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ABSTRACT

This article is a focus on the anisotropic behavior of concrete under Alkali-
Silica Reaction. In this article, we assume that the dense aggregates of a loaded con-
crete are attacked and progressively replaced by a swellinggel. Part of the gel escapes
in the cement paste porosity but a pressure build-up still occurs. The pressure exerted
first leads to decohesion between the aggregate and the cement paste, and second to a
cracking of the cement paste. Microcracks are computed through an energy minimiza-
tion algorithm, taking into account the effect of an external loading. The energy used is
a modified poromechanics-type energy, taking the external loading and the reaction ex-
tent as state variables, which coefficients are determined through closed form solutions
adapted from classical Eshelby solution-based micromechanics estimates.

INTRODUCTION

The Alkali-Silica Reaction (ASR) has been discovered in the40’s in the USA. It
consists in the dissolution of reactive silica from the aggregates by alkali hydroxide ions
from the interstitial solution, and gelification of this dissolved silica in or close to the
aggregates, along with some alkali and calcium. It affects avery small fraction of con-
crete buildings, but it can be detrimental to the affected structures. First models were
proposed in the 50’s, and its study improved gradually when new experimental meth-
ods allowed looking inside the affected concrete more precisely. It has been observed
that for the ASR to occur, three conditions need to be simultaneously verified: presence
of reactive aggregates, high water content, and high alkaliconcentration. However, no
consensus was reached on most parts of the reaction mechanisms. The ASR is visi-
ble through expansion and/or superficial cracking of macroscopic parts. Resistance to
traction is much more affected than resistance to compression. The elasticity modulus
decreases and plastic deformation increases. Microscopically a network of microcracks
grows because of swelling of reactive sites where amorphousgels are created. One can
sometime observe reaction rims and decohesion at the cementpaste/aggregates inter-
face.

These microcracks seem to play an important role in the macroscopic expan-
sion of concrete structures and in the anisotropy of the expansion when the concrete
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structure is loaded. Therefore in this article, we will focus on the initiation and prop-
agation of ASR microcracks at the level of the reactive sites, in the view of better
understanding the anisotropy of the consequences of the reaction. This model will also
be presented at the CONSEC 2013 conference in Nanjing, China, and a paper about
the micromechanics details of the model was also submitted to the Biot conference.

First we explain the need for modeling in ASR and particularly for the
anisotropy. Second, the thermodynamic bases of the model are given, as well as the
elements of micromechanics and poromechanics we use. Finally a simple example of
ASR under prescribed stress is given.

EVIDENCE AND MODELING OF THE ANISOTROPY OF ASR

Independently from the anisotropy which can be observed in free swelling con-
ditions during ASR as reported for example by Larive, [Larive(1997)] we focus on
the anisotropy due to mechanical loadings on the attacked concretes. The macroscopic
loading influences the orientation of cracks at a microscopic level and hence, chemi-
cal expansion or stress development. Macroscopic expansion models have attempted
to describe the anisotropic expansion [Larive(1997), Multon(2004)] based on the idea
of stress redistribution but we are here interested on the microscopic description of
cracking. Microscopic description is for example attempted in a model based on mi-
cromechanics by Lemarchand [Lemarchand et al.(2005)], where the initial load influ-
ences the filling of initially existing cracks and hence, theexpansion. The model can
explain the tendency of Larive’s test results under uniaxial load [Larive(1997)]. A very
refined numerical model computing damaged in attacked concrete under loading was
built by Dunant [Dunant and Scrivener(2012)] was built. However the model is in2d
which creates artificial crack coalescence at high loads. Therefore we think a simpler
approach (using micromechanics) can bring some more results.

In this article we will focus on a class of fast reacting aggregates, for which it
is reasonable to assume that the pressure build-up due to thegels occur at the surface
of the aggregates, not in pockets inside the aggregates. Therefore, we don’t deal with
aggregate cracking, which would be very important in the case of slow reactive aggre-
gates. We focus on the decohesion and the cracking of the cement paste, but we believe
that the framework explained here can be extended to the mechanism observed in other
kinds of aggregates.

