A Alfonsi 
email: alfonsi@cermics.enpc.fr
  
B Jourdain 
email: jourdain@cermics.enpc.fr.
  
A remark on the optimal transport between two probability measures sharing the same copula

Keywords: Optimal transport, Copula, Wasserstein distance, Inversion of the cumulative distribution function AMS Classification (2010): 60E05, 60E15

We are interested in the Wasserstein distance between two probability measures on R n sharing the same copula C. The image of the probability measure dC by the vectors of pseudo-inverses of marginal distributions is a natural generalization of the coupling known to be optimal in dimension n = 1. It turns out that for cost functions c(x, y) equal to the p-th power of the L q norm of xy in R n , this coupling is optimal only when p = q i.e. when c(x, y) may be decomposed as the sum of coordinate-wise costs.

1 Optimal transport between two probability measures sharing the same copula

Given two probability measures µ and ρ, the optimal transport theory aims at minimizing c(x, y)ν(dx, dy) over all couplings ν with first marginal ν • ((x, y) → x) -1 = µ and second marginal ν • ((x, y) → y) -1 = ρ for a measurable non-negative cost function c. We use the notation ν< µ ρ for such couplings. In the present note, we are interested in the particular case of the so-called Wasserstein distance between two probability measures µ and ρ on R n :

W p,q (µ, ρ) = inf ν< µ ρ R n ×R n
xy p q ν(dx, dy)

1/p (1.1)
obtained for the choice c(x, y) = xy p q . Here R n is endowed with the norm (x 1 , . . . , x n ) q = ( n i=1 |x i | q ) 1/q for q ∈ [1, +∞) whereas p ∈ [1, +∞) is the power of this norm in the cost function.

In dimension n = 1, x q = |x| so that the Wasserstein distance does not depend on q and is simply denoted by W p . Moreover, the optimal transport is given by the inversion of the cumulative distribution functions : whatever p ∈ [1, +∞), the optimal coupling is the image of the Lebesgue measure on (0, 1) by u → (F -1 µ (u), F -1 ρ (u)) where for u ∈ (0, 1),

F -1 µ (u) = inf{x ∈ R : µ((-∞, x]) ≥ u} and F -1 ρ (u) = inf{x ∈ R : ρ((-∞, x]
) ≥ u} (see for instance Theorem 3.1.2 in [START_REF] Rachev | Mass Transportation problems[END_REF]). This implies that W p p (µ, ρ)

= (0,1) |F -1 µ (u) -F -1 ρ (u)| p du.
In higher dimensions, according to Sklar's theorem (see for instance Theorem 2.10.11 in Nelsen [START_REF] Nelsen | An introduction to copulas[END_REF]),

µ n i=1 (-∞, x i ] = C (µ 1 ((-∞, x 1 ]), . . . , µ n ((-∞, x n ]))
where we denote by

µ i = µ • ((x 1 , . . . , x n ) → x i ) -1 the i-th marginal of µ and C is a copula function i.e. C(u 1 , . . . , u n ) = m ( n i=1 [0, u i ])
for some probability measure m on [0, 1] n with all marginals equal to the Lebesgue measure on [0, 1]. The copula function C is uniquely determined on the product of the ranges of the marginal cumulative distribution functions x i → µ i ((-∞, x i ]). In particular, when the marginals µ i do not weight points, the copula C is uniquely determined. Sklar's theorem shows that the dependence structure associated with µ is encoded in the copula function C. Last, we give the well-known Fréchet-Hoeffding bounds Nelsen [1], Theorem 2.10.12 or Rachev and Rüschendorf [START_REF] Rachev | Mass Transportation problems[END_REF], section 3.6). We recall that the copula C + n is the n-dimensional cumulative distribution function of the image of the Lebesgue measure on [0, 1] by R ∋ x → (x, . . . , x) ∈ R n . Also the copula C - 2 is the 2-dimensional cumulative distribution function of the image of the Lebesgue measure on [0, 1] by R ∋ x → (x, 1x) ∈ R 2 and, for n ≥ 3, C - n is not a copula.

