Modeling Infrastructure Decisions for Urban Water Planning

Applications for Mexico City

Erik Porse
University of California, Davis, USA
WWW-YES Conference Presentation
5 June 2013

Models

- Used to understand systems and processes
- Decision models
 - Search through possible combinations to identify good solutions
 - Optimization models: search all available solutions
 - Linear, Non-linear
 - Mixed-integer
 - Dynamic
 - Heuristic models: focus search on favorable solutions
 - Genetic algorithms
 - Simulated Annealing

Usefulness of models lies in the insights provided for system function and operation, not absolute numerical results

Optimization Modeling

- Assess "best" solutions to complex problem sets
- Theory and procedures developed over decades
 - Growth of operations research
- Adopted as practice in many fields
 - Transportation planning
 - Water resources
 - Electricity and telecommunications
- Necessary Criteria
 - Define goal or objective
 - Define variable inputs and equations for relationships
 - Identify Constraints

Two-Stage Linear Programming

- Probabilistic mathematical model useful in planning
- Two stages of decisions
 - Initial actions
 - Subsequent "recourse" actions
 - Balance costs and predicted damages
- Applications
 - Events where an initial decision must be made under uncertainty, and subsequent actions are possible
 - Water resources:
 - Flood planning
 - Water demand management

Mexico City and Water

Research Objective:

Use planning models to assess tradeoffs in cost and performance of water infrastructure options for the Metropolitan zone of Mexico City

Applying a Two-Stage Model

- Probabilistic, two-stage decision model for infrastructure and planning decisions in Mexico City
 - Long-term decisions: Municipal and water supply infrastructure
 - Supply pipelines, treatment plants
 - Injection wells, infiltration basins
 - Demand management, rainwater harvesting, water reuse infrastructure, subsidies
 - Short-term actions: Municipal and user actions to mitigate shortages, subsidence, and water quality issues
 - Supply outages and damage costs
 - Water trucks
 - Household reuse

Municipal Water Balance

Water balance calculation

```
Outflows_{Canals} = (Imports + Extractions + HH Actions + Muni Reuse + Runoff)- (Demands + (Rchg_{Infiltration} + Rchg_{Leakage}) + Evaporation)
```

Water Supply

Imports

water supply pipes expansion costs

Extraction

pumping costs

Precipitation Runoff

Municipal Reuse

direct potable reuse

Household Actions

water trucks

rainwater harvest

reuse

Use & Losses

Demands

per capita use

Recharge

leakage

WW treatment &

injection

WW treatment &

infiltration

Evaporation

Water Out

=

System Outflows
Drainage Canals

Approach

- Literature review and interviews
- Identify possible initial actions and costs (long-term)
 - Capital-intensive
- Identify possible subsequent actions to meet demands (short-term)
 - Municipal and household
- Parameterize likelihood of shortage events
 - Possible causes: rainfall, water demands, climate variability
- Seek to identify tradeoffs in:
 - Long-term vs. short-term
 - Distributed vs. centralized

Framework for Potential Actions

Long-term and Short-term Actions, categorized in relation to current approaches

Progress

- Literature review and existing data collection
- Fieldwork interviews
- Data collection
 - Hydrology
 - Groundwater data
 - Water balance calculations
 - Household water use
- Begin with broad system view
 - Apply known variables at appropriate scale to identify data gaps to collect or parameterize
- Consider case-study basins

Outcomes and Limitations

- Develop a hydro-economic model for water management in the Basin of Mexico considering environmental factors
- Explore tradeoffs in various strategies
 - Identify least-cost combinations of actions
- Data needs and applicability
 - Articulate relationships between variables
 - Quantify costs, potential damages, and challenges
 - Practitioner acceptance
- Consider parallel cases of urban water resources development

Incorporating expertise of system managers and researchers is critical to understanding any system

Erik Porse

Ph.D. Candidate + REACH IGERT Trainee Civil and Environmental Engineering University of California, Davis, USA eporse@ucdavis.edu +1 703 835 5381