THERMODYNAMIC EVOLUTION OF A CONCRETE DURING ASR

Let us assume that our concrete is macroscopically submitted to an imposed
stress on its boundary. The traction vector is prescribed asT (x) = Σ.n on the outside
boundary of the concrete, whereΣ is called the imposed macroscopic (or average)
stress. The concrete is also submitted to a chemical attack which induce changes in the
microstructure explained in the following.
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Microscopic description of a concrete undergoing ASR

Here we introduce the geometrical description of our attacked concrete at a
given timet. We will call Ω the actual volume of concrete that we study. Our concrete,
at the scale at which we consider it, is composed of grains andcement paste matrix,
which properties vary due to the attack. Let us detail their properties, beginning with
the grains. Their size is extremely variable, from microns to a few centimeters. We
assume they are spherical. A volumeΩ of porous material containsN s families of
grains of the same sizeRi, i = 1..N s. In our description, all grains of the same size,
plus their surrounding (interfacial transition zone and cracks which started from this
aggregate) are grouped together and called asite. All grains in the same site behave
identically. They are characterized by:

• the radius of the grainsRi, the volume fraction of these grains in the porous
mediumf i, the number of aggregates in thesiteN i = f i/

(

4π
3
(Ri)3

)

.

• an attack degreeαi(t) which represents the proportion of the radius of the grain
which has undergone attack. Therefore the shell between radii (1−αi(t))Ri and
Ri will be called theattacked zone, while the sphere of radius(1−αi(t))Ri will
be called thesound zone, at timet. Thesound zonehas the mechanical properties
of a sound aggregate, a linear elastic isotropic material ofstiffness tensorCa.
Theattacked zonehas been partly dissolved by the attack of ions coming from
the cement paste. In our model, it transforms the sound aggregate into a porous
material of porosityρi, whose tensor of elasticityCi

p, Biot coefficientbip and
Biot modulusM i

p, which are defined according to the habits in poromechanics
as presented by Coussy [Coussy(2004)] or Dormieux [Dormieux et al.(2006)],
except for the Biot modulus, which is taken as the inverse of the usual definition.
We get the following constitutive law for theattacked zoneof graini:

{

σ = C
i
p : ε− bipp1

(ϕ̃i − ρi) = bip1 : ε+M i
pp

(1)

Whereϕ̃i is the deformed (due to strainsε and pressurep) porosity of theat-
tacked zone. We assume that the attack keeps the isotropy of the aggregate, there-
fore the Biot coefficientbip is a scalar. In our model the porosityρi can be different
in different aggregates, but is constant in time. The attackprogresses by increas-
ing of the size of the attacked zone (described byαi(t)) only: in the sitei, there
is a total volume of porosity in the aggregate per unit volumeof porous medium

at zero strain and pressureρif i
[

1− (1− αi)
3
]

.

• an Interfacial Transition Zone (ITZ), surrounding the aggregate. We think it
is important to take it into account for two reasons. First, attempts to pre-
dict the stiffness of concretes have shown that if micromechanics models
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are used considering concrete as a two-phase (aggregates and cement paste)
matrix, the mechanical properties were overestimated. Nielsen and Monteiro
[Nielsen and Monteiro(1993)] argued that it is better to consider three phases
(aggregates,ITZ, and cement paste) to predict the mechanical properties. There
is discussions whether it is possible to model it as a uniformzone or not
[Hervé et al.(2010), Caré and Hervé(2004), Nadeau(2002)]. The second reason
why we need to take theITZ into account is related to ASR. Some of the gel
flows into theITZ which limits the pressure increase. Not willing to put too
much detail in theITZ which is not the focus of our study, we choose to model
it as a homogeneous porous medium of constant thicknesslc and porosityρitz
(both independent on the grain considered). The propertiesare written in the
same manner as for theattacked zone: a tensor of elasticityCt, a Biot coefficient
bt and a Biot modulusMt in the following constitutive law:

