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Abstract This article presents a fracture mechanics mantehfkali-Silica Reac-
tion. The model deals with the case of a concrea€emup of dense aggregates
submitted to chemical attack. The chemistry anfligién (of ions and gel) are not
modelled. The focus is put on the mechanical cameseces of the progressive re-
placement of the outer layer of the aggregate hbgsa dense gel. A schematic
cracking pattern is assumed: a ring-shaped crapkap in the cement paste sur-
rounding the spherical aggregate depending onrdmspre build-up. The onset of
cracking is determined using an incremental energgrion. The stored elastic
energy and deformation of a given configuration det¢ermined assuming that
each aggregate behaves as if it was embeddediifimite cement paste matrix.
The calculations are performed by Finite Elemenalfsis. We note a very differ-
ent behaviour of aggregates of different sizes.idgldhe contributions of differ-
ent aggregate sizes leads to an estimation of [dimlgfree expansion of a con-
crete of given aggregate size distribution. A &tattack is identified that leads to
recover the usual sigmoid ASR expansion curve.

1. Introduction

The alkali-silica reaction (ASR) has been discosteie the USA by Stanton
(Stanton 1940). It can be very detrimental to tfiected buildings. Three condi-
tions are required: high water content, high alkalncentration and reactive ag-
gregates. It is visible through superficial crackiand expansion. Resistance to
traction is also affected. The ASR gels first fille available porous space, and
then tend to create microcracks which are thougiulay an important role con-
cerning expansion and its anisotropy under loading.

First, we explain briefly why we propose a new ftaie model for ASR and its
differences with existing ones. Then follow the agstion of the considered ele-



mentary volume and the computation of the energsesl in the energy fracture
criterion presented right after. The simple rulediso sum the contributions of
different elementary volumes to macroscopic exgansbmes next. Later, we ex-
plain which parameters influence the results ofrtitalel, focusing on aggregate
size and the properties of the ASR gel. Finally, discuss the potential of our
model for reproducing experimental expansion curves

2. Restrictionsof themodel proposed in thisarticle

In this first attempt to understand the behaviduaroaggregate submitted to an at-
tack, we only study a simplified mechanical probletated to ASR. Our goal is
to understand the role of cracking of the cemestem the swelling of concretes
submitted to ASR. Therefore, we restrict our mddethe simplest elements lead-
ing to the appearance of a crack in the cemenepasier gel pressure. We want
to understand how the size of aggregates influenaeking and hence, ASR ex-
pansion. The model follows many ideas of Bazant&cianical model for ASR
(Bazant et al. 2000). In this model a schematiddys attack is considered, corre-
sponding to the accelerated expansion test ASTM2&D1The decrease of the
concrete’s resistance and its expansions due tbufe of the cement paste be-
tween a periodical glass aggregate pattern armastl thanks to Linear Elastic
Fracture Mechanics. Let us explain the main difiees here. First, in our model,
no assumption is made about the periodicity ofaygregates in the cement paste.
Instead, each aggregate is assumed to be embedddthite cement paste. Sec-
ond, the basis for crack propagation is a Finienteint Analysis (FEA), instead of
an interpolation between analytically known stregensity factors. On this point,
our approach is close to that of Xiao (Xiao et1#99) where the authors study,
through FEA, the evolution of stress intensity éastfor ring cracks surrounding
inclusions when varying various parameters, extegtt we work directly on en-
ergies. We also compute the volume available togieby FEA which makes it
simpler than what is done for example in (BaZarale2000) where it is deduced
from the cracked medium’s compliance which is alsdiby integration (with re-
spect to the crack size) of the stress intensityofa Then, our determination of
average deformations far from the reaction siteguite simple. Finally we make
no assumptions about the compressibility of the AB&ducts relatively to the
cement paste and we briefly discuss its importgtike in (Lemarchand et al.
2005)).

Our goal in this article is to build a reliable inedl to create and propagate cracks
that we’ll be able to use under external loadirgsttidy the anisotropy of expan-
sion, later on. We plan to use this methodologfjrtally be able to extract macro-
scopic information about the anisotropy of swelliagd decrease of material
properties that can be used in structure-size FEA.



3. Description of the behaviour of an elementary volume
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Fig. 1. Undeformed and deformed configuratiqa¥. remaining aggregatéc): cement paste.

