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ABSTRACT

Alkali-Silica Reaction is a deleterious chemical reactidrich affects concrete
due to the swelling of a gel close to reaction sites geneladigted in or at the surface
of reactive aggregates. The pressure build-up due to thiirsgvef the gel can lead
to fracture of the interface between the aggregates ancethertt paste, and cracking
in the cement paste. Our goal is to predict the anisotropph@fmbtacroscopic expan-
sion of concrete through the computation of the crack dwast The choice of the
micromechanical representation of the concrete has bdpadby comparison of dif-
ferent estimates with finite element simulations on typicatk patterns. In this article
we explain the micromechanics modeling.

INTRODUCTION

The Alkali-Silica Reaction (ASR) has been discovered in48s in the USA.
This endogenous chemical reaction consists in the dissolof reactive silica from
the aggregates by alkali hydroxide ions from the inteedt#olution, and gelification of
this dissolved silica in or close to the aggregates, alorig ome alkali and calcium.
It is visible through expansion and/or superficial crackafignacroscopic parts. Resis-
tance to traction is more affected than resistance to cassjme. The elasticity modu-
lus decreases and plastic deformation increases. Migoasadty a network of micro-
cracks grows because of swelling of reactive sites whera@moos gels are created.
These cracks can be located in the aggregates and in the teast®, or at interface.
These microcracks play an important role in the macroscegpansion of concrete
structures. ASR is not always detrimental: when the gelsdmalgh space to expand
without cracking the cement paste, almost no macroscopiareston is observed. Mi-
crocracks also play an important role concerning the arupgtof the expansion when
the concrete structure is loaded.

We first explain why we are interested in studying the anggmtiof ASR. Sec-
ond, we describe our model, explaining the microstructweeansider and the two ho-
mogenization scales that are dealt with. We then explairesawdeling choices about
the shape of the considered heterogeneities and presentithenechanics scheme
we use. Finally we give an example of crack propagation uatieck.
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EVIDENCE AND MODELING OF THE ANISOTROPY OF ASR

The anisotropy of ASR was first noticed through the orientatf the macro-
scopic cracks on affected structured [Hobbs(1988), M&0604), Larive(1997)].
These cracks tend to align with the principal compressioaction in the structure
(which means that the normal to the crack is orthogonal tthrecipal compression
direction), which can be due to reinforcing bars or weight.aAsample-size level,
anisotropy is also seen, sometimes even in the case of vrekirey. The directions
of casting, as underlined in [Larive(1997)], play a majderaince they influence the
orientation of the aggregates and the zones of higher gygraiund the aggregates.
However in this article, we are interested in the anisotropgwelling which is due
to mechanical loads. As pointed by Hobbs, [Hobbs(1988)plyapg a stress on an
attack concrete can modify expansion a lot. The mechangsataint also can mod-
ify expansion, as measured by Kawamura and Berra [Kawanmaténeahori(2004),
Berra et al.(2010)]. The effect of stress and restraint wagrally understood as a
redistribution of expansion from the compressed to the ¢esspressed directions.
Macroscopic expansion models by Larive and Multon [Larh@£(7), Multon(2004)]
are based on this idea.

MECHANICAL MODELING OF ASR IN CONCRETE
General presentation of the model

Our model is based on the idea that the aggregates of theetenarhich are
surrounded by the ITZ, are progressively attacked by theiiothe interstitial solution.
The attack creates new pores in an outer layer of the aggsegatadiusik. The size
of this zone of constant porosigygrows with time (attack depth(¢)R). A gel of bulk
modulusK ., appears in the voids of the attacked aggregates, and cay fime to
the voids of the ITZ of porosity**. Since the volume of gel is larger than that of
the aggregate which was dissolved (rat)pthe pressure increases. At the same time,
the concrete is submitted to external loads due to its locati a larger structure such
as a bridge or a dam. These two loadings (pressure of the malsoscopic strain
or stress) possibly lead to cracking to two kinds in our modetohesion between
the aggregates and the cement paste due to the mechani¢alessaf the ITZ, and
afterwards cracking of the cement paste.

