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ABSTRACT

We address the problem of describing precisely an object
present in an image. The starting point is a semantic lattice
defining all possible coherent object descriptions through in-
heritance and exclusion relations. This domain knowledge
is used in a learning process which outputs a set of coherent
explanations of the image valued by their confidence level.
Our first contribution is to design this method for multiple
complexity level image description. Our secondary focus is
to develop rigorous evaluation standards for this computer
vision task which, to our knowledge, has not been addressed
in the literature despite its possible use in symbolic anno-
tation of multimedia database. A critical evaluation of our
approach under the proposed standards is presented on a
new appropriate car database that we have collected.

1. INTRODUCTION

1.1 Problem statement
This work is about generating multiple image annotations

corresponding to various levels of semantic precision. The
origin of the problem we address lies in the nature of se-
mantic interpretation of data. Indeed, describing the con-
tent of an image is an ill-posed problem: the type of rele-
vant description depends on the context of use which is not
univocally defined by the image alone. For instance, when
observing an image containing a car — the type of data that
will illustrate our approach (see Fig. 1) — one may be in-
terested in finding its brand or in characterizing its shape
or its size. One may also be interested in identifying the car
model name, or even its version.

In image retrieval problems, one solution to solve the in-
herent ambiguousness of data description is to make use of
image content description based techniques, i.e. to rely only
on universal image features such as color, shape or texture
models. The claim of this kind of approach is that it is able
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to get around the semantic gap issue, using for instance rel-
evance feedback querying strategies [35].

Another trend to carry out semantic analysis is to exploit
knowledge representations such as ontologies on symbolic
metadata. The use of semantic tools is expected to master
the polysemy or imprecision of both symbolic annotations
and queries. In this family of approaches, two subproblems
need to be solved: the construction of relevant annotations,
and the design of a similarity measure between the annota-
tions and a compatible form of the research query [13].

The target context of this study is domain specific appli-
cations. This introduces several peculiarities:

• meaningful differences between data rely on very spe-
cific details which are hard to guess without expert
knowledge;

• users usually master the specific concepts and vocab-
ulary of the domain;

• the size of the database is large, but typically less than
105 items;

• annotated or reference data are scarce.

Content based image retrieval may not be the adequate
framework for dealing with this kind of constraints, since effi-
cient methods often rely on a rather large learning database,
or address too coarse classification for domain specific appli-
cations. We propose to base our approach on the following
features:

• image indexing is automatic and is based on few refer-
ence annotated data;

• annotations should be coherent with a domain knowl-
edge representation;

• research queries are symbolic or textual;
• semantic ambiguousness is solved offline by generating

multiple annotations,

this last point being the main contribution of our work.

Figure 1: images of cars from 7 different classes.



Table 1: A possible sequence of outputs in our work-
ing scheme: the more precise the description, the
less reliable.

Description Confidence

Hatchback 0,78
Supermini 0,66

Hatchback, Supermini 0,6
Peugeot 0,55

Hatchback, Supermini, Peugeot 0,5
Hatchback, Supermini, Peugeot, 206 0,45

Hatchback, Supermini, Peugeot, 206, 3 doors 0,4

A multiple annotation has to be understood as a distribu-
tion of consistent annotations each valued by a confidence
coefficient (Tab. 1). Each element in this list is assumed to
address a given level of semantic precision roughly charac-
terized by the number of labels.

Retrieval is easy when using this kind of metadata: a data
is retrieved if all the query terms are contained in one of the
annotations. This scheme is therefore a simple string match-
ing procedure, and does not rely on a sophisticated semantic
similarity measure. However, each matched single annota-
tion comes with a confidence coefficient computed offline in
the indexing phase that can be used for sorting or filtering
out the retrieved data.

In this framework, the indexing or annotation process is
automatic and possibly unfaithful, due to lack of learning
or reference data. This means that all annotations may not
have the same level of confidence, especially if they are scarce
and characterize only a small number of samples. Thus, the
confidence coefficient measures the quality of the indexing
step, not the online matching score: since it is a priori, it
can be computed offline.

Not all lists of labels are meaningful. Each label has a
signification — it refers to an object or a property — and is
related to other labels in some fashion. One possible way to
decide the consistency of a list of labels is to embed it into
a logical environment encoding knowledge about the true
states of world. Our goal is not to make logical inferences,
however. Since we are interested in calculating confidence
coefficients associated with all consistent label lists in order
to sort them, we use a simple way of representing domain
knowledge by defining two types of relations between subset
of labels: inheritance and exclusion.