{

σ = Ct : ε− btp1
(ϕ̃itz − ρitz) = bt1 : ε+Mtp

. (2)

Whereϕ̃itz is the deformed (due to strainsε and pressurep) porosity of theITZ.
Due to the small thickness of theITZ lc, its pores occupy a volume fraction of
3ρitzf i(lc/R

i) relatively to the volume of porous medium.

The concrete changes morphology due to the high pressures which will develop
in the pores of theattacked zoneandITZ. Let us describe the changing microstructure
by four damage parameters for each grain. First, a decohesion parameterdi(t). At the
beginning of the attack and as long as the aggregate remains stuck to the cement paste,
di(t) = 0. When the interface at radiusRi, that is between theattacked zoneand
ITZ breaks,di(t) = 1. Second, three crack size parametersxi

1(t), x
i
2(t), x

i
3(t) which

describe the size of three annular cracks of normale1,e2,e3 (which means plane cracks
of internal radiusRi and external radius respectivelyxi

1(t), x
i
2(t), x

i
3(t)). The crack

sizes are also increasing functions of time. These annular cracks represent the cracking
of the cement paste due to pressure around the aggregate. We restrict ourselves to three
directions and annular cracks to keep things simple. Details about the description of
the cracks in given in another article submitted to this conference.

Now that the geometrical properties of our sample has been described and that
we have defined the damage parameters, let us explain the evolution rule for these
parameters.

Energy criterion

The damage law we choose writes as an energy minimization problem, as done
originally in [Fedelich and Ehrlacher(1993)] or in [Francfort and Marigo(1998)]. The
real damage parameters are found by minimizing the total energy over all possible
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virtual damage parameters(di∗, (xi∗
k )k=1,2,3):

[

di, (xi
k)k=1,2,3

] (

Σ, αi
)

= argmin
[di∗,(xi∗

k
)k=1,2,3]∈A

{

WΣ,αi (

di∗, (xi∗
k )k=1,2,3

)

}

(3)

WhereA is the set of admissible damage states andWΣ,αi

is the total energy when the
average stress and chemical attack are imposed. It is then necessary of write this total
energy.

Total energy function

This function is first written in an auxiliary problem where the loading is the
average stress and the pressure in the pores. In a second stepthe pressure is computed
from the microstructure, the average stress and the attack degrees. The total energy is
the sum of the potential energy of the system (elastic energydiminished of the work of
the external forces), plus the surface (or dissipated) energy due to crack creation:

WΣ,αi (

di∗, (xi∗
k )k=1,2,3

)

= E
Σ,αi

pot

(

di∗, (xi∗
k )k=1,2,3

)

+ Ediss

(

di∗, (xi∗
k )k=1,2,3

)

(4)

Where the loading parameters appear as exponents to the energy functions, while the
damage parameters appear as arguments.

Second, we need to compute the pressures in the pores. While we apply a stress
and the chemical attack progresses, the region filled with gel (pores in theattacked
zone, pores in theITZ, space between those two regions once decohesion has occurred,
cracks in the cement paste) is under pressure. We do not specify the place of creation
of the gel in given site, and it is free to move in the site. If decohesion has not occurred
in grain i (di = 0), it is free to occupy the porosity of theattacked zoneand that of
theITZ which are hence at the same pressurepi. If decohesion has occurred, the space
between those two regions is also at the same pressure. If cracking has occurred, the
cracks around graini are also at the same pressurepi.

