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ABSTRACT

Alkali-Silica Reaction is a deleterious chemical reactionwhich affects concrete
due to the swelling of a gel close to reaction sites generallylocated in or at the surface
of reactive aggregates. The pressure build-up due to the swelling of the gel can lead
to fracture of the interface between the aggregates and the cement paste, and cracking
in the cement paste. Our goal is to predict the anisotropy of the macroscopic expan-
sion of concrete through the computation of the crack directions. The choice of the
micromechanical representation of the concrete has been helped by comparison of dif-
ferent estimates with finite element simulations on typicalcrack patterns. In this article
we explain the micromechanics modeling.

INTRODUCTION

The Alkali-Silica Reaction (ASR) has been discovered in the40’s in the USA.
This endogenous chemical reaction consists in the dissolution of reactive silica from
the aggregates by alkali hydroxide ions from the interstitial solution, and gelification of
this dissolved silica in or close to the aggregates, along with some alkali and calcium.
It is visible through expansion and/or superficial crackingof macroscopic parts. Resis-
tance to traction is more affected than resistance to compression. The elasticity modu-
lus decreases and plastic deformation increases. Microscopically a network of micro-
cracks grows because of swelling of reactive sites where amorphous gels are created.
These cracks can be located in the aggregates and in the cement paste, or at interface.
These microcracks play an important role in the macroscopicexpansion of concrete
structures. ASR is not always detrimental: when the gels findenough space to expand
without cracking the cement paste, almost no macroscopic expansion is observed. Mi-
crocracks also play an important role concerning the anisotropy of the expansion when
the concrete structure is loaded.

We first explain why we are interested in studying the anisotropy of ASR. Sec-
ond, we describe our model, explaining the microstructure we consider and the two ho-
mogenization scales that are dealt with. We then explain some modeling choices about
the shape of the considered heterogeneities and present themicromechanics scheme
we use. Finally we give an example of crack propagation underattack.
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EVIDENCE AND MODELING OF THE ANISOTROPY OF ASR

The anisotropy of ASR was first noticed through the orientation of the macro-
scopic cracks on affected structured [Hobbs(1988), Multon(2004), Larive(1997)].
These cracks tend to align with the principal compression direction in the structure
(which means that the normal to the crack is orthogonal to theprincipal compression
direction), which can be due to reinforcing bars or weight. At a sample-size level,
anisotropy is also seen, sometimes even in the case of free-swelling. The directions
of casting, as underlined in [Larive(1997)], play a major role, since they influence the
orientation of the aggregates and the zones of higher porosity around the aggregates.
However in this article, we are interested in the anisotropyof swelling which is due
to mechanical loads. As pointed by Hobbs, [Hobbs(1988)], applying a stress on an
attack concrete can modify expansion a lot. The mechanical restraint also can mod-
ify expansion, as measured by Kawamura and Berra [Kawamura and Iwahori(2004),
Berra et al.(2010)]. The effect of stress and restraint was originally understood as a
redistribution of expansion from the compressed to the lesscompressed directions.
Macroscopic expansion models by Larive and Multon [Larive(1997), Multon(2004)]
are based on this idea.

MECHANICAL MODELING OF ASR IN CONCRETE

General presentation of the model

Our model is based on the idea that the aggregates of the concrete, which are
surrounded by the ITZ, are progressively attacked by the ions in the interstitial solution.
The attack creates new pores in an outer layer of the aggregates of radiusR. The size
of this zone of constant porosityρ grows with time (attack depthα(t)R). A gel of bulk
modulusKgel appears in the voids of the attacked aggregates, and can freely flow to
the voids of the ITZ of porosityρitz. Since the volume of gel is larger than that of
the aggregate which was dissolved (ratioδ), the pressure increases. At the same time,
the concrete is submitted to external loads due to its location in a larger structure such
as a bridge or a dam. These two loadings (pressure of the gels,macroscopic strain
or stress) possibly lead to cracking to two kinds in our model: decohesion between
the aggregates and the cement paste due to the mechanical weakness of the ITZ, and
afterwards cracking of the cement paste.