Our elementary volume is a single spherical aggeegbradiust surrounded by

an infinite cement paste which is free at infinfBig. 1). Hence, the interaction
between aggregates is neglected. The attack cfgbeegate is represented by re-
placing the aggregate by a gel from the outsidthéoinside. The relative attack

depth is called}’D[O;l], that is at a given time, an aggregate of ra-
dius(l—a')Rp remains. The aggregate is supposed to easily sepfan the

cement paste due to the mechanical weakness oifhtbdace transition zone
(ITZ) surrounding it. The aggregate and cementease considered linear iso-

tropic elastic of propertie(sEa,I/a)and(E V ) The gel bulk modulus K .

c!'’c
Under zero pressure, the volume of gel replacigivan volume of aggregate is
O times bigger. Hence, the undeformed gel volume afivan attack degree

writesVO(a') =4 MR [1—(1— 0)3}. Let us stress thatcould be an effec-

tive value of the ratio of the gel volume to theg@ggate volume accounting for
physical phenomena such as the invasion of a paheoporous space by the gel
(particularly the 1TZ, of bigger porosity). It walithen depend on the gel pressure
and the aggregate size. To keep our model sim@esomsider it as a constant.

We study the cracking of the cement paste undeinitreasing pressure created
by gel accumulation around the aggregate. Quasititative to the gel, the ag-
gregates, and the cement paste, respectively havadexegel, a, andc.

4. Expression of gel pressure and elastic energies

The cracks we are considering are ring cracks deirgg in a symmetry plane of
the spherical cavity (See Fig. 1). Therefore, wend take the influence of



neighbouring aggregates on crack propagation iotownt. A crack around a cav-
ity of radiust is characterized by its relative sixelefined as the difference of

the crack’s outer and inner radii, divided Pay.

The gel pressure first has to be computed. The pesapd gel volume writes:
V(a, x)=V0(a)(1—P(a,x)/Kgd) (1)

whereP(a', X) is the homogeneous gel pressure where a¢ (0]', X), we only

keep explicit the dependence in the degree of laffaand the relative crack
sizeXwhich are the two variables describing the evohutidé our elementary vol-
ume. To find the gel pressure, this gel volumetbalse compared to the volume
left available by the deformation of the solid campnts. When a crack exists, no
closed form solution is available. Hence, we resmiffEA to compute the varia-
tion of volume available to the gel, at given cratke, due to the deformation of
the cement paste. Dimensional analysis leads uswiite this quantity

AV, (a, X) =4 7T( Rz P (a, X)/Ec ) Av(X) where AV(X) is dimensionless.
Hence, the volume accessible to the gel writes:

V(a,x)= %’TRg KH@AV(MJ (- 0)3(1— Pla )2 ﬂ

A E

a

(@)

Where in the term concerning the compression ofaiipgregate, the assumption
P(a,x) < E_ has been used to keep the expression linear inptassure.

Thanks to this approximation, equating express{@hsand (2) yields a linear ex-
pression of the pressure which can hence be easttgn as:

(6-1)|1-(2-a)’]

3|1-(1-a)’ | VG TR E a2
Ko E

The elastic energies of all components are nedemdthe aggregate and the gel,
their expressions are in closed form. For the getites:

P(a,x)= 3)

C a

2
e (0.0 = Zarf--ay ] ) "
gel
While concerning the aggregate:
)=o) e

a
Regarding the cement paste, dimensional analyadsleis to write it under the
following form:



E? (a,x) = 27K % e(x) (6)

Where €(X) is dimensionless. Now let us stress the fact tifiatequality of the
work done by the pressure in the variation of vauoh the cavity and the stored
elastic energy leads to:

Av(x) = 3e(x) (7)
Thanks to this, the determination efx) by FEA (see Fig. 2 Left) gives us access

to the stored elastic energies and the pressuie (B4)), for any Young’s moduli
of the cement paste and the aggregate and bulk loodfi the gel (but at fixed

Poisson’s ratios sincein fact also depends of ).
The closed form solution for the uncracked situatijives us the uncracked value
of the dimensionless energ(0) = (1+ Vc)/ 2.

5. Thermodynamic study of crack initiation and propagation

We decided to create the cracks from scratch, awpithe question of the initial
crack size. When there is enough energy storelersystem to create a crack of
given surface, it can happen. We consider this sgag condition as sufficient
and therefore, we use the equality of releasedggnemnd dissipated energy as a
crack initiation criterion.