∀u 1 , . . . , u n ∈ [0, 1], C - n (u 1 , . . . , u n ) ≤ C(u 1 , . . . , u n ) ≤ C + n (u 1 , . . . , u n ) that hold for any copula function C with C + n (u 1 , . . . , u n ) = min(u 1 , . . . , u n ) and C - n (u 1 , . . . , u n ) = (u 1 + • • • + u n -n + 1) + (see
In dimension n = 1, the unique copula function is C(u) = u and therefore the optimal coupling between µ and ρ, which necessarily share this copula, is the image of the probability measure

dC by u → (F -1 µ (u), F -1 ρ (u)).
It is therefore natural to wonder whether, when µ and ρ share the same copula C in higher dimensions, the optimal coupling is still the image of the probability measure dC by (u

1 , . . . , u n ) → (F -1 µ 1 (u 1 ), . . . , F -1 µn (u n ), F -1 ρ 1 (u 1 ), . . . , F -1 ρn (u n ))
. We denote by µ ⋄ ρ this probability law on R 2n . It turns out that the picture is more complicated than in dimension one because of the choice of the index q of the norm. Proposition 1.1 Let n ≥ 2, µ and ρ be two probability measures on R n sharing the same copula C and

W p,q (µ, ρ) = inf ν< µ ρ R n ×R n x -y p q ν(dx, dy) 1/p .
• If p = q, then an optimal coupling between µ and ρ is given by ν = µ ⋄ ρ and

W p p,p (µ, ρ) = [0,1] n n i=1 |F -1 µ i (u i )-F -1 ρ i (u i )| p dC(u 1 , . . . , u n ) = [0,1] n i=1 |F -1 µ i (u)-F -1 ρ i (u)| p du.
• If p = q, the coupling µ ⋄ ρ is in general no longer optimal. For p < q, if C = C + n , we can construct probability measures µ and ρ on R n admitting C as their unique copula such that

R n ×R n x -y p q µ ⋄ ρ(dx, dy) 1/p > W p,q (µ, ρ).
For p > q, the same conclusion holds if n ≥ 3 or n = 2 and C = C - 2 .

Remark 1.2 Let µ and ρ be two probability measures on R n and ν < µ ρ . For n = 1, ν is said to be comonotonic if ν((-∞, x], (-∞, y]) = C + 2 (µ((-∞, x]), ρ((-∞, y])). Puccetti and Scarsini [START_REF] Puccetti | Multivariate comonotonicity[END_REF] investigate several extensions of this notion for n ≥ 2. In particular, they say that ν is π-comonotonic (resp. c-comonotonic) if µ and ρ have a common copula and ν = µ ⋄ ρ (resp. ν maximizes R n ×R n x, y ν(dx, dy) over all the coupling measures ν< µ ρ ). Looking at some connections between their different definitions of comonotonicity, they show in Lemma 4.4 that π-comonotonicity implies c-comonotonicity. Since

R n ×R n x -y 2 2 ν(dx, dy) = R n x 2 2 µ(dx) + R n y 2 2 ρ(dy) -2 R n ×R n
x, y ν(dx, dy), this yields our result in the case p = q = 2.

2 Proof of Proposition 1.1

The optimality in the case q = p, follows by choosing

d 1 = . . . = d n = d ′ 1 = . . . = d ′ n = d ′′ 1 = . . . = d ′′ n = 1, c i (y i , z i ) = |y i -z i | p , α = dC, and 
ϕ i = F -1 µ i , ψ i = F -1 ρ i in the following Lemma.
Lemma 2.1 Let α be a probability measure on R d 1 × R d 2 × . . . × R dn with respective marginals α 1 , . . . , α n on R d 1 , . . . , R dn and ϕ i :

R d i → R d ′ i , ψ i : R d i → R d ′′ i and c i : R d ′ i × R d ′′ i → R + be measurable functions such that ∀i ∈ {1, . . . , n}, inf ν i < α i •ϕ -1 i α i •ψ -1 i R d ′ i ×R d ′′ i c i (y i , z i )ν i (dy i , dz i ) = R d i c i (ϕ i (x i ), ψ i (x i ))α i (dx i ). (2.1)
Then setting ϕ :

x = (x 1 , . . . , x n ) ∋ R d 1 × . . . × R dn → (ϕ 1 (x 1 ), . . . , ϕ n (x n )) ∈ R d ′ 1 +...+d ′ n and ψ : x ∋ R d 1 × . . . × R dn → (ψ 1 (x 1 ), . . . , ψ n (x n )) ∈ R d ′′ 1 +...+d ′′ n , one has inf ν< α•ϕ -1 α•ψ -1 R d ′ 1 +...+d ′ n ×R d ′′ 1 +...+d ′′ n n i=1 c i (y i , z i )ν(dy, dz) = R d 1 +...+dn n i=1 c i (ϕ i (x i ), ψ i (x i ))α(dx) = n i=1 R d i c i (ϕ i (x i ), ψ i (x i ))α i (dx i ).
Proof of Lemma 2.1. We give two alternative proofs of the Lemma. The first one is based on basic arguments.