The goal of the model is to compute these cracks, through an en
ergy fracture criterion, as was explained in a previousclartirom the authors
[Charpin and Ehrlacher(2012)]. To do so, we need to estithateotal energy of the
sample, thatis the sum of the potential energy and the ditesigenergy during cracking
(described by the surface are@$* for decohesion and/*** for cement paste crack-
ing). The elastic energy of the solid skeleton per unit vauoh the porous medium,
using a poromechanical description at the scale of the REW, ispect to the dam-
age state of the material represented by the varidlaled the macroscopic strain and
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pressure at each site, formally writes (withf the number of aggregate sizes):

Eflize’ SV (d) = B 2 T (d) g+22p M* (d (1)
=1 k=1

Where the overall material properties of the REV are thefwaithg:

. B is the Biot coefficient (it does not appear in the elastic gyerdescribing

the macroscopic stress created by a pressure in a pore itramed sample, or
equivalently the volume change of a pore induced by a macpisstrain.

e )M;; is the Biot modulus, linking the pressure in a pore family lte olume
change of another pore family, when the macroscopic strezeiio. We empha-
size here that our choice for this material parameter igifit to the common
choice which is made for example in [Dormieux et al.(200&)king the inverse
of the commonly used Biot modulus.

e C"™ is the macroscopic stiffness tensor.

And where the dual quantities of the imposed deformatiand the imposed pressures
p* are defined as follow:

¢ X isthe average stress on the porous medium

e (¢p—F); isthe difference between the volume fraction of pores mjsielatively
to the volume of porous medium in deformed configuratigrand the volume
fraction of pores in sitg relatively to the volume of porous medium in unde-
formed configuratiorf;, that means the volume variation of the porous space of
site j relatively to the volume of porous medium.

We aim at determining the expression of the overall porormeidal properties with re-
spect to the degree of attack of the aggregates and the staeking of the concrete.

Presentation of the microstructure

Our starting point for the mechanical description of thearete is the microsc-
tructure represented on Fig. 1. The cement paste matrixpgesdomairf2©, and has a
stiffness tensor calle@¢. This materials includes’’ type | sites as shown on the left
of Fig. 1. Each sitex ¢ 1 : N' is made of three domains. In the center, a spherical
domain(2? representing the sound aggregate of stifff@ssThe first shell domaif?,
is split between sound aggregate and small pores occupydognain{2*”, created by
the chemical attack. The second shell donfainis made of cement paste with pores
occupying the domaif2’’, representing the small pores of the interface transitooez
(ITZ). We also haveV!! sites oftype II, which are cavities, representing the void con-
taining aggregates where decohesion between cement pak@ggregate occurred,
occupying domaif2y, with 5 € 1 : N/,
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Figure 1. Concrete submitted to ASR : initial problem

Let us introduce an auxiliary problem which will help us deti&ing the over-
all properties of our material.

Fine-scale homogenization: auxiliary problem

We introduce this problem to get rid of the finer scale we presgin the pre-
vious section. The idea is that pores in the attacked zoreekTanare very small com-
pared to the sizes of these zones, so the attacked zone afgrenate and the ITZ can
be described as homogeneous porous media instead of efestia with holes. The
properties of the homogeneous porous media are obtaineglasiori-Tanaka scheme
[Benveniste(1987)]. For each region, we obtain a homogehstiffness tensor, a Biot
modulus, and a Biot coefficient, since we want to keep trackhefpressure in the
pores of the initial problem through a poromechanical dautste law. In the attacked
aggregate we call those properti€, B, M?), in the ITZ (Cé,ﬁz, M?!). Hence we
obtain an auxiliary problem, as shown ¢ on Fig. 2. Tyee Il pores, occupying domains
Q23, are identical to those in the initial problem.

Definition of the localization tensors and overall properties

If our medium is described as a heterogeneous porous metamkg to the in-
troduction of the auxiliary problem, and the skeleton islied by a macroscopic strain
E and the pressures in the porous zopfeshe local strain writes by superposition:

) =P+ Y eMa) =A@ E+ Zé z) 2)

k=1
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Q

Figure 2. Concrete submitted to ASR : auxiliary problem

Where A’(x) is the fourth order strain localization tensor in the idifi@goblem and
A () are second order symmetric pressure localization tensdreiauxiliary prob-
lem problem. All poromechanical properties can be writteadequate averages of the
strain and pressure localization tensors on the variousgshaur work here is to adapt
those classical expressions to our problem of ASR.

COMPUTATION OF THE OVERALL PROPERTIES WITH THE DILUTE
SCHEME

This first approach assumed the heterogeneities occupy éovevolume frac-
tion and hence, don’t see each other mechanically.