Domain knowledge is equivalent to introducing the con-
straints able to define the subset of consistent lists of labels.
Figure 2 shows an example of inheritance or is-A relations
between labels used for the description of cars. Once the set
of consistent labels have been identified, they can be orga-
nized by subset order in a global structure organizing the
descriptions in various complexity levels: a semantic lattice.
In the general case, such as depicted in Fig. 2, the lattice
does not reduce to a tree and cannot be considered as a
mere taxonomy: this constitutes one of the main difficulties
to master in our problem.

The work presented in this paper explains how such a
semantic lattice is used for describing images with lists of
labels valued with a confidence coefficient. The main con-

tributions are:

• design of a processing chain for multiple complexity
level image description;

• definition of an operating criterion, an error/complexity
curve, for multiple description management;

• careful evaluation of the chain on a database of car
images.

1.2 Related work
Most of the processing chains developed for the descrip-

tion of image content follow the same outline: extraction of
reliable informative features, and construction of a mapping
from those features to an interpretation space.

1.2.1 Image features

Our approach is based on the extraction of local features,
as is now quite usual in object recognition approaches 1.

One policy for computing localized image features is first
choosing a location using interest, regularly spaced or ran-
dom points, then characterizing the image locally. Marsza-
lek and Schmid [23] use patches located by salient region and
point detectors. Lazebnik et al. [17] use dense sampling on a
regular grid. Nowak et al. [25] show that random sampling
achieve comparable performance for bag-of-features type im-
age classification. Chen et al. [12] use the regions texture
and color properties of the segmented image coupled with a
multiple-instance learning algorithm.

Another local image feature computing policy, closer to
the one we are following in this work, is to build detec-
tors adapted to very specific though simple characteristics.
This has been used for a long time in face recognition, for
instance, where eye, nose or mouth detectors form a basis
used to detect or normalize face appearances [1].

1.2.2 Interpretation of features

Images may be described along different directions: Hollink
et al. [15] propose to distinguish between non visual (date,
photographer’s name, digital format . . . ), perceptual (color,
shape, texture, spatial relations . . . ) or conceptual (event,
name of person, place . . . ) levels. The fundamental issue of
data annotation, often referred to as the semantic gap [34,
18], addresses the problem of relating the perceptual and the
conceptual levels. The perceptual level, somehow likened to
what is called the image content, may also be described using
sophisticated symbolic representations [21].

The majority of studies have addressed image description
either as detection or as categorization problem, i.e. the
descriptions belong to conceptual spaces with simple topol-
ogy. More recently, image retrieval issues have requested
more flexible or semantically colored types of description in-
spired by document classification applications [14, 4, 8] and
have addressed multi-label description [3, 19, 7, 9] or ontol-
ogy based annotations reduced to taxonomic or hierarchical
descriptions [29, 5, 30, 23, 27]. [20] introduce uncertainty
on the labelling and compute a probability for each concept
given an image. However, they treat each concept regardless
of their semantic relations. To the best of our knowledge,
semantic hierarchies or taxonomies have been used mostly
to improve performance in recognition tasks [24], or have

1See the classification method description of the Pascal
VOC Challenge 2007
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
voc2007/workshop/everingham_cls.pdf



Figure 2: Example of an is-A graph. Arrows show inheritance relations. Some labels have multiple inheri-
tance. Labels sharing a common parent are exclusive.

been generated as a by-product of a classification scheme
[32]; they have not been used to generate multiple descrip-
tion level characterization.

Our approach intensively uses machine learning techniques.
In this field, several recent studies have addressed learning
in complex or structured spaces extending kernel-based ap-
proaches or graphical models to structured spaces such as
multilabels, strings or hierarchies [2, 11, 10, 31].

The conceptual level studied in this paper has a lattice
topology, and is not organized as a true hierarchy: a descrip-
tion, i.e. a list of labels, may have more than one parent, i.e.
may have more than one simpler consistent description. This
peculiarity motivated the specific developments presented in
following.

1.3 Overview of the approach
The objective of this work is to build a process for the

description of images or objects with multiple levels of se-
mantic precision. The output is a series of lists of labels,
each valued with a reliability or confidence coefficient. The
consistency of each list of labels is guaranteed by a semantic
lattice aiming at representing domain knowledge.

