → R̄ such
that Zi ∈ ∂c̄ifi(Yi). By definition of the c̄i-convexity, there exists a function ai : R

d′′i → R̄ such
that fi(yi) = sup

zi∈R
d′′
i
c̄(yi, zi) − a(zi). We define for y = (y1, . . . , yn) ∈ R

d′1 × . . . × R
d′n and

z = (z1, . . . , zn) ∈ R
d′′
1 × . . .× R

d′′n ,

f(y) =
n
∑

i=1

fi(yi), a(z) =
n
∑

i=1

ai(zi) and c̄(y, z) =
n
∑

i=1

c̄i(yi, zi).

The function f is c̄-convex since we clearly have f(y) = sup
z∈Rd

′′

1
+···+d′′n

c̄(y, z) − a(z). Then, we
have the straightforward inclusion:

∂c̄f(y) = {(z1, . . . , zn) ∈ R
d′′1 × . . .× R

d′′n ,

s.t. ∀ỹ ∈ domf,

n
∑

i=1

fi(ỹi)− fi(yi) ≥

n
∑

i=1

c̄i(ỹi, zi)−

n
∑

i=1

c̄i(yi, zi)}

⊃ ∂c̄1f1(y1)× · · · × ∂c̄nfn(yn).

This gives immediately Y ∈ ∂c̄f(X). Using again Theorem 3.3.11 of [3], we get that the coupling
(Y,Z) with law µ ⋄ ρ is optimal in the sense that it maximizes E[c̄(Y,Z)].

We now prove that the coupling µ ⋄ ρ is in general no longer optimal when q 6= p. We first deal
with the dimension n = 2. Given two copulas C2 and C ′

2 on [0, 1]2, let (U1, U
′

2) be distributed
according dC ′

2. Given (U1, U
′

2), let U2 be distributed according to the conditional distribution
of the second coordinate given that the first one is equal to U1 under dC2 and U ′

1 be distributed
according to the conditional distribution of the first coordinate given that the second one in
equal to U ′

2 still under dC2. This way the random variables U1, U2, U
′

1 and U ′

2 are uniformly
distributed on [0, 1] and both the vectors (U1, U2) and (U ′

1, U
′

2) are distributed according to dC2.

For ε ∈ [0, 1], we consider

Yε = (U1, εU2), Zε = (εU1, U2) and Z
′

ε = (εU ′

1, U
′

2).

We notice that the copula of Yε and Zε is C2 since the copula is preserved by coordinatewise
increasing functions (see Nelsen [1], Theorem 2.4.3). Also, Zε and Z ′

ε obviously have the same
law. We will show that for a suitable choice of C ′

2 and ε > 0 small enough, we generally have

E[‖Yε − Zε‖
p
q ] > E[‖Yε − Z ′

ε‖
p
q ].

Denoting by µε the law of Yε and ρε the common law of Zε and Z ′

ε, this implies the desired
conclusion since
∫

R2×R2

‖x− y‖pqµ
ε ⋄ ρε(dx, dy) =

∫

[0,1]2
‖(F−1

µε
1
(u1), F

−1
µε
2
(u2))− (F−1

ρε
1
(u1), F

−1
ρε
2
(u2))‖

p
qdC2(u1, u2)

= E[‖Yε − Zε‖
p
q ] > E[‖Yε − Z ′

ε‖
p
q ] ≥ Wp

p,q(µ, ρ).
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The coupling between Yε and Zε gives the score

E[((1− ε)qU q1 + (1− ε)qU q2 )
p/q] →

ε→0
E[(U q1 + U

q
2 )
p/q],

while the one between Yε and Z
′

ε gives:

E[(|U1 − εU ′

1|
q + |U ′

2 − εU2|
q)p/q] →

ε→0
E[(U q1 + (U ′

2)
q)p/q].

We now focus on the cost function c̄(u1, u2) = −(uq1 + u
q
2)
p/q for u1, u2 ∈ (0, 1). We have

∂u1∂u2 c̄(u1, u2) = p(q − p)uq−1
1 u

q−1
2 (uq1 + u

q
2)

p
q
−2
.

