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ABSTRACT

Kernel PCA has received a lot of attention over the past years

and showed usefull for many image processing problems. In

this paper we analyse the issue of normalization in Kernel

PCA for the pre-image problem. We present a geometric in-

terpretation of the normalization process for the gaussian ker-

nel. As a consequence, we could formulate a correct normal-

ization criterion in centered feature space. Furthermore, we

show how the proposed normalization criterion improves pre-

vious pre-image methods for the task of image denoising.

Index Terms— Kernel PCA, Out-of-Sample, Image De-

noising

1. INTRODUCTION

1.1. Kernel Methods

Kernel methods are a class of powerful techniques that have

been widely used in the field of pattern recognition, with ap-

plications ranging from clustering, classification and recog-

nition to image denoising, signal reconstruction and shape

priors [1, 2]. The key idea of these methods is to map the

training data (such as vectors, images, graphs, . . . ) from

the input space χ into a high-dimensional Hilbert space H

that is better suited for analysis than the original input space.

To do so, a mapping, denoted Φ◦ : χ 7→ H, is implicitly

defined by the property 〈Φ◦(si),Φ◦(sj)〉H
= Wi,j , where

Wi,j = w(si, sj) gives the inner product 〈., .〉
H

between two

points in the feature space and is a measure for similarity. In

practice, the mapping does not have to be computed explicitly

as most techniques only require the computation of dot prod-

ucts that can be evaluated directly using the kernel w(., .).
This is called the kernel trick.

The high-dimensional, possibly infinite-dimensional,

space H is better suited for analysis because data may then

be processed by linear methods such as Principal Component

Analysis (PCA). PCA is a widely used method to compute

second order statistics in data sets. The principal axis found

by PCA reflect the main modes of variation present in the data

set. Kernel PCA refers to the generalization of linear PCA to

its nonlinear counterpart. It was introduced by Schoelkopf [2]

and is one amongst the most prominent kernel methods. It has

received a lot of attention in the data analysis and computer

vision community. Using this methodology, it is possible to

extract efficiently meaningful structure present in non-linear

data, thereby significantly improving PCA results [3, 4, 5, 6].

In general, the mapping Φ◦, also referred to as an em-

bedding, is only known over the training set. The extension

of the mapping to new input points is of primary importance

for kernel based methods whose success depends crucially on

the “accuracy” of the extension. This problem, referred to as

the out-of-sample problem, is often solved using the popular

Nyström extension method [6, 7, 8]. In addition, the reverse

mapping from the feature space back to the input space is of-

ten required. After operations are performed in feature space

(these operations often necessitate the extension of the map-

ping), corresponding data points in input space often needs to

be estimated. This problem is known as the pre-image prob-

lem.

The pre-image problem has received a lot of attention in

kernel methods [6, 3, 5, 4]. Recently, Arias and coworkers

[6] have shown its close connection with the out-of-sample

problem. They also carefully considered the issue of normal-

ization in feature space, thereby improving the “accuracy” of

the out-of-sample extension and the pre-image estimation.

1.2. Contributions

Kernel PCA is achieved by applying a principal component

analysis on the mapped training samples. PCA computes an

eigen-decomposition of a kernel matrix deduced from the ad-

jacency matrix W . Before applying PCA, the data is centered

at the origin. In Kernel PCA the mean of the mapped input

points is not known. Therefore, to simplify, one often as-

sumes that the mapped training points Φ(si) are already cen-

tered in the feature space H and incorrectly diagonalize the

adjacency matrix W [6, 4]. Although simpler to understand,

the resulting presentation of kernel methods misses some im-

portant points.

Our analysis of the kernel PCA methods studies in de-

tail the centering of the data and underlines some important

properties of the geometry of the mapped data induced by

the kernel. We focus on the Gaussian kernel w(si, sj) =



exp (−d2
χ(si, sj)/2σ

2), with σ estimated as the median of all

the distances between all training points [6, 9]. In accordance

with the geometry induced by the Gaussian kernel, we high-

light some non-trivial elements and rephrase some pre-image

methods in a centered feature space[6]. A comparison based

on numerical experiments demonstrates the superiority of our

pre-image methods using a careful normalization in a cen-

tered feature space.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews Kernel PCA and the out-of-sample problem.