The constitutive law of the attacked concrete, for a virtualset of damage pa-
rameters, writes forj ∈ {1, N s}:














Σ (di∗, (xi∗
k )k=1,2,3) = Chom (di∗, (xi∗

k )k=1,2,3) : E −
Ns
∑

i=1

piBi
(di∗, (xi∗

k )k=1,2,3)

(φ− F )j (d
i∗, (xi∗

k )k=1,2,3) = B
j
(di∗, (xi∗

k )k=1,2,3) : E +
Ns
∑

i=1

piMij (d
i∗, (xi∗

k )k=1,2,3)

(5)
Where the overall material properties are the Biot coefficient B

j
, the Biot modulus

Mij (our choice for this material parameter is different to the common choice which is
made for example in [Dormieux et al.(2006)], taking the inverse of the commonly used
Biot modulus), and the macroscopic stiffness tensorChom. All these material proper-
ties of the homogenized porous medium are determined through estimates taken from
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micromechanics, taking into account the damage state considered(di∗, (xi∗
k )k=1,2,3). In

the constitutive law,(φ − F )j is the difference between the volume fraction of pores
in sitej relatively to the volume of porous medium in deformed configurationφj and
the volume fraction of pores in sitej relatively to the volume of porous medium in
undeformed configurationFj, that means the volume variation of the porous space of
sitej relatively to the volume of porous medium due to the loading.

This constitutive law makes it possible to find the pressure from the external
loading, using the balance of gel at each site. First let us write the undeformed gel
volume, from the attack degreeαi, of site i. We define the parameterδ that we call
the expansion factor of the gel. It is the volume of gel created by unit volume of dis-
solved aggregate. Therefore, the volume of gel created in the surrounding of one of the
aggregates of sitei writes:

V 0
i = δρif i

[

1− (1− αi)
3] (6)

It has to be compatible with the volume available which writes (Eqs. 5):

φi = Fi +B
i
: E +

Ns
∑

j=1

Mijpj (7)

Where the undeformed pore volume fraction at sitei writes:

Fi = f i

{

ρi
[

1− (1− αi)
3]+ 3ρitz

lc
Ri

}

(8)

A final approximation is made here by assuming that the diagonal termsMii are much
larger than other termsMij , which gives a system ofN s uncoupled equations which
can be solved for the pressures (which means when a pressure is applied at a site, the
porous phase of the same site deforms much more than the porous phases of the other
sites):

pi
(

E, αi, di∗, (xi∗
k )k=1,2,3

)

=

ρif i(δ − 1) [1− (1− αi)
3]−B

i
(di∗, (xi∗

k )k=1,2,3) : E − 3f ilc
Ri

ρif iδ[1−(1−αi)3]
Kg

+Mii (di∗, (xi∗
k )k=1,2,3)

(9)

The introduction of this expression of the pressure (Eq. 9) in the constitutive law
(Eqs. 5) gives us the undrained constitutive equation of theporous medium. It gives
a law of the form:

Σ = C
tan : E + Σ∗ (10)

WhereCtan is the tangential or undrained modulus,Σ∗ is the restrained chemical stress,
which is the stress obtained if the macroscopic strain is prescribed as zero.

For a porous medium, the elastic energy in terms of pressuresand strains car be
written:
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E
E,(pi)i=1:Ns

el,ske

(

di∗, (xi∗
k )k=1,2,3

)

= E : Chom
(

di∗, (xi∗
k )k=1,2,3

)

: E

+
Ns
∑

i=1

piMii

(

di∗, (xi∗
k )k=1,2,3

)

pi (11)

It might seem strange that there is no coupling terms betweenthe macroscopic strain
and pressures, but this result can be proved through integration on the solid domain of
the microscopic energy and the use of Betty’s reciprocity theorem.

Finally the total energy can be written adding the various contributions we men-
tioned: potential energy of the skeleton, elastic energy ofthe gel, dissipated energy. The
elastic energy of the gel is written as follows for sitei per unit volume of porous mate-
rial :

E
E,αi

el,gel

(

di∗, (xi∗
k )k=1,2,3

)

=
1

2
δρifi

[

1− (1− αi)
3] p

2
i

(

E, αi, di∗, (xi∗
k )k=1,2,3

)

Kg

(12)

And the dissipated energy is the sum of crack surfaces weighted by fracture energies,
which we take equal toGdec for decohesion andGfiss for cracks in the cement paste.