Our global processing chain is divided into four main tasks
(Fig. 3):

1. Extracting image information by computing a signa-
ture.

2. Calculating a probability for each list of labels based
on the image signature.

3. Ensuring global coherence of the probabilities using a
semantic lattice.

4. Issuing the series of consistent lists of labels ordered
by their probability.

The rest of the article is organized as follows: the com-
putation of the signature is detailed in section 2; the image
annotation step using signatures is presented in section 3;
section 4 is about designing an adequate criterion for per-
formance evaluation; experiments and results are presented
in section 5 along with the methods we compared with.

2. IMAGE FEATURES
Image representation based on the detection of local fea-

Figure 3: Synopsis of the processing chain for the
multiple complexity level image description of ob-
jects.

tures have proven successful. Zhang et al. [33] have provided
an in-depth study of the state-of-the-art methods using local
features and kernels for object categorization.

We choose to represent an image as a vector of binary val-
ues where each binary value corresponds to the presence or
not of a particular local patch detector in the image, thus
yielding a low-level semantic vocabulary. As in the bag of
words approach, we do not represent spatial relationship be-
tween features. However, contrarily to the latter technique,
the vocabulary is predefined through labeling in the training
images of small patches potentially discriminant for identi-
fication of each class (logo, lights, . . . ; see Fig. 4).

A detector is designed for each word of the vocabulary. It
is based on

• representing the patches by a SIFT-like descriptor [22]
which is known to cope well with illumination and con-
trast variations: we use 4 × 4 local histograms corre-
sponding to a 4 × 4 square grid, each histogram con-
taining 8 bins corresponding to possible orientations of
the gradient in one of the 4 × 4 squares.

• a one-class-SVM [28] with an histogram intersection



Figure 4: Example of a labeled car. A word is de-
fined using small patches of one part for one car
model.

Figure 5: Examples of detections. Last column is a
false detection, as a rear mirror of the wrong model
is detected. This kind of false detection is expected
to happen repeatedly and is a reason for the noise
on the signature.

kernel [6] which has already been successfully used
with the SIFT descriptors [17]. The advantage of using
one-class-SVMs is essentially to avoid the definition of
the “negative” class through instances: an object is
better defined by what it is than what it is not.

Due to the limited size of the training set and in order to
improve the one-class-SVM classifier, we artificially increase
the training set size by applying small affine transformations
of the training images. In order to control the false alarms,
we look for the patch corresponding to a particular word
only at scales and positions similar to the one observed in
the training set.

To find the presence in an image of a word of this vocab-
ulary, we use a sliding window technique, that is we look for
this patch at different scales and locations. If the word is
found at one scale or one location, the corresponding binary
value is put to 1, otherwise it is put to 0. This signature
is simple, and may be improved in many ways. Since the
emphasis of the work presented in this article is on multiple
description level management, we did not spend too much
time in optimizing the feature extraction step. As a number
of detectors may fail (see Fig. 5), the signatures used in the
next section may be highly noisy.

3. MULTIPLE SEMANTIC ANNOTATIONS
The output metadata built by our procedure has to be un-

derstood as a probabilistic distribution on annotations. The
underlying ideas governing its design can be summarized the
following way:

• use a fixed domain specific vocabulary = set of labels;
• an annotation is reduced to a conjunction of labels, i.e.

a multilabel;
• not all multilabels are consistent;
• some multilabels are less general than others, i.e. yield

to a higher semantic precision.

3.1 Consistent multilabels
Knowledge representations have been widely studied for

semantic web or Web 2.0 applications. WordNet is one of
the most popular one. However, our probabilistic formal-
ism relies on both inheritance and exclusion properties of
labels, which are not explicitly represented in WordNet.
For instance, the entry for car in WordNet indifferently
returns the concepts compact car, minicar, which describe
the size of a car, hatchback, station wagon, which describe
its shape, or taxi, ambulance, which describe its use. Thus
the simple hierarchy of WordNet cannot inform us that
taxi and ambulance are conflicting concepts, no more than
that taxi and station wagon are compatible. Moreover, as
we are concentrating on cars, we would like to have a more
precise description level than the one provided by Word-

Net. For those two reasons — no explicit exclusion between
labels and no specific enough vocabulary — we were forced
to design our own knowledge representation.

In our setting, annotation consists in assigning probabil-
ities to a series of lists of labels or multilabels (we will use
equivalently both expressions in the following). The con-
sistency of multilabels is assessed by specifying inheritance
and exclusion relationships between single labels.