Section 3 states the pre-image problem and insists on the is-

sue of normalization in centered feature space. Numerical

experiments on real data are reported in section 4 and section

5 concludes.

2. KERNEL PCA

Let {s1, · · · , sp} be a set of training data in the input space χ.

Kernel PCA computes the principal components of mapped

features in the feature space H. The mapping can be explic-

itly computed by the eigen-decomposition of a kernel matrix

deduced from the adjacency matrix W . The coefficients of

the adjacency matrix W are a measure of similarity between

samples. Typically, the kernel function w(., .) is a decreasing

function of the distance dχ between training points si and sj .
In this work, we focus on the Gaussian kernel. The

Gaussian kernel has the important property of implicitely

mapping the training points onto the unit sphere of H, since

‖Φ◦(si)‖2 = 〈Φ◦(si),Φ◦(si)〉H
= Wi,i = 1. This important

normalization property has been extensively used by Arias

and coworkers [6] to improve the “accuracy” of previous pre-

image methods [3, 5, 4]. In this work, we state the Kernel

PCA methodology in centered space and shows that a finer

degree of normalization can be achieved by considering the

geometry of the mapped features.

Let Φ̄◦ = 1
p

∑

xk∈Γ Φ◦(sk) and Φ∗ denote the centered

mapping, i.e. Φ∗(si) = Φ◦(si) − Φ̄◦. The mapping Φ∗ can

be computed by the eigen-decomposition of a centered kernel

P ∗ [2]:

P ∗ = HWH = Ψ∗Λ∗Ψ∗T = Ψ∗√Λ∗(Ψ∗√Λ∗)
T
,

where H is the centering matrix H = I − 1
p
1p1

T
p and Λ∗ =

diag{λ∗1, · · · , λ∗p} with λ∗1 ≥ · · · ≥ λ∗p−1 > λ∗p = 0. We

denote Λ̂ = diag{λ∗1, · · · , λ∗p−1} and Ψ̂ = (Ψ∗
1, · · · ,Ψ∗

p−1),
the mapping is obtained as:

Φ∗ : χ→ R
p−1, si 7→

√

Λ̂Ψ̂T e∗i . (1)

The canonical basis {e∗1, · · · , e∗p−1} of R
p−1, defined for-

mally by e∗k = 1√
λ∗

k

∑

si∈Γ Ψ∗
k(si)Φ

∗(si), captures the vari-

ability of the point cloud of training samples. Projection of a

S
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∗
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Fig. 1. a) Visualization of the feature points(blue) geometry

in H and the affine subspace(red circle); b) Affine subspace

Sp−1

new test point s ∈ χ onto the kth-canonical vector e∗k in the

feature space can be shown to be:

βk(s) = 〈e∗k,Φ∗(s)〉 = e∗Tk
1√
Λ̂

Ψ̂T p∗s, (2)

where p∗s(sj) = H(ws − 1
p
W1p)(s, sj). (3)

p∗s(sj) is the extended mapping in centered feature space

computed by centering the kernel vector ws. This way

of extending embedding coordinates to new test points

has been used implicitly[3, 5, 4] or explicitly[6] in Kernel

methods[10]. Projecting a new test point s ∈ χ onto the

subspace spanned by the first m∗ vectors {e∗1, · · · , e∗m∗} (i.e.

Pm∗(Φ∗(s)) =
∑

1≤k≤m∗ βk(s)e
∗
k) does not require the ex-

plicit computation of the mapping Φ∗(s) since Eq.2 can be

written only in terms of the kernel.