The goal of the model is to compute these cracks, through an en-
ergy fracture criterion, as was explained in a previous article from the authors
[Charpin and Ehrlacher(2012)]. To do so, we need to estimatethe total energy of the
sample, that is the sum of the potential energy and the dissipated energy during cracking
(described by the surface areasGdec for decohesion andGfiss for cement paste crack-
ing). The elastic energy of the solid skeleton per unit volume of the porous medium,
using a poromechanical description at the scale of the REV, with respect to the dam-
age state of the material represented by the variabled and the macroscopic strain and
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pressure at each site, formally writes (withN s the number of aggregate sizes):

E
E,(pi)i=1:Ns

el,ske (d) = E : Chom (d) : E +

Ns
∑

i=1

Ns
∑

k=1

piM ik (d) pk (1)

Where the overall material properties of the REV are the following:

• B
j

is the Biot coefficient (it does not appear in the elastic energy), describing
the macroscopic stress created by a pressure in a pore in a restrained sample, or
equivalently the volume change of a pore induced by a macroscopic strain.

• Mij is the Biot modulus, linking the pressure in a pore family to the volume
change of another pore family, when the macroscopic strain in zero. We empha-
size here that our choice for this material parameter is different to the common
choice which is made for example in [Dormieux et al.(2006)],taking the inverse
of the commonly used Biot modulus.

• Chom is the macroscopic stiffness tensor.

And where the dual quantities of the imposed deformationE and the imposed pressures
pk are defined as follow:

• Σ is the average stress on the porous medium

• (φ−F )j is the difference between the volume fraction of pores in sitej relatively
to the volume of porous medium in deformed configurationφj and the volume
fraction of pores in sitej relatively to the volume of porous medium in unde-
formed configurationFj, that means the volume variation of the porous space of
sitej relatively to the volume of porous medium.

We aim at determining the expression of the overall poromechanical properties with re-
spect to the degree of attack of the aggregates and the state of cracking of the concrete.

Presentation of the microstructure

Our starting point for the mechanical description of the concrete is the microsc-
tructure represented on Fig. 1. The cement paste matrix occupies domainΩc, and has a
stiffness tensor calledCc. This materials includesN I type I sites as shown on the left
of Fig. 1. Each siteα ∈ 1 : N I is made of three domains. In the center, a spherical
domainΩa

α representing the sound aggregate of stiffnessCa. The first shell domainΩp
α

is split between sound aggregate and small pores occupying adomainΩpv
α , created by

the chemical attack. The second shell domainΩt
α is made of cement paste with pores

occupying the domainΩtv
α , representing the small pores of the interface transition zone

(ITZ). We also haveN II sites oftype II, which are cavities, representing the void con-
taining aggregates where decohesion between cement paste and aggregate occurred,
occupying domainΩv

β , with β ∈ 1 : N II .
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Figure 1. Concrete submitted to ASR : initial problem

Let us introduce an auxiliary problem which will help us determining the over-
all properties of our material.

Fine-scale homogenization: auxiliary problem

We introduce this problem to get rid of the finer scale we presented in the pre-
vious section. The idea is that pores in the attacked zones and ITZ are very small com-
pared to the sizes of these zones, so the attacked zone of the aggregate and the ITZ can
be described as homogeneous porous media instead of elasticmedia with holes. The
properties of the homogeneous porous media are obtained using a Mori-Tanaka scheme
[Benveniste(1987)]. For each region, we obtain a homogenized stiffness tensor, a Biot
modulus, and a Biot coefficient, since we want to keep track ofthe pressure in the
pores of the initial problem through a poromechanical constitutive law. In the attacked
aggregate we call those properties(Cp

e, B
p

e
,Mp

e ), in the ITZ (Ct
e, B

t

e
,M t

e). Hence we
obtain an auxiliary problem, as shown on Fig. 2. Thetype II pores, occupying domains
Ωv

β , are identical to those in the initial problem.

Definition of the localization tensors and overall properties

If our medium is described as a heterogeneous porous medium thanks to the in-
troduction of the auxiliary problem, and the skeleton is loaded by a macroscopic strain
E and the pressures in the porous zonespk, the local strain writes by superposition:

ε(x) = εE(x) +

N
∑

k=1

εk(x) = A
′(x) : E +

N
∑

k=1

A′k(x)pk (2)
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Figure 2. Concrete submitted to ASR : auxiliary problem

WhereA′(x) is the fourth order strain localization tensor in the initial problem and
A′k(x) are second order symmetric pressure localization tensors in the auxiliary prob-
lem problem. All poromechanical properties can be written as adequate averages of the
strain and pressure localization tensors on the various phases, our work here is to adapt
those classical expressions to our problem of ASR.

COMPUTATION OF THE OVERALL PROPERTIES WITH THE DILUTE
SCHEME

This first approach assumed the heterogeneities occupy a very low volume frac-
tion and hence, don’t see each other mechanically.