The dissipated energy during crack growth is defias:

E¥(x) = G/R2|(1+ x)? -1 (8)
Which is the product of the surface of the crackabyaterial paramet€s, (sur-

face fracture energy). This energy is to be conpéwehe energy released during
the creation of a crack of siz€éwhich we define as:

E™(a,%) = Ega (@.0) ~Egy (a,X) ©)
Where, taking advantage of equations (4), (5),(&hd
o[1-(1-a)]

¢ (a,x)=2nR>
Etotal ( ) p 3K N

1-%
+(1-a)’ =2 +e(x)|P? @ x)
Ea
(10)
Then, as can be seen on Fig. 2. Right, while thdilg paramete? increases,
the inequality E" (&, X) = E®*(X) is more and more likely to be verified for a

given relative crack siz¢. When this inequality is first verified, the twoeargies
as functions of the relative crack size are alsgéat.
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Fig. 2. Left: Dimensionless stored elastic enedgtermined by FEA for different crack sizes
X. Right: Schematic representation of the dissipatetireleased energies as functions of the
relative crack sizeX while increasing the attack degrée

Therefore, for a given aggregate size and set ¢énahconstants, the initially un-
cracked system instantaneously jumps to a firstkcodi sizeX,,, created at the at-

tack degreexr, which verifies:
£ (R, ) (R.)) = E*=(x. (R, )

% (@R, ) x(R,))= % (x.(rR) (12)

Then, the propagation of the crack follows the gpeate equation (Eqg. 12) which
gives the relative crack size corresponding to edizttk degre&((a’) .
aEI’el dEdi$
—\a,X) = X

o (@x) == —(x)
Now, starting from the knowledge of the volume fiaic of each aggregate size at

the macroscopic level and that of the pressuretl@drack size for each aggre-
gate size at the microscopic level, we need tandedi macroscopic deformation.

(12)

6. Macroscopic defor mation

This part explains our method to compute macroscdeformations starting from
the crack volume obtained for each aggregate stwa track propagation under
gel pressure as explained above. First we consideraggregate in infinite ce-
ment paste and a domdhincluding the aggregate. Its current state is desdr

by the coupléx, P(a,x)) . Let us considdi = j (g O D)S dSwhereu is the
aQ

displacement fieldNthe outward normal tQ , ands is used to take the symmet-

ric part of the tensor. Takana-Mori’'s theorem (Tikenand Mori 1972) states that



if Qis a spherelJ does not depend on its size and position as lorigiasludes

the cavity.
Suppose there is only one aggregate Bgeepresenting a volume frac-

tion f throughout the concrete. Then the spiedeas to be chosen such that

f =%7TR,3)/|Q| to make sure that the volume fraction of the agapedn the

domain used to compute the average deformatiortaltlee attack is equal to the
volume fraction in the concrete considered. Finaléydefine the macroscopic de-

formationE = |Q|_lli = [ f/(% ﬂRﬁ)}U

We now need to take into account the aggregatedsigbution. To each aggre-
gate sizeRp’i corresponds a volume fracticfpin the concrete. Each aggregate

class contributes to the macroscopic deformatioouifh a partial average defor-
mation defined ak I[fi/(% ITR;i)]gi wherelJ is computed relatively to

the aggregate of si8,; , a crack of size , and a pressuteé = P(ai ' )g) . The

macroscopic deformation is then definedzas z E.

aggregate
sizei

A corollary of Takana-Mori’'s theorem (Tanaka andrMi®72) for which we will
give our own proof in a later paper relates theimadtric part oﬂli to the dimen-
sionless stored elastic energy in the cement masteunding the considered ag-

gregate (defined in Eq. 6 and related to the voluer@tion of the cavity through
Eq. 7, and computed by FEA) through the expression:

Rz,ip(ai7)§)4_7'[1+ V.

tru = 1-2v_+e(x 14

=i E. 3 1—vc[ +el) !

