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Abstract

Interactive image search or relevance feedback is the
process which helps a user refining his query and finding
difficult target categories. This consists in partially labeling
a very small fraction of an image database and iteratively
refining a decision rule using both the labeled and unla-
beled data. Training of this decision rule is referred to as
transductive learning.

Our work is an original approach for relevance feed-
back based on Graph Laplacian. We introduce a new Graph
Laplacian which makes it possible to robustly learn the em-
bedding, of the manifold enclosing the dataset, via a dif-
fusion map. Our approach is three-folds: it allows us (i)
to integrate all the unlabeled images in the decision pro-
cess (ii) to robustly capture the topology of the image set
and (iii) to perform the search process inside the mani-
fold. Relevance feedback experiments were conducted on
simple databases including Olivetti and Swedish as well
as challenging and large scale databases including Corel.
Comparisons show clear and consistent gain, of our graph
Laplacian method, with respect to state-of-the art relevance
feedback approaches.

1. Introduction

At least, two interrogation modes are known in content
based image retrieval (CBIR); the query by example and rel-
evance feedback (RF). In the first mode the user submits a
query image as an example of his “class of interest” and the
system displays the closest image(s) using a feature space
and a suitable metric [5, 25]. A slight variant is category
retrieval which consists in displaying images belonging to
the “class of the query”. In the second category (see the
pioneering works [14, 19]) the user labels a subset of im-
ages as positive and/or negative according to an unknown
metric defined in “his mind” and the CBIR system refines a
metric and/or a decision rule and displays another set of im-
ages hopefully closing the gap between the user’s intention

and the response(s) of the the CBIR system [31, 8, 20, 32].
This process is repeated until the system converges to the
user’s class of interest. The performance of an RF system is
usually measured as the expectation of the number of user’s
responses (or iterations) necessary to focus on the targeted
class. This performance depends on the capacity of an RF
system (i) to generalize well on the set of unlabeled im-
ages using the labeled ones, (ii) to ask the most informative
questions to the user (see for instance [28]) and (iii) the con-
sistency and self-consistency of the user’s responses. Points
(i)–(ii) are respectively referred to asthe transductionand
thedisplay models. Point (iii) assumes that different users
have statistically the same answers according to an existing
but unknown model referred to as theuser model.

1.1. Related Work

Different schemes exist in the literature for the purpose
of RF [20, 32] which are either based on density estima-
tion [17, 13] or discriminative training [28], depending
respectively on the fact that they model the distribution
andthe topologyof the positive and (possibly) the negative
labeled images or they build a decision function which
classifies the unlabeled data. In the first category, different
density estimation methods are used in RF including non
parametric Parzen windows [17], Gaussian mixture models
[8], logistic regression [6] and novelty detectors [7, 23].In
[8, 9], the authors introduced a notion of relative judgment
of the user, i.e., the response is not binary but a relative
number measuring the relevance of a displayed set of
images. The user’s response is assumed as a sigmoid
function of the distance, so images close to the highly
numbered set are more likely to be the target than the
others. The authors in [8] used Gaussian mixture models
and a Bayesian framework in order to estimate (and update)
a distribution through all images and display those which
the highest probability. The proposed approach in [9]
defines a criteria based on the mutual information between
the user’s responses and all the possible target images in
the database and display those which maximize this criteria.



In the second family, discriminative methods learn from
the aggregated set of positive and negative labeled images
how to classify the unlabeled ones. Existing RF methods
use support vector machines [28, 28, 10], decision trees
[16], boosting [27] and Bayesian classifiers [10, 29, 8]. The
RF method in [28] shows a particular interest by its impor-
tant gain in the convergence speed when using active learn-
ing [22, 2].

1.2. Motivation and Contribution

The success of relevance feedback is largely dependent
on how much (1) the image description (feature+similarity)
fits (2) the semantic wanted by the user. The gap between
(1) and (2) is referred to asthe semantic gap. The reduction
of this gap basically requires adapting the decision rule (as
discussed earlier) and the features to the user’s feedback.
Many works (see, for instance [20]) consider features
as a weighted combination of simple sub-features each
one captures a particular characteristic. The weight of
each sub-feature and hence the topology of the manifold
enclosing the data is adapted by taking into account the
variance of the labeled set, so relevance feedback will pay
more attention to the sub-features with high variances. Put
differently, adapting features might be explicitly achieved
as in [20] or implicitly as a part of the decision rule training
(as discussed in Section 1.1).