Ediss
(

di∗, (xi∗
k )k=1,2,3

)

=

Ns
∑

i=1

f i

4π
3
(Ri)3

[

di∗4π(Ri)2Gdec +

3
∑

k=1

π
(

(xi∗
k )

2 − (Ri)2
)

Gfiss

]

(13)
We have all elements to built the total energy function (Eq. 4), and to use it

in our energy criterion for the fracture of the concrete (Eq.3), in order to predict the
damage state at a given time, as a function of the mechanical loading applied and the
attack degree.

A NUMERICAL EXAMPLE WITH ONE AGGREGATE SIZE

Let show an example with one aggregate size where cracking occurs due to the
chemical attack and a vertical compression on the sample, while other directions are
free of stress. We chooseΣ33 = −1 MPa. The mechanical and geometrical properties
of the sample are chosen as shown in Eq. 14.

Ea 60 GPa R1 1 mm Gdec
c 20 J.m−2 lc 2 µm

Ec 20 GPa f 1 0.4 Gfiss
c 40 J.m−2 ρitz = ρ1 0.1

νa = νc 0.25 δ 1.3 Kgel 0.5 GPa
(14)

The crack sizes in the three directions and the pressure are plotted in Fig. 1. At the
beginning of the attack the crack sizes are equal to the aggregate radius. The pressure
increases only once theITZ is full, until decohesion occurs. At this point it drops, due
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Figure 1. Crack sizex in the three di-
rections and pressurep
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Figure 2. Relative volume change of the
cavity (φ − F ), Biot modulus M , Biot
coefficient in each directionB

to the extra available volume for the gel as can be seen on Fig.2 when looking at the
porosity variationφ−F related to the increase of the Biot modulusM . The mechanical
properties of the sample are diminished by decohesion of a very large amount. The
young moduli in three directions, both drained (ske) and undrained (tan) drop to a
third of their original value (Fig. 3). This is due to the verylarge fraction of reactive
aggregates in this sample (f 1 = 0.4).
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Figure 3. Young’s modulus of the skeletonEske and tangential Young’s modulus
Etan in each direction

The increase of the Biot coefficient seen on Fig. 2 of the same amount in the
three directions, since decohesion is isotropic, induces larger strains in the three direc-
tions (Fig. 5). The total energy is continuous (Fig. 4) even when the dissipated energy
jumps due to decohesion.
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Figure 5. Imposed stressΣ and macro-
scopic strainE in each direction

The pressure keeps increasing due to the attack (Fig. 1) leading to cracking
in directions 1 and 2 due to the compression in direction 3. The material becomes
anisotropic. The Biot coefficient in direction 3 increases less than in directions 1 and
2 (Fig. 2), and the Young modulus in directions 1 and 2 decrease (Fig. 3). Strains
in different directions have different evolutions once cracking has induced anisotropy
(Fig. 5).

CONCLUSION

We proposed a model based on microporomechanics for Alkali-Silica Reac-
tion. The chemical attack at the level of the aggregate and gelification induce a pres-
sure build-up in the material. This elastic energy is released by cracking the aggre-
gate/cement paste interface and the cement paste. The computation of the crack pattern
is done using an energy criterion, taking into account the external loading which orients
cracking. An example is shown of cracking at prescribed macroscopic stress where the
orientation of cracking clearly avoids cracking in the direction of compression. The
simplicity of this approach and the fact that is allows finding the macroscopic porome-
chanical behavior of the attacked material at various damage states is encouraging,
since these computations could be used in a macroscopic codeto determine the local
damage in a structure, after a calibration of the parameters.
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