# Removal of priority and emerging pollutants by biological and tertiary treatments

Romain Mailler
Johnny Gasperi
Ghassan Chebbo







SYNDICAT INTERDÉPARTEMENTAL POUR L'ASSAINISSEMENT

SIAAP

DE L'AGGLOMÉRATION PARISIENNE

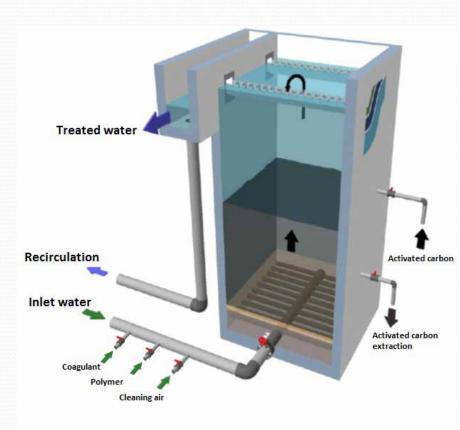
## Plan

- Scientific context
  - A WWTP today
  - Conventional and tertiary treatment
- Issues and goals
- 3. Focus on tertiary treatment
  - Methodology
    - •CarboPlus®
    - Sampling strategy
  - Primary results
- 4. Significance and limitations for developing countries?
- 5. Planning

#### A WWTP today Discharge to environment **Primary Biological** Pre-treatment treatment treatment Removal of Removal of Removal of voluminous total suspended nutrients solids, grease solids (TSS) C/N/P and sand Sludge Presence of treatment micropollutants Incineration, agricultural use, disposal

### Context

- General
  - Presence of micropollutants in WWTPs discharges (Heberer 2002)
  - European regulation: WFD (2000/60/EC)
  - Conventional treatments
  - Fate of some compounds not well documented in WWTPs
  - Conventional primary and biological (conventional activated sludge) treatments quite well studied (Clara et al. 2005; Ruel et al. 2010)
  - Lack of knowledge on enhanced primary treatment (coagulation/flocculation), biofiltration and MBR at industrial scale
- Tertiary treatments
  - Hardening of regulations, anticipation of water operators and insufficient efficiency of conventional WWTPs → development of tertiary treatments
  - Efficiency of activated carbon for micropollutants removal was highlighted in literature (Delgado *et al.* 2012; Margot *et al.* 2011; Nowotny *et al.* 2007)


## Issues and goals

- Primary and biological treatments
  - Efficiency of biofiltration for micropollutants? Comparison with conventional activated sludge (CAS) treatment
  - MBR a relevant solution to improve biological treatment of micropollutants?
  - Removal mechanisms at industrial scale
  - Comparison of the three main biological treatments (process and facility)
- Need to develop tertiary treatments and to study them
  - What about emerging pollutants?
  - Efficiency of activated carbon for persistent pollutants?
  - Impact of operational parameters?
  - Type and dose of activated carbon?
  - How to regulate micropollutants adsorption processes?
     UV signal a relevant indicator?
  - Presentation: *focus on tertiary treatment*

## CarboPlus®

- Concept
  - Contact of PAC with water in a reactor
  - Fluidized bed of PAC
  - Coagulant and polymer addition prevents PAC discharge with water
    - → No filtration system needed
- Operational parameters
  - Capacity of 50 m<sup>3</sup>/h
  - SRT of a couple of days (3-7)
  - HRT of about 15 minutes
- Fed with treated water from biofiltration unit (SIAAP - Seine Centre)





## Organization of campaigns

#### Phase 1

PAC Optimization

June – october 2013 (16 weeks)

#### Phase 2

PAC Optimized regime

October – december 2013 (13 weeks)

#### Phase 3

Micro-grain configuration

January – november 2014 (48 weeks)

#### 12 campaigns

4 configurations

Influence of operational conditions, dose and type of PAC

#### 6 campaigns

**Best configuration** 

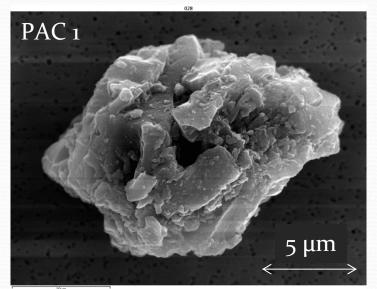
Variability of results, efficiency and cost of CarboPlus, removal mechanisms

#### 12 campaigns

Comparison between powder and micro-grain Efficiency, cost, biological activity, etc.?

## Sampling strategy

- Screening: 135 persistent and/or problematic compounds
  - Pharmaceuticals and hormones
  - Pesticides
  - Priority substances (WFD)
  - Metals






- Accredited laboratory for all compounds except metals (independent protocol - LEESU)
- Sampling of inlet and outlet water with automatic samplers (4°C)
- 24 h average samples (organics) or punctual (metals)
- Measure of total fraction and UV signal
- 30 campaigns in 18 months (70 samples)
- → Large scale and high frequency approach

## Primary results

- Characterization of 4 activated carbons
  - Laser granulometry
  - Electron microscopy
  - Removal of UV<sub>254</sub> signal after 45min contact



#### Effect of activated carbon type

| 10 mg/L          | UV before | UV after | Removal (%) |
|------------------|-----------|----------|-------------|
| PAC 1            | 0,651     | 0,574    | 12          |
| PAC 2            | 0,651     | 0,586    | 10          |
| PAC <sub>3</sub> | 0,651     | 0,611    | 6           |
| PAC 4            | 0,651     | 0,638    | 2           |

#### Effect of activated carbon dose

| PAC 1   | UV before | UV after | Removal (%) |
|---------|-----------|----------|-------------|
| 5 mg/L  | 0,639     | 0,605    | 5           |
| 10 mg/L | 0,639     | 0,562    | 12          |
| 20 mg/L | 0,639     | 0,504    | 21          |

## Developing countries...



- A vague notion: what a developing country ?
  - Diversity in terms of infrastructures (i.e. Brazil vs. Mozambique)
  - Inequality between economically dynamic countries and the poorest countries

#### • Significance:

- Wastewater treatment and quality of discharges are crucial issues
- Improving knowledge on contamination and treatment of wastewater is useful for all operators and scientists in the world
- Tertiary treatments could be directly applied in developing countries where biological treatment often doesn't exist
- Limitations: a developed countries issue ?
  - In the 59 poorest countries in the world, half of the people have no access to water and sewer system (United Nations source)
  - Sewer systems often in poor condition (when they exist !)
  - When sewer systems: other conventional water quality parameters are more problematic (nitrogenous/phosphorous pollution, total suspended solids, etc.)
  - A lot of countries couldn't afford tertiary treatment now

## Planning

- Conventional treatments
  - Final correction and submission of an article (July 2013)
  - Campaigns on MBR unit from SIAAP's La Morée WWTP (second semester of 2014)
- Tertiary treatments
  - Large scale pilot campaigns: from June 2013 to November 2014
  - Complementary lab scale experiments (2013-2014)
  - Paper (2015)
- PhD oral presentation (end of 2015)

## Thank you for your attention Any questions?