Typel sites

Those sites, where chemical attack has begun but no cratlasgccurred,
contain a sound aggregate in a sphere of radius «)R (stiffness tensor i€*), a
spherical shell of attacked aggregate between fadit «) R and R, which porome-
chanical properties ar&g,ﬁi’, MP?), a second spherical shell representing the ITZ,
between radiiR and R + [. of poromechanical propertig€?, ﬁz, M}, and finally
an infinite elastic medium representing the cement pastexaft stiffness tensor
Cec. To determine the deviatoric part of the strain localizattensor, we use Love
solution [Love(1927)] for our sound aggregate surroundga shell of attacked ag-
gregate and a shell of ITZ, embedded in an infinite cemenepésiiowing Chris-
tensen [Christensen and Lo(1979)] which used this soldtotheir generalized self-
consistent scheme. Love solution yields the displacenmmms/where under a shear
loading. Under a spherical loading the displacements as teadetermine since they
are radial. Finally adequate averages of the displacenaddsfdetermined and yield
the dilute strain tensor diype I sites.
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Pressure in zone3” or Q! also induces a radial displacement. The resolution
is hence similar to the case of an imposed spherical displene The average strain
on phases is also spherical and so is the second order préssalization tensor.

Typell sites

For type I, which are cavities which shape has not been specified, waruse
approach closer to the Eshelby solutions in micromechafitosse sites are made of
a spherical cavity representing the empty space left by ¢éleeltesion of an aggregate
(the aggregate is still there but all that matters is thatasure is applied on its bound-
ary) and cracks in the cement paste which appeared due tb atagsure in the cavity.
Before writing explicitly the localization tensors we nesame assumptions about the
cracks.

First, we assume that cracks are penny-shaped cracks withcéimter at the
center of the spherical cavity. Their outside radius isechil.

Second, around each site we could hayecracks of sizes;, i € 1 : N, each
of them characterized by an orientation (for example by twglesé;, ¢;). To limit
the number of cracks to deal with, we make the following agjpnation: an isotropic
distribution of crack orientation can be approached byetwghogonal directions of
cracks.

Finally, we decompose our cavity with cracks in a superpmsif simple prob-
lems. The validation of this decomposition was madgdnHere we give the result in
the 3d case, which is a generalization and has not been studiectlgirEach cavity
occupies a domaify, which is made of:

e a spherical cavity in the place which was occupied by theegge before de-
cohesion (radiugk). This cavity is represented using the Eshelby tensor for a
sphere, taking the cement paste as external mateé¥i&l,:and the initial volume
fraction of the aggregate phase considerégd :

e three "large” cracks, each of them oriented normal to ondnefuectors of the
Cartesian basis. They are penny-shaped cracks, which wesesy by flat el-
lipsoids. The radii of the cracks atg, x5, x3 depending on the orientation. We
represent them by a flat ellipsoid Eshelby tensor, which ad@gends on the
aspect ratiaX; of the ellipsoid and on the external material consideredy(on
through its Poisson ration when it is isotropic, which is tase for the cement
paste). We call these Eshelby tens®i's S/2, S/2. The volume fractions affected
to these flat ellipsoids are chosen so that there is one cnaekdh direction per
cavity. In each direction = 1,2, 3, we getf/, = f, X723,/ R®.

e three groups of "small” cracks to account for the artificiahs induced by the
part of the large crack which is included in the cavity. A eation of small cracks
is therefore associated to each large crack. The radiueditiall cracks isR,
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and we choose to give them the same aspect fafias to the large cracks. We
determined numerically throughi computations that the best volume fraction
to give to these cracks is so that their number multipliedHsirtsmall axis is
equal to the small axis of the large cracks. Calling the va@urmaction of the
small cracks in one direction of one cavify, it writes f7, = £l LR a2, =
finxm/Ri-

The Eshelby tensors of these small cracks are the same as dhdise large
cracks. Therefore, what we do here is merely a volume fractiorection to the
large cracks.

Finally using these assumptions, the strain localizatersdrs can be written
only using Eshelby tensors and volume fractions detailedeb

Kifﬁzf (fz [1— s~ Z( ) [I-SI]™ > 3)

We could think that since the volume fractions of the craaksrauch smaller than
those of the cavities, the corresponding terms are netgigitowever it is not the case,
since the important components of the Eshelby tensor ageilsinwith respect to the
aspect ratio and since we are at fixed number of cracks, proparto the inverse of
the volume fraction, when cracks are considered.