When the original sub-features are highly correlated, it is
difficult to find dimensions, in the original feature space,
which are clearly discriminant according to the user’s
feedback. This follows when the Gaussian assumption
(about the distribution of the data) does not hold or when
the classes are highly not separable, i.e., the data in original
feature space form a non-linear manifold (see Figure 1,
left). Therefore, further-processing is required in orderto
extract dimensions with high intrinsic variances. A didactic
example, shown in Figure (1), (the application is searching
faces by identity), follows the statement in [1]:the variance
due to the intra-class variability (pose, illumination, etc.) is
larger than the inter-class variability (identity). Figure (1)
illustrates this principle where clearly the intra-class vari-
ance estimated through the original feature space (resp. the
intrinsic dimensions of the manifold enclosing the data) is
larger (resp. smaller) than the inter-class variance.Clearly,
searching those faces through the intrinsic dimensions of
the manifold is easier than in the original space.Hence,
learning the manifold enclosing the data is crucial in order
to capture theactualtopology of the data.

In this paper, we introduce a new relevance feedback
scheme based on graph Laplacian[4]. We first model the
topology of the image database, including the unlabeled im-
ages, using an eigen approximation of the graph Laplacian,

Figure 1. (Left) This figure shows the distribution of two classes
corresponding to two individual. It is clear that the intra class vari-
ance is larger than the inter class one. (Right) This is the distribu-
tion of the same classes inside the manifold trained using graph
Laplacian. It is clear that the converse is now true and the classifi-
cation task is easier in the embedding space.

then we propagate the labels by projecting the whole dataset
using a linear operator learned on both the labeled and the
unlabeled sets. The main contributions of this work are:

• In contrast to existing relevance feedback methods
which only rely on the labeled set of images, our ap-
proach integrates the unlabeled data in the training pro-
cess through the cluster assumption [24] (As discussed
in Section 3.1). These unlabeled data turn out to be
very useful when only few labeled images are avail-
able since it allows us to favor decision boundaries
located in low density regions of the image database,
which are very often encountered in practice. The ap-
proach even though proved to work in the particular
task of relevance feedback, it can be easily extended
to other transductive learning tasks such as database
categorization.

• In the second main contribution of this work, we de-
rive a new from of the graph Laplacian which makes
it possible to embed the dataset ina robust way. This
graph Laplacian, based on diffusion map, captures the
conditional probabilities of transition from any sample
to another with a path of a given length. Its particular-
ity is to only consider the intermediate paths with high
transition likelihoods (see Section 3.2).

• For numerical and practical matters, we show in Sec-
tion (4) the extension of the method in order to handle
large scale databases using Nyström interpolation.

In the remainder of this paper, we consider the following
notation. X is a random variable standing for a training
sample taken fromX andY its class label in{+1,−1}
(Y = 1 if the sampleX belongs to the targeted class and
−1 otherwise).G = 〈V,E〉 denotes a graph whereV is
a set of vertices andE are weighted edges. We use also
l, t as indices for iterations. Among terminologies adis-
play is a set of images taken from the database which are
shown to the user at iterationt. The paper is organized as



follows: Section 2 introduces the overall architecture of the
RF process. Section 3 describes our RF model based on the
s-weighted robust graph Laplacian and the display model.
Section 4 provides an extension of the embedding method
in order to handle large scale databases which are very often
encountered in practice, using the Nyström operator. Sec-
tion 5 provides an extensive experimental study using dif-
ferent databases including specific ones; face databases and
also generic databases. We discuss the method and we con-
clude in Section 6.