When q < p (resp. q > p) this is negative (resp. positive) for any u1, u2 ∈ (0, 1), i.e. c̄ (resp. −c̄)
satisfies the so-called Monge condition. By Theorem 3.1.2 of Rachev and Rüschendorf [3], we
get that E[c̄(U1, U

′

2)] is maximal for U ′

2 = 1− U1 (resp. U ′

2 = U1), i.e when C ′

2(u, v) = C−

2 (u, v)
(resp. C ′

2(u, v) = C+
2 (u, v)). Besides, since ∂u1∂u2 c̄(u1, u2) does not vanish, we have

E[c̄(U1, U2)] < E[c̄(U1, 1− U1)] (resp. E[c̄(U1, U2)] < E[c̄(U1, U1)])

when C2 6= C−

2 (resp. C2 6= C+
2 ). Taking U ′

2 = 1− U1 (resp. U ′

2 = U1), we have in this case

E[((1− ε)qU q1 + (1− ε)qU q2 )
p/q] > E[(|U1 − εU ′

1|
q + |U ′

2 − εU2|
q)p/q]

for ε > 0 small enough. Notice that since both Y0 and Z0 have one constant coordinate, the
range of the cumulative distribution function of this coordinate is {0, 1} and the probability
measures µ0 and ρ0 share any two dimensional copula and in particular C−

2 (resp. C+
2 ). That

is why one has to choose ε > 0.

This two dimensional example can be easily extended to dimension n ≥ 3. Let Cn now denote
a n-dimensional copula, C2(u1, u2) = Cn(u1, u2, 1, . . . , 1) and C ′

2 be another two-dimensional
copula. We define (U1, U2, U

′

1, U
′

2) as above. Then, we choose (U3, . . . , Un) (resp. (U
′

3, . . . , U
′

n))
distributed according to the conditional law of the n−2 last coordinates given that the two first
are equal to (U1, U2) (resp. (U

′

1, U
′

2)) under dCn. Last, we define

Yε = (U1, εU2, εU3, . . . , εUn), Zε = (εU1, U2, εU3, . . . , εUn) and Z
′

ε = (εU ′

1, U
′

2, εU
′

3, . . . , εU
′

n).

We still have on the one hand that Yε and Zε share the same copula and on the other hand that
Zε and Z

′

ε have the same law. Moreover,

E[‖Yε − Zε‖
p
q ] →
ε→0

E[(U q1 + U
q
2 )
p/q] and E[‖Yε − Z ′

ε‖
p
q ] →
ε→0

E[(U q1 + (U ′

2)
q)p/q].

Taking ε > 0 small enough, we get that E[‖Yε − Zε‖
p
q ] > E[‖Yε − Z ′

ε‖
p
q ] ≥ Wp

p,q(µ, ρ) if, for
some u1, u2 ∈ [0, 1], Cn(u1, u2, 1, . . . , 1) > C−

2 (u1, u2) when q < p (resp. Cn(u1, u2, 1, . . . , 1) <
C+
2 (u1, u2) when q > p). If there exist i < j such that

Cn(1, . . . , 1, ui, 1, . . . , 1, uj , 1, . . . , 1) > C−

2 (ui, uj) (resp. < C+
2 (ui, uj) ),

then one may repeat the above reasoning with the i-th and j-th coordinates replacing the first
and second ones. Then the coupling ν = µ ⋄ ρ is not optimal for ε > 0 small enough. For n ≥ 3,
there is no copula such that Cn(1, . . . , 1, ui, 1, . . . , 1, uj , 1, . . . , 1) = C−

2 (ui, uj) for any i < j ,
ui, uj ∈ [0, 1], since this would imply that U2 = 1−U1 = U3 and U3 = 1−U2. Also, the only one
copula satisfying Cn(1, . . . , 1, ui, 1, . . . , 1, uj , 1, . . . , 1) = C+

2 (ui, uj) for any i < j, ui, uj ∈ [0, 1],
is C+

n since the former condition implies Ui = Uj for any i < j.
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