R d 1 +...+dn n i=1 c i (ϕ i (x i ), ψ i (x i ))α(dx) ≥ inf ν< α•ϕ -1 α•ψ -1 R d ′ 1 +...+d ′ n ×R d ′′ 1 +...+d ′′ n n i=1 c i (y i , z i )ν(dy, dz) ≥ n i=1 inf ν< α•ϕ -1 α•ψ -1 R d ′ 1 +...+d ′ n ×R d ′′ 1 +...+d ′′ n c i (y i , z i )ν(dy, dz) ≥ n i=1 inf ν i < α i •ϕ -1 i α i •ψ -1 i R d ′ i ×R d ′′ i c i (y i , z i )ν i (dy i , dz i ) = n i=1 R d i c i (ϕ i (x i ), ψ i (x i ))α i (dx i ) = R d 1 +...+dn n i=1 c i (ϕ i (x i ), ψ i (x i ))α(dx),
where we used that

• the probability measure α • (ϕ -1 , ψ -1 ) on R d ′ 1 +...+d ′ n × R d ′′ 1 +...+d ′′ n has respective marginals α • ϕ -1 and α • ψ -1 on R d ′ 1 +...+d ′ n and R d ′′ 1 +...+d ′′ n , for the first inequality,
• the infimum of a sum is greater than the sum of infima, for the second inequality,

• the respective marginals of α • ϕ -1 and α

• ψ -1 on R d ′ i and R d ′′ i are α i • ϕ -1 i and α i • ψ -1 i
, for the third one,

• and the hypotheses for the first equality.

The second proof is given to illustrate the theory of optimal transport. It requires to make the following additional assumption on the cost function c i , for all 1 ≤ i ≤ n: there exist measurable functions g i : R

d ′ i → R + and h i : R d ′′ i → R + such that c i (y i , z i ) ≤ g i (y i ) + h i (z i ), R d i g i (ϕ i (x i ))α i (dx i ) < ∞, R d i h i (ψ i (x i ))α i (dx i ) < ∞. (2.2) 
Basically, this assumption ensures that

R d ′ i ×R d ′′ i c i (y i , z i )ν i (dy i , dz i ) < ∞ for any coupling ν i < α i •ϕ -1 i α i •ψ -1 i .
We now introduce some definitions that are needed, and refer to the Section 3.3 of Rachev and Rüschendorf [START_REF] Rachev | Mass Transportation problems[END_REF] for a full introduction. Let c : R

d ′ × R d ′′ → R. A function f : R d ′ → R is c-convex if there is a function a : R d ′′ → R such that f (y) = sup z∈R d ′′ c(y, z) -a(z). For y ∈ R d ′ , we define the c-subgradient: ∂ cf (y) = {z ∈ R d ′′ s.t. ∀ỹ ∈ domf, f (ỹ) -f (y) ≥ c(ỹ, z) -c(y, z)}, where domf = {y ∈ R d ′ , f (y) < ∞}.
We are now in position to prove the result again. Let X = (X 1 , . . . , X d ) be a random variable with probability measure α. We define Y i = ϕ i (X i ), Z i = ψ i (X i ) and ci = -c i . From (2.1), we know that (Y i , Z i ) is an optimal coupling that maximizes E[c i (Y i , Z i )]. From Theorem 3.3.11 of Rachev and Rüschendorf [START_REF] Rachev | Mass Transportation problems[END_REF], this implies the existence of a ci -convex function

f i : R d ′ i → R such that Z i ∈ ∂ ci f i (Y i )
. By definition of the ci -convexity, there exists a function a i : R

d ′′ i → R such that f i (y i ) = sup z i ∈R d ′′ i c(y i , z i ) -a(z i ). We define for y = (y 1 , . . . , y n ) ∈ R d ′ 1 × . . . × R d ′ n and z = (z 1 , . . . , z n ) ∈ R d ′′ 1 × . . . × R d ′′ n , f (y) = n i=1 f i (y i ), a(z) = n i=1 a i (z i ) and c(y, z) = n i=1 ci (y i , z i ).
The function f is c-convex since we clearly have f (y) = sup z∈R d ′′

1 +•••+d ′′ n c(y, z) -a(z)
. Then, we have the straightforward inclusion:

∂ cf (y) = {(z 1 , . . . , z n ) ∈ R d ′′ 1 × . . . × R d ′′ n , s.t. ∀ỹ ∈ domf, n i=1 f i (ỹ i ) -f i (y i ) ≥ n i=1 ci (ỹ i , z i ) - n i=1 ci (y i , z i )} ⊃ ∂ c1 f 1 (y 1 ) × • • • × ∂ cn f n (y n ).
This gives immediately Y ∈ ∂ cf (X). Using again Theorem 3.3.11 of [START_REF] Rachev | Mass Transportation problems[END_REF], we get that the coupling (Y, Z) with law µ ⋄ ρ is optimal in the sense that it maximizes E[c(Y, Z)].