Inheritance is defined using an is-A graph on labels such
as the one shown on Fig. 2. Multiple inheritance is allowed:
for instance, the label Clio has two parents, Renault and
Supermini. This has to be contrasted with taxonomic orga-
nization where each category may not have more than one
parent.

Exclusion is also described using the same is-A graph.
We apply the underlying rule stating that “labels sharing a
common parent are exclusive”, as is also true for taxonomies.

A list of labels will be said consistent if 1/ each single
label contained in the list has all its ancestors in the list and
2/ no two single labels in the list are exclusive. The global
set of consistent multilabels can be organized by set order,
leading to a “semantic lattice”.

3.2 Complexity of multilabels
The notion of complexity of description or semantic pre-

cision plays a central role in our problem. Let’s introduce
a few notations to define it. The is-A graph is a directed
graph denoted by G. Each of its nodes is associated with a
single label. Let Ng be the number of labels or nodes. If i
is a node, we write par(i) the set of parents of i, i.e. the
nodes connected to i, and anc(i) the set of its ancestors. A
root or base node is a node without parent. A leaf is a node
without child.

A multilabel is a subset of labels. It is represented as
a binary vector y ∈ {0, 1}Ng where the j-th coordinate yj

equals 1 if label j belongs to the multilabel. The set of
consistent multilabels, defined by inheritance and exclusion
constraints, is denoted by Yg. The set Yg can be easily
enumerated due to the low degree of connectivity of the
graph. In our application, we used 54 labels, and found 92
consistent multilabels.

Nodes from the graph G and multilabels from the set Yg

are related. A given node i can be mapped to a consistent
list of labels y(i) by aggregating the labels associated with
all its ancestors anc(i).

Multilabels associated with the leaves of graph G have the
highest description complexity. They characterize the data
with the highest degree of precision. These leaves define



exclusive classes. We assume that each data ultimate ground
truth is such a multilabel. In the application tested, we have
20 leaves.

We state that the description complexity is equal to the
number of labels used to describe the data, and define:

• node complexity: C(i) = |anc(i)| + 1

• multilabel complexity: C(y) = |y| =
∑Ng

j=1 yj

Node and multilabel complexities are equivalent since we
have C(i) = C(y(i)).

3.3 Multilabel probability computation
The computation of a probability for each consistent mul-

tilabel is done in two steps: computation of a probability
for each node of the graph G; propagation of those probabil-
ities to all the other consistent multilabels, ensuring global
coherence.

The computation of a probability for node i, or equiva-
lently for multilabel y(i), is achieved using a binary SVM
with gaussian kernel applied on the data signature. For
each node, the database is divided into positive and nega-
tive samples in a one-versus-rest approach. A sample will be
considered positive if its ground truth contains all the labels
of the multilabel associated with the node.

This scheme leads to highly unbalanced problems when
going down the graph. We handled this by using different
SVM C parameters for positive and negative data and using
an adapted error. After training, we followed Platt’s method
[26] for converting SVM outputs into probabilities by fitting
a sigmoid on the classifier output.

Let {p1, . . . , pNg
} be the set of the SVM probabilistic out-

puts for all nodes in the graph given an input signature. We
need to estimate probabilities for the multilabels that are
not associated with a node due to multiple inheritance.

The idea is to build the global distribution of multilabel
probabilities on the probabilities assigned to the leaves, i.e.
the most complex descriptions. Indeed, the leaves make a
partition of the data — they are exhaustive and mutually
exclusive — so that each multilabel should verify:

p(y) =
∑

j∈Ĝ

yjpj . (1)

where p(y) is the probability assigned to multilabel y and

Ĝ is the set of leaves. This equality must hold also for mul-
tilabels associated with each node y(i):

pi = p(y(i)) =
∑

j∈Ĝ

y(i, j)pj . (2)

where y(i, j) is the j-th coordinate of multilabel y(i).
The probabilities obtained using the direct computation of

the SVMs may not satisfy the constraint (2) for every node.
We seek a regularized approximation p̃i of the probabilities
assigned to each leaf, optimizing the criterion :

min
p̃

∑

i6∈Ĝ

wi · (pi −
∑

j∈Ĝ

y(i, j)p̃j)2 +
∑

j∈Ĝ

wj · (pj − p̃j)2, (3)

s.t.
∑

j∈Ĝ

p̃j = 1, and ∀j, p̃j > 0, (4)

where p̃ is the estimated probabilities on the leaves, and wi

is a weight on node i such that probabilities on low com-
plexity nodes are favored. We choose to take wi = 1

C(i)γ ,

and after experiments, we set γ to 0.01. This is a simple

convex quadratic programming problem of dimension the
number of leaves of the semantic graph. The two members
in eq. (3) correspond respectively to (a) trying to reach the
constraint (2) for nodes and (b) keeping probabilities for
leaves the nearest possible to the probabilistic outputs.