Egs. 13 and 14 finally give us access to the maopis volumetric deformation:

wrE= Y f Mﬂ[l_ v, +e(x)] (15)
" aggregate E. 1-v,

sizel

7. Numerical results: effect of aggregate size

In this section, we investigate the behaviour af moedel when we vary some of
its parameters. Setting the best known parameters B, =20GPa,

E, =60GPa, v, =v,=0.25 G, =40J m~?following (Wittmann 2002)



and the less known parameterstg, =1GPa and d =1.03, we study the ef-

fect of the aggregate size looking at 5 aggregaigess ranging
from40/mto6mm. These values of the parametérs, andd as well as the

aggregate size distribution have been chosen terline the different behaviour

of different aggregates. Higher values of thoseapters would lead all aggre-
gates to crack the cement paste atdowlower values could lead to no cracking
at all. We plot the relative crack size, the gelgsure (Fig. 3.), and the volumetric
average deformation (Fig. 4.) as functions of thepprtion of the aggregate al-

ready changed into gé]—(l— a’)g. The results relative to the biggest aggregate

size are the dashed curves. We can see that ldggezgates crack their surround-
ing cement paste at a lower pressure level, produdcitially shorter cracks, and
that the bigger the aggregate, the bigger the eskparat full attack.

x 10
35 3
- 6mm

4.5mm 4oum

mm

40,
06 0.8 1 0 0.2 0.4 06 0.8 1

1-(1-0)® [] 1-(1-a)’ []
Fig. 3. Evolution of the relative crack si2€and the gel pressure for different aggregate sizes.
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Fig. 4. Evolution of the average volumetric expansi
Fig. 4. shows that once a crack has appeared atbengggregate, the expansion

is roughly proportional to the amount of aggregateed into gel, but it is not the
case at all for uncracked aggregates.



8. Numerical results: fit to an experimental expansion curve

We must keep in mind that usual ASR expansion auhave a sigmoid shape
characterized by a latency time, a characteristie and an asymptotic expansion
value. We can wonder if our model can be usedtteuth an expansion curve,
even if it would not mean that the model is pradecin any way. We use an ex-
pansion test found in Riche’'s PhD thesis (Riche 3200n this test on
7*7*28cmprismatic samples, high alkalinity cement is usEde reactive ag-
gregate is flint ranging frombmmto20mm, for a total volume fraction of
around22.5%, while a volume fraction o45% is occupied by a limestone non-
reactive aggregate (notice that the reactive agdesgare quite big, so according
to Fig. 3. they all crack early and the expansgroughly linear with the attacked
proportion of aggregate). We have two choices folagn the end of expansion:
scarcity of aggregates, or scarcity of chemicadpots to attack the aggregates.
Even if the formulation has a very high equivalaikali content (around

5kg/m3 ), it is unlikely that it is sufficient to attacEOOkg/m3 of reactive ag-

gregates. Hence, we assume that here the expatejmneven if some aggregates
are left. Following Bazant (Bazant et al. 2000),assume that at a given time, the
attack depth is the same for all aggregate sizes. tién identify a func-
tionr(t)which links the attack depth to the physical timérotigh

a(R,,t)= r(t)/ R, - Thanks to this deformation of the time scale,aléain a

realistic but artificial expansion profile (Fig.)5.The values used here are

K =1GPaandd =1.05. These values were chosen to achieve a sufficient

asymptotic deformation.

x10° x10°

our model
2 *  Riche's data

r(®) [m]

0 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Fig. 5. Optimized volumetric expansion profile.

More physics is needed to explain the shape ofctlvige. To explain why expan-
sion starts slowly, at least two options. The fissthat diffusion of the chemical
species attacking the aggregate take time. Thendemoe is that the gel created in
the beginning of the reaction does not contribateracking but fills the porosity
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of concrete. These two points will be studied ad s&eps of our research, starting
with a study of the rheological properties of swtith gels.

9. Conclusion

A model for Alkali-reaction was proposed. It istectly mechanical model, partly
inspired by that of BaZzant (Bazant et al. 2000)gregates are supposed to behave
as if they were embedded in an infinite cementgake chemical attack is mod-
elled by progressively replacing each aggregate bgss dense gel. The subse-
guent pressure increase leads to cracking of thiewswding cement paste. The ini-
tiation and propagation of the crack are governgcehergy balance only. An
interesting behaviour is observed. Aggregates fiémdint sizes have a different
impact on the overall expansion. First of all, e¥elly attacked, smaller aggre-
gates are shown not to lead to any cracking ofcément paste. The pressure
reached for these aggregates is important, burdiogpto our energy criterion the
cement paste can take such pressures when there (isr a very small) initial
crack, because the elastic energy stored in thewgepaste around a small aggre-
gate is not sufficient to provide the energy neettedreate a crack. Finally we
apply the model to try to reproduce the expansistaioed in an experiment lead
on a concrete specimen by Riche (Riche 2003) anmthgeato identify the attack
rate, which is one of the inputs of our modelsieforoduce the usual sigmoid ex-
pansion curve.
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