Type I sites

Those sites, where chemical attack has begun but no crackinghas occurred,
contain a sound aggregate in a sphere of radius(1 − α)R (stiffness tensor isCa), a
spherical shell of attacked aggregate between radii(1 − α)R andR, which porome-
chanical properties are(Cp

e, B
p

e
,Mp

e ), a second spherical shell representing the ITZ,
between radiiR andR + lc of poromechanical properties(Ct

e, B
t

e
,M t

e), and finally
an infinite elastic medium representing the cement paste matrix of stiffness tensor
Cc. To determine the deviatoric part of the strain localization tensor, we use Love
solution [Love(1927)] for our sound aggregate surrounded by a shell of attacked ag-
gregate and a shell of ITZ, embedded in an infinite cement paste, following Chris-
tensen [Christensen and Lo(1979)] which used this solutionfor their generalized self-
consistent scheme. Love solution yields the displacementseverywhere under a shear
loading. Under a spherical loading the displacements are easy to determine since they
are radial. Finally adequate averages of the displacement fields determined and yield
the dilute strain tensor ontype Isites.
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Pressure in zonesΩ
′b
α or Ω

′t
α also induces a radial displacement. The resolution

is hence similar to the case of an imposed spherical displacement. The average strain
on phases is also spherical and so is the second order pressure localization tensor.

Type II sites

For type II, which are cavities which shape has not been specified, we usean
approach closer to the Eshelby solutions in micromechanics. These sites are made of
a spherical cavity representing the empty space left by the decohesion of an aggregate
(the aggregate is still there but all that matters is that a pressure is applied on its bound-
ary) and cracks in the cement paste which appeared due to a high pressure in the cavity.
Before writing explicitly the localization tensors we needsome assumptions about the
cracks.

First, we assume that cracks are penny-shaped cracks with their center at the
center of the spherical cavity. Their outside radius is calledxi.

Second, around each site we could haveNc cracks of sizesxi, i ∈ 1 : Nc, each
of them characterized by an orientation (for example by two anglesθi, φi). To limit
the number of cracks to deal with, we make the following approximation: an isotropic
distribution of crack orientation can be approached by three orthogonal directions of
cracks.

Finally, we decompose our cavity with cracks in a superposition of simple prob-
lems. The validation of this decomposition was made in2d. Here we give the result in
the 3d case, which is a generalization and has not been studied directly. Each cavity
occupies a domainΩv

β, which is made of:

• a spherical cavity in the place which was occupied by the aggregate before de-
cohesion (radiusR). This cavity is represented using the Eshelby tensor for a
sphere, taking the cement paste as external material :Ssph

c , and the initial volume
fraction of the aggregate phase considered :fi

• three ”large” cracks, each of them oriented normal to one of the vectors of the
Cartesian basis. They are penny-shaped cracks, which we represent by flat el-
lipsoids. The radii of the cracks arex1, x2, x3 depending on the orientation. We
represent them by a flat ellipsoid Eshelby tensor, which onlydepends on the
aspect ratioXf of the ellipsoid and on the external material considered (only
through its Poisson ration when it is isotropic, which is thecase for the cement
paste). We call these Eshelby tensorsSf1

c , Sf2
c , Sf3

c . The volume fractions affected
to these flat ellipsoids are chosen so that there is one crack in each direction per
cavity. In each directionτ = 1, 2, 3, we getf f

τ,i = fiX
fx3

τ,i/R
3.

• three groups of ”small” cracks to account for the artificial strain induced by the
part of the large crack which is included in the cavity. A collection of small cracks
is therefore associated to each large crack. The radius of the small cracks isR,
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and we choose to give them the same aspect ratioXf as to the large cracks. We
determined numerically through2d computations that the best volume fraction
to give to these cracks is so that their number multiplied by their small axis is
equal to the small axis of the large cracks. Calling the volume fraction of the
small cracks in one direction of one cavityfc, it writes f c

τ,i = f f
τ,iR

2
i /x

2
τ,i =

fiX
fxτ,i/Ri.

The Eshelby tensors of these small cracks are the same as those of the large
cracks. Therefore, what we do here is merely a volume fraction correction to the
large cracks.

Finally using these assumptions, the strain localization tensors can be written
only using Eshelby tensors and volume fractions detailed above:

A
Ωv

β

dil =
1

fi

(

fi
[

I− S
sph
c

]

−1
+

3
∑

τ=1

(

f f
τ,i − f c

τ,i

)

[

I− S
fτ
c

]

−1

)

(3)

We could think that since the volume fractions of the cracks are much smaller than
those of the cavities, the corresponding terms are negligible. However it is not the case,
since the important components of the Eshelby tensor are singular with respect to the
aspect ratio and since we are at fixed number of cracks, proportional to the inverse of
the volume fraction, when cracks are considered.