Working in a centered feature space, some important

(often mistakenly ignored) comments follow. We show

that the fundamental property of the mapped input points

‖Φ◦(si)‖2 = w(si, si) = 1 can be greatly improved in a cen-

tered feature space. To do so, we define the mean in feature

space Φ̄∗(∈ R
p−1) = 1

p
1√
Λ∗

Ψ∗THW1p and consider some

properties of the feature points mapped under:

Φ̃∗ : χ→ R
p−1, s 7→ Φ̄∗ + Φ∗(s). (4)

Under this mapping, the training samples verify:
〈

Φ̃∗(si), Φ̃∗(sj)
〉

=

w(si, sj) − Φ̄∗2
p , with 0 ≤ Φ̄∗

p ≤ 1. The adjacency matrix W

therefore gives (up to an additional factor Φ̄∗2
p ) the inner prod-

uct between two points in the feature space under the mapping

Φ̃∗. The constant Φ̄∗
p has a simple geometric interpretation.

In the feature space, the p non-centered training points, which

belong to the unit sphere, define an affine space that is iso-

morphic to R
p−1. This affine space, spanned by the vectors

{e∗1, · · · , e∗p−1}, is at distance Φ̄∗
p from the origin 0. Conse-

quently, feature points mapped under Φ̃∗ : s 7→ Φ̄∗+Φ∗(s) all

belong to an hypersphere of R
p−1 of radius rp =

√

1 − Φ̄∗2
p ,



i.e. Sp−1(0, rp). This implies that, for all training sample

si ∈ Γ, we have ‖Φ̃∗(si)‖ = rp. This normalization prop-

erty of training samples is stronger than the usual property

‖Φ◦(si)‖ = 1 and will prove important in the next section1.

In particular, this allows us to rephrase some pre-image meth-

ods, such as[6], in a centered feature space, leading to better

results (sect 4). Finally, we note that the mapping Φ◦ can be

deduced from Φ∗ by Φ◦ : χ→ R
p, s 7→ (Φ̃∗(s)T , Φ̄∗

p)
T .

3. PRE-IMAGE

Given a point in the feature space ψ, the pre-image problem

consists in finding a point s ∈ χ in the input space such that

Φ(s) = ψ, i.e. the pre-image ofψ. The exact pre-image might

not exist (when it exists, it might also not be unique) and the

pre-image problem is ill-posed [6, 3, 5, 4]. To circumvent

this problem, one usually settles for an approximate solution

and search for a pre-image that optimizes a given optimality

criterion in the feature space. The pre-image problem has re-

ceived a lot of attention in kernel methods [6, 3, 5, 4] and dif-

ferent optimality criteria have been proposed. Although most

of those are based on the property ‖Φ◦(si)‖2 = 1, significant

improvement can be attained by considering that the mapped

feature points Φ̃∗(si) belong to the hypersphere Sp−1(0, rp)

(or equivalently stated that ‖Φ̃∗(si)‖ = rp). In particular,

we insist on the fact that the popular normalization
Φ◦(s)

‖Φ◦(s)‖

is not equivalent to the normalization
Φ̃∗(s)

‖Φ̃∗(s)‖ . In more de-

tail, note that after normalization by the former criterion, a

feature point does not belong any longer to the affine space

defined by the p-training points. This behavior can also be

seen in Figure 1b), which is the two dimensional visualiza-

tion of the affine subspace(red circle) in Figure 1a). Figure

1a) shows the sphere S and the layout of feature points on S.

The extended mapping of a new input point does not lie on

the sphere(visualized as a purple point). As can be clearly

seen the normalization as proposed in [6] projects the fea-

ture point(purple) onto the sphere(white). But the projected

point does not lie in the span. This is clearly problematic as

the principal modes of variations span only this affine space.