The probability of any multilabel in Yg is then computed
using equation 1 where pi is replaced by p̃i. Using this global
computation scheme — SVM on every node + regulariza-
tion — we have assigned a probability to each consistent
multilabel. The next section describes how to exploit this
probability distribution, and how to evaluate its descriptive
capacity.

4. EVALUATION
An algorithm solving our multiple complexity level image

description task should output confidence levels for any pos-
sible description. To be consistent, these probabilities need
to be decreasing along any chain of multilabels y1, . . . ,yk

such that y1  · · ·  yk.
For a test sample with true multilabel t, any multilabel

y ⊆ t is a correct answer. The semantic precision of the
final answer of the algorithm is controlled by an input con-
fidence parameter, denoted hereafter p, that the user can
tune. The idea is to make the algorithm output the most
complex (or precise) explanation of the image which has a
confidence level greater than p. The choice of the multilabel
of maximum complexity with probability larger than p is
done through the following steps:

1. Threshold the set of multilabels to keep only multil-
abels having confidence coefficients larger than p:

Yp
g = {y ∈ Yg|p(y) ≥ p}, (5)

2. Build the set of maximal (in complexity) multilabels
among the high confidence multilabel set Yp

g :

∂Yp
g = {y ∈ Yp

g |∀y
′ ∈ Yg, s.t. y  y′,y′ /∈ Yp

g }, (6)

3. Choose the multilabel ŷ maximizing the probability
p(y) in ∂Yp

g .

To evaluate the classification efficiency of algorithms solv-
ing our multiple complexity level image description task, we
plot an error/complexity curve. This curve is parameterized
by the confidence factor p ∈ [0, 1], a point (c(p), ε(p)) being
the mean complexity and mean error of answers for p on the
test set:

c(p) = 1
N

∑N

i=1 C(ŷi), (7)

ε(p) = 1
N

∑N

i=1 ℓ(ŷi, ti), (8)

where ti is the ground truth for sample i and ℓ is the 0/1-loss
function :

ℓ(y1,y2) =

{

0 if y1 ⊆ y2,
1 otherwise.

(9)

This error/complexity curve is the fundamental tool used
to evaluate and compare multiple description algorithms.

5. EXPERIMENTS

5.1 Dataset
Our dataset is composed of 644 images of 20 classes of

cars with varied inter-class visual and semantical differences.
The dataset is divided into two separate sets namely “La”



(a)

(b)

Figure 6: Each graph shows the probability of each
multilabel for a given test image. Ground truth mul-
tilabel has multiple borders. (a) shows a favorable
case. (b) shows a more ambiguous scenario.

where all images were richly annotated (326 images) and
“Lb” where only the class was given (318 images). The dis-
tribution of examples per class is highly variable depending
on their real global statistical distribution (the photos were
taken in the streets) varying from 3 to 29 photos for a class
in La or Lb. Illumination changes, reflections and car colors
create intra-class variation. The viewpoint angle was limited
to a relatively small range included in “3/4 left-front view”.
Yet the viewpoint change is high enough to have important
differences on the front of the car, such as the right headlight
not always being visible.

The set La was used to design the individual detectors.
We divided it into 5 folds to cross-validate the one-class SVM
parameter C. The best parameter was used to train the clas-
sifier on the whole database. The signatures were then com-
puted for all images in Lb using the detectors thus trained.

5.2 Probabilities
We used SVMs with RBF kernels and a two-level cross-

validation on Lb. The first level is used to find the opti-
mal SVM parameters C and σ. The second level is used to
generate the probabilistic outputs for error estimation. All
probabilities are regularized using (3), and a probability is
computed for each consistent multilabel. These probabili-
ties are shown in the graphs Fig. 6. Each node in this graph
corresponds to a multilabel, and each link from yi to yj de-
notes the fact that multilabel yi is included in multilabel yj

with only one more label in yj . A green node means prob-
ability near to 1, whereas a red node means probability 0.
The figure shows different scenarios : in graph 6(a), there
is strong confidence on the output; in graph 6(b), the result
is more ambiguous, and even low confidence thresholds are
likely to give a low complexity output.