A more refined micromechanics scheme : the Interaction DirecDerivative esti-
mate

In the previous section we wrote expressions for our loatibn tensors in the
case of the dilute estimate. We want to extend these expresasing the IDD esti-
mate [Zheng and DU(2001)], which we think has a wider vajidange in terms of
volume fraction of inclusions. It can account for diverses and types of inclu-
sions as well as for their spatial distribution. It is ideatito the two-phase estimate
[Shige and Tzuchiang(1999)] when there is only one type dtisions and to the well
known Mori-Tanaka estimate [Benveniste(1987)] in the aalsere the inclusion shape
is represented by the same ellipsoid as their distributhmhave checked its efficiency
using2d FEA on porous media generated by a sequential additionidigarEven if
this algorithm produces very specific morphologies sinedriblusions cannot overlap
nor coalesce, we see those good result as encouraging.

For example on Fig. 3 we show comparisons between the horreagkemoduli
of a material containing ellipsoidal holes of aspect réticat various volume fractions.
The IDD estimate is established assuming that the spastilfalition of the ellipsoids
is isotropic, while IDD-A flattens this distribution as vohe fractions increase, leading
to a better estimate. Mori-Tanaka is a little bit less satigdry for these non spherical
holes.
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Figure 3. Young and shear moduli in 8d simulation of a random media containing
0.1 aspect ratio isotropically oriented cracks

BEHAVIOR OF THE MODEL UNDER FIXED DISPLACEMENTS: ONE AG-
GREGATE SIZE, ONE DIRECTION IN COMPRESSION

Our model was built in order to be able to reproduce lab erpemis of ASR
under various loading states. The model is able to take coogrianulometries into
account, but for simplicity we will here focus on the case whthere is only one
aggregate size. In this section we use the following valaethke different parameters

(Eq. 4):

E, 60GPa | R | lmm || G%¢ | 20J.m~2 | I. 2um
E. 20GPa || f1 | 0.4 || G140 m™2 | pi= = pt | 0.1 4)
v, =1.| 025 |d 1.3 || Kga | 0.5GPa

With one aggregate size, the computation is very fast. Wesinyate as an illustration
the case where one direction is in slight compressiap:= —10~%, while other com-
ponents are zero. This case is close to the practical caseaiaete part of a wall
or a pillar where one direction is far more compressed tharothers. However, we
stay in the simple case of prescribed strains. The probléehussymmetric. We force
x1 = x5 during the evolution of cracking. Thus it i2d optimization.

Beginning of attack and decohesion

Let us first discuss the evolution of crack size and pressutesicavity (Fig. 4).
The crack size is at first equal to the aggregate radius, whieljuivalent to having
no crack. The pressure is first zero, while A& is not full yet, and quickly starts
increasing. This fast increase in the pressure is followealffiressure drop, at = 0.03
(first vertical dashed line), which corresponds to the desan of the aggregate, while
the crack size has not progressed. The decohesion of thegadgrcan be seen on
Fig. 5, through a increase of the two poromechanical coefftsi’/ and B and of the
variation of volume of the porous pha&g — F'). At the same time the moduli of the
material decrease a lot in direction 1 and 2.
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Figure 5. Relative volume change of the
cavity (¢ — F'), Biot modulus M, Biot
coefficient in each directionB

Figure 4. Crack sizez in the three direc-
tions and pressurep

Cracking

At some point, as can be seen on Fig. 4, cracks grow in diresficand 2 (sec-
ond vertical dashed line). There is no jump in crack sizeli $et of parameters even
though our formalism would allow it. On the same figure we e this crack growth
limits the increase in pressure. A further increase of th@mpechanical properties is
seen on Fig. 5, while the Young’s moduli keep decreasingerdihections 1 and 2, to
reach values of roughly a fourth of the original value. Thepeessive stress increases
to reach the high value 6#35 MPa for this set of parameters.

CONCLUSION

To predict cracking in a concrete submitted to ASR, we detideuse an en-
ergy criterion, which requires to compute the homogenizegpgrties of the attacked
concrete for different possible cracking states. We hepéa@xed how we use a solution
from Love and classical Eshelby tensors to compute the heningd properties of a
concrete where some aggregates are attacked, and somerfrgane decohesion.
An example of the efficiency of the micromechanics schemeseeg thhe IDD scheme,
was shown. Finally we gave a simple example of crack propagander loading in a
concrete made of only one aggregate size.
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