We now prove that the coupling µ ⋄ ρ is in general no longer optimal when q = p. We first deal with the dimension n = 2. Given two copulas C 2 and C ′ 2 on [0, 1] 2 , let (U 1 , U ′ 2 ) be distributed according dC ′ 2 . Given (U 1 , U ′ 2 ), let U 2 be distributed according to the conditional distribution of the second coordinate given that the first one is equal to U 1 under dC 2 and U ′ 1 be distributed according to the conditional distribution of the first coordinate given that the second one in equal to U ′ 2 still under dC 2 . This way the random variables U 1 , U 2 , U ′ 1 and U ′ 2 are uniformly distributed on [0, 1] and both the vectors (U 1 , U 2 ) and (U ′ 1 , U ′ 2 ) are distributed according to dC 2 .

For ε ∈ [0, 1], we consider

Y ε = (U 1 , εU 2 ), Z ε = (εU 1 , U 2 ) and Z ′ ε = (εU ′ 1 , U ′ 2 ).
We notice that the copula of Y ε and Z ε is C 2 since the copula is preserved by coordinatewise increasing functions (see Nelsen [START_REF] Nelsen | An introduction to copulas[END_REF], Theorem 2.4.3). Also, Z ε and Z ′ ε obviously have the same law. We will show that for a suitable choice of C ′ 2 and ε > 0 small enough, we generally have

E[ Y ε -Z ε p q ] > E[ Y ε -Z ′ ε p q ].
Denoting by µ ε the law of Y ε and ρ ε the common law of Z ε and Z ′ ε , this implies the desired conclusion since

R 2 ×R 2 x -y p q µ ε ⋄ ρ ε (dx, dy) = [0,1] 2 (F -1 µ ε 1 (u 1 ), F -1 µ ε 2 (u 2 )) -(F -1 ρ ε 1 (u 1 ), F -1 ρ ε 2 (u 2 )) p q dC 2 (u 1 , u 2 ) = E[ Y ε -Z ε p q ] > E[ Y ε -Z ′ ε p
q ] ≥ W p p,q (µ, ρ).
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The coupling between Y ε and Z ε gives the score

while the one between Y ε and Z ′ ε gives:

We now focus on the cost function c(u 1 , u 2 ) = -(u q 1 + u q 2 ) p/q for u 1 , u 2 ∈ (0, 1). We have

When q < p (resp. q > p) this is negative (resp. positive) for any u 1 , u 2 ∈ (0, 1), i.e. c (resp. -c) satisfies the so-called Monge condition. By Theorem 3.1.2 of Rachev and Rüschendorf [START_REF] Rachev | Mass Transportation problems[END_REF], we get that

] for ε > 0 small enough. Notice that since both Y 0 and Z 0 have one constant coordinate, the range of the cumulative distribution function of this coordinate is {0, 1} and the probability measures µ 0 and ρ 0 share any two dimensional copula and in particular C - 2 (resp. C + 2 ). That is why one has to choose ε > 0.

This two dimensional example can be easily extended to dimension n ≥ 3. Let C n now denote a n-dimensional copula, C 2 (u 1 , u 2 ) = C n (u 1 , u 2 , 1, . . . , 1) and C ′ 2 be another two-dimensional copula. We define (U 1 , U 2 , U ′ 1 , U ′ 2 ) as above. Then, we choose (U 3 , . . . , U n ) (resp. (U ′ 3 , . . . , U ′ n )) distributed according to the conditional law of the n -2 last coordinates given that the two first are equal to (U 1 , U 2 ) (resp. (U ′ 1 , U ′ 2 )) under dC n . Last, we define Y ε = (U 1 , εU 2 , εU 3 , . . . , εU n ), Z ε = (εU 1 , U 2 , εU 3 , . . . , εU n ) and Z ′ ε = (εU ′ 1 , U ′ 2 , εU ′ 3 , . . . , εU ′ n ). We still have on the one hand that Y ε and Z ε share the same copula and on the other hand that Z ε and Z ′ ε have the same law. Moreover,

Taking ε > 0 small enough, we get that

) ), then one may repeat the above reasoning with the i-th and j-th coordinates replacing the first and second ones. Then the coupling ν = µ ⋄ ρ is not optimal for ε > 0 small enough. For n ≥ 3, there is no copula such that C n (1, . . . , 1, u i , 1, . . . , 1, u j , 1, . . . , 1) = C - 2 (u i , u j ) for any i < j , u i , u j ∈ [0, 1], since this would imply that U 2 = 1 -U 1 = U 3 and U 3 = 1 -U 2 . Also, the only one copula satisfying C n (1, . . . , 1, u i , 1, . . . , 1, u j , 1, . . . , 1) = C + 2 (u i , u j ) for any i < j, u i , u j ∈ [0, 1], is C + n since the former condition implies U i = U j for any i < j.