The later normalization is the correct one and should be ad-

vantageously used. Therefore, we capitalize on our careful

analysis of KPCA and define the different optimality criteria

in centered feature space:

Distance:s = arg minz∈χ ‖Φ̃∗(z) − ψ̃∗‖2, (5)

Collinearity:s = arg maxz∈χ

〈

Φ̃∗(z)

‖Φ̃∗(z)‖ ,
ψ̃∗

‖ψ̃∗‖

〉

, (6)

where ψ̃∗ = Φ̄∗ + ψ∗. Recently, Arias and coworkers[6]

have shown the connections between the out-of-sample and

1Note that to compute the radius value rp (or, equivalently, the distance

Φ̄∗

p), it is sufficient to compute ‖Φ̃∗(si)‖ for only one of the training samples

si ∈ Γ.

Fig. 2. Digit images corrupted by additive Gaussian noise

(from top to bottom, σ = 0.25, 0.45, 0.65). The different

rows respectively represent: the original digits and corrupted

digits; different reconstruction methods: [3] ; [3] with nor-

malization ; [5] ; [5] with normalization.

the pre-image problems and proposed a normalized optimal-

ity criterion addressing the important lack of normalization in

kernel methods:

s = arg min
z∈χ

‖Φ̃∗(z) − ψ̄‖2 with ψ̄ = rp
ψ̃∗

‖ψ̃∗‖
. (7)

Instead of solving directly for the pre-image in Eq.7, they

first estimate the optimal kernel vector p∗ψ as a standard least-

squares problem p∗ψ = Ψ̂
√

Λ̂(ψ̄ − Φ̄∗) and then use previous

methods[3, 5] to estimate the optimal pre-image.

4. APPLICATION IN IMAGE DENOISING

In order to validate the proposed algorithm, we run experi-

ments on real world data. We test our pre-image algorithm on



the denoising of noisy images and compare our approach to

previous methods. The computation of Kernel PCA is done

using the Gaussian kernel exp (−d2
χ(si, sj)/2σ

2) where σ is

the median over all distances between points[6].

To test the performance of our approach on the task

of image denoising, we apply the algorithm on the USPS

dataset of handwritten digits2. We show that our normal-

ization method improves two recent state-of-the-art algo-

rithms [3], [5]. Therefore, we form two training sets com-

posed of randomly selected samples (60 and 200 respectively)

for each of the ten digits. The test set is composed of 60
images randomly selected and corrupted by some additive

Gaussian noise at different noise levels. The process of de-

noising simply amounts to estimating the pre-images of the

feature vectors given by the Nyström extension of the noisy

samples. In the case of Kernel PCA, we use the first m∗ = 8
eigenvectors {e∗1, · · · , e∗m∗} to compute projections in feature

space.

σ2 [3] [3] [5] [5]

0.25 10.39 11.71 15.88 16.18

0.45 10.22 12.54 15.80 16.35

0.65 9.95 12.72 15.54 16.32

0.85 9.52 12.58 15.31 16.28

0.25 12.11 12.14 15.83 15.89

0.45 10.22 12.54 15.80 16.35

0.65 9.95 12.72 15.54 16.32

0.85 9,24 12.59 15.31 16.28

Table 1. Average PSNR (in dB) of the denoised images cor-

rupted by different noise level. Training set is composed of 60

samples (first 4 rows) and 200 samples (last 4 rows). The first

and third column show the denoising results without and the

second and last columns with the normalization as proposed

in this paper

Figure 2 displays some of the computed pre-images us-

ing different methods. Table 1 shows a quantitative compar-

ison between different methods based on the pixel-signal-to-

noise ratio(PSNR). Our normalisation method improves visu-

ally and quantitatively both pre-image methods. The results

confirm that the new normalisation criterion in centered fea-

tures space (second and fourth column) yields better results

than previous pre-image methods (first and third column).

5. CONCLUSION

In this paper, we focused on the pre-image problem in ker-

nel methods such as Kernel PCA. We espacially focussed on

the issue of correctly normalizing in centered feature space.

A geometric interpretation eased the understanding of oper-

ations involved when working with centered data in feature

space. As a consequence, we deduced a new normalization

2The USPS dataset is available from http://www.kernel-machines.org.

criterion for previous proposed pre-image methods. The the-

oretical results could be nicely verified at hand of computed

examples.
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