5.3 Classification Results
As a first step, we test the algorithm performance in a clas-

sification framework. The error/complexity curve obtained

Figure 7: Mean error rate vs. mean multilabel com-
plexity computed on the 318 test images in Lb using
0/1-loss.

with our method is shown Fig. 7 along with our adaptation
of Marszalek and Schmid’s algorithm [23]. The algorithm
proposed by [23] is adapted to trees or taxonomies. At node
A they train a binary SVM for each of its child nodes Bi

using positive and negative sets P and N :

P = supp(Bi) N = supp(A) − supp(Bi), (10)

where supp(X) is the set of samples belonging to category
X. The structure we are working on is the combination of
different trees sharing some of their nodes (see Fig. 2). Thus
their algorithm can be applied in each underlying tree to get
a set of multilabels. The confidence threshold p is used with
SVM probabilistic outputs as a stopping criteria : starting
at each base node r, we descend the hierarchy while the
classifier associated with the link returns a probability bigger
than p, giving eventually an output yr(p). For confidence
p, taking as multilabel the union of the outputs from the
different hierarchies might not be consistent. In this case,
we impose a consistent multilabel output by taking the one
of greatest complexity in the union of the multilabels yr(p):

ŷ(p) = argmax
y

{C(y)|y ⊆
∨

r root

yr(p)}. (11)

We compute the mean complexity and mean loss (c(p), ε(p))
on the test set for several values of p to draw the curve in fig-
ure 7. The results show that our algorithm performs better,
especially for higher complexities. For a mean complexity of
6 on the database, our algorithm gives a mean 0/1-loss rate
of 49%, compared to 54% for [23].

5.4 Retrieval results
The principle of multiple annotation is tested on an image

retrieval problem. The protocole conforms to a standard
Google-like session. Queries are conjunctions of keywords
and results consist of ranked lists of data. Since we are
interested in a domain specific context with moderate size
database, evaluation can rely on the knowledge of the entire
database and on the computation of precision/recall curves.



(a)

(b)

(c)

Figure 8: First 12 images retrieved (from
left to right and top to bottom) respec-
tively for multilabels (a) Renault, (b) Su-
permini,Hatchback,Renault,Clio,ClioI and (c)
Supermini,Hatchback,Renault,Clio,ClioII,ClioII-2.
The system is able to retrieve objects from classes
with relatively large intra-class variation as in (a)
as well as distinguishing small variations. The only
falsely retrieved image is marked with a red border.

The retrieval algorithm is a simple string matching com-
paring the query and the annotations. The possible queries
are equal to the set of consistent annotations as explained
in section 3. The global retrieval performance evaluation is
based on examining the returned lists of data for various
thresholds on the confidence coefficients.

Figure 8 shows the first 12 images found for queries of
increasing semantic precision. The computations being done
offline, these results are obtained instantaneously for the

whole database. The corresponding Precision-Recall curves
for the same multilabels are shown in Fig. 9, along with
other related queries. The thick green curve is the average
over all possible queries where each point is obtained by
thresholding the returned confidence coefficients.

Those curves show large variations in retrieval behavior.
The equal precision-recall points vary from 50% to 90% on
Fig. 9, with an average at 68%. The performance decreases
with the complexity of the query, although not strictly mon-
tonically. It is also related to the number of items in each
class, as was noticed also in [16], though some classes with
few examples give also good results. This is not surprising,
since the quality of annotations depends on learning, and
therefore on the amount of available data in each class.

Figure 9: Precision-Recall for multilabels at differ-
ent semantic level. Retrieval is done on the entire
database.

6. CONCLUSION AND FUTURE WORK
This article settles a framework for dealing with multiple

level semantic annotation of images, allowing the setting of a
trade-off between confidence and semantic precision. A com-
plete processing chain to describe images with confidence-
rated multilabels was presented. We defined a criterion
for the evaluation of such multilabel classifiers. Both the
comparison with an algorithm adapted from a hierarchical
classification task and the tests in image retrieval showed
promising results.

The work presented in this paper can be developed in sev-
eral directions. The image signature can be improved using
other types of features or using geometrical relations be-
tween local descriptors. A more interesting approach would
be to use the domain knowledge to control the type of dis-
criminant features in order to build a more “intelligent” sig-
nature.
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