A more refined micromechanics scheme : the Interaction Direct Derivative esti-
mate

In the previous section we wrote expressions for our localization tensors in the
case of the dilute estimate. We want to extend these expressions using the IDD esti-
mate [Zheng and DU(2001)], which we think has a wider validity range in terms of
volume fraction of inclusions. It can account for diverse shapes and types of inclu-
sions as well as for their spatial distribution. It is identical to the two-phase estimate
[Shige and Tzuchiang(1999)] when there is only one type of inclusions and to the well
known Mori-Tanaka estimate [Benveniste(1987)] in the casewhere the inclusion shape
is represented by the same ellipsoid as their distribution.We have checked its efficiency
using2d FEA on porous media generated by a sequential addition algorithm. Even if
this algorithm produces very specific morphologies since the inclusions cannot overlap
nor coalesce, we see those good result as encouraging.

For example on Fig. 3 we show comparisons between the homogenized moduli
of a material containing ellipsoidal holes of aspect ratio0.1 at various volume fractions.
The IDD estimate is established assuming that the spatial distribution of the ellipsoids
is isotropic, while IDD-A flattens this distribution as volume fractions increase, leading
to a better estimate. Mori-Tanaka is a little bit less satisfactory for these non spherical
holes.
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Figure 3. Young and shear moduli in a2d simulation of a random media containing
0.1 aspect ratio isotropically oriented cracks

BEHAVIOR OF THE MODEL UNDER FIXED DISPLACEMENTS: ONE AG-
GREGATE SIZE, ONE DIRECTION IN COMPRESSION

Our model was built in order to be able to reproduce lab experiments of ASR
under various loading states. The model is able to take complex granulometries into
account, but for simplicity we will here focus on the case where there is only one
aggregate size. In this section we use the following values for the different parameters
(Eq. 4):

Ea 60GPa R1 1mm Gdec
c 20J.m−2 lc 2µm

Ec 20GPa f 1 0.4 Gfiss
c 40J.m−2 ρitz = ρ1 0.1

νa = νc 0.25 δ 1.3 Kgel 0.5GPa
(4)

With one aggregate size, the computation is very fast. We investigate as an illustration
the case where one direction is in slight compression:E33 = −10−4, while other com-
ponents are zero. This case is close to the practical case of aconcrete part of a wall
or a pillar where one direction is far more compressed than the others. However, we
stay in the simple case of prescribed strains. The problem isthus symmetric. We force
x1 = x2 during the evolution of cracking. Thus it is a2d optimization.

Beginning of attack and decohesion

Let us first discuss the evolution of crack size and pressure in the cavity (Fig. 4).
The crack size is at first equal to the aggregate radius, whichis equivalent to having
no crack. The pressure is first zero, while theITZ is not full yet, and quickly starts
increasing. This fast increase in the pressure is followed by a pressure drop, atα = 0.03
(first vertical dashed line), which corresponds to the decohesion of the aggregate, while
the crack size has not progressed. The decohesion of the aggregate can be seen on
Fig. 5, through a increase of the two poromechanical coefficientsM andB and of the
variation of volume of the porous phase(φ − F ). At the same time the moduli of the
material decrease a lot in direction 1 and 2.
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Figure 5. Relative volume change of the
cavity (φ − F ), Biot modulus M , Biot
coefficient in each directionB

Cracking

At some point, as can be seen on Fig. 4, cracks grow in directions 1 and 2 (sec-
ond vertical dashed line). There is no jump in crack size for this set of parameters even
though our formalism would allow it. On the same figure we see that this crack growth
limits the increase in pressure. A further increase of the poromechanical properties is
seen on Fig. 5, while the Young’s moduli keep decreasing in the directions 1 and 2, to
reach values of roughly a fourth of the original value. The compressive stress increases
to reach the high value of−35 MPa for this set of parameters.

CONCLUSION

To predict cracking in a concrete submitted to ASR, we decided to use an en-
ergy criterion, which requires to compute the homogenized properties of the attacked
concrete for different possible cracking states. We here explained how we use a solution
from Love and classical Eshelby tensors to compute the homogenized properties of a
concrete where some aggregates are attacked, and some have undergone decohesion.
An example of the efficiency of the micromechanics scheme we use, the IDD scheme,
was shown. Finally we gave a simple example of crack propagation under loading in a
concrete made of only one aggregate size.
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