2. Overview of the Search Process

Let S = {X1, ..., Xn}, Y = {Y1, ..., Yn} denote respec-
tively a training set of images and the underlying unknown
ground truth. HereYi is equal+1 if the imageXi belongs
to the user’s “class of interest” andYi = −1 otherwise. Let
us considerDt ⊂ S as a display shown at iterationt and
Yt the labels ofDt. Our interaction consists in asking the
user questions such that his/her responses make it possible
to reduce thesemantic gapaccording to the following steps:

• “Page Zero”: Select a displayD1 which might be a
random set of images or the prototypes found after ap-
plying clustering or Voronoi subdivision.

• Reduce the “semantic gap” iteratively (t = 1,...,T ):

(1) Label the setDt using a (possibly stochastic)
known-only-by-the-userfunctionYt ← L (Dt). Here
L is referred to as the user model which, given a
displayDt, provides the labelsYt. When the ground
truth is unique, this function is consistent (through
different users) and self-consistent (with respect to
the same user) so the user’s answer is coherent and
objective, otherwise the labeling function becomes
stochastic. The coherence issue is not in the scope of
this paper (see [9] for a comprehensive study), so we
only consider consistent and self-consistent users.

(2) Train a decision functionft : X → {−1,+1} on
the (so far) labeled training setTt =

⋃t

l=1(Dl,Yl)
and the unlabeled set of imagesS−∪t

l=1Dl. The trans-
duction model discussed in (3.1) is the one used for this
training. At iterationt, the target is to efficiently use
both labeled and unlabeled data in order to estimate the
actual decision function,

argmin
f :X→{+1;−1}

P [f (X) 6= Y ] . (1)

In our setting, it is important to generalize well even
when the size of the labeled training set is small. This
is why this step should use transductive methods which

implicitly assume that the topology of the decision
boundary depends on the unlabeled setS−∪t

k=1Dk as
shown in (3). More precisely, the clustering assump-
tion implicitly made is: the decision boundary is likely
to be in low density regions of the input spaceX [18].
(3) Select the next displayDt+1 ⊂ S − ⋃t

k=1Dk.
The convergence of the RF model to the actual deci-
sion boundary is very dependent on the amount of in-
formation provided by the user. AsP (.) is unknown
and the the whole process is computationally expen-
sive, the display model considers a sampling strategy
which selects a collection of images that improves our
current estimate of the “class of interest” (see Sec-
tion 3.3). This can be achieved by showing samples of
difficult-to-classify images such as those close to the
decision boundary. Given the labeled setTt, and let
fD be a classifier trained onTt and a displayD. The
issue of selectingDt+1 can be formulated at iteration
t+ 1 as:

Dt+1 ← argmin
D

P [fD(X) 6= Y ]

s.t. Dt+1

⋂

(
⋃t

l=1Dl) = ∅
(2)

3. Graph Laplacian and Relevance Feedback

Graph Laplacian methods emerged recently as one of
the most successful in transductive inference [4], (spectral)
clustering [26] and dimensionality reduction [3]. The un-
derlying assumption is: the probability distribution gen-
erating the (input) data admits a density with respect to the
canonical measure on a sub-manifold of the Euclidean input
space. LetM denotes this sub-manifold andp the probabil-
ity distribution of the input space with respect to the canon-
ical measure onM (i.e. the one associated with the natural
volume elementdV ). Note thatM can be all the Euclidean
space (or a subset of it of the same dimension) so thatp can
simply be viewed as a density with respect to the Lebesgue
measure on the Euclidean space.

3.1. s-Weighted Transductive Learner

In transductive inference, one searches for a smooth
function f : X → Y from the input feature space into
the output space such thatf(Xi) is close to the associated
outputYi on the training set and such that the function is
allowed to vary only on low density regions of the input
space. Lets ≥ 0 be a parameter characterizing how low the
density should be to allow large variations off (see (3)).
Depending on the confidence we assign to the training out-
puts, we obtain the following optimization problem:

min
f

n
∑

i=1

ci [Yi − f(Xi)]
2 +

∫

M

‖∇f‖2 ps dV, (3)



where theci’s are positive coefficients measuring how much
we want to fit the training point(Xi, Yi). Typically, ci =
+∞ imposes a hard constraint on the functionf so that
f(Xi) = Yi. Thes-th weighted Laplacian operator is char-
acterized by:

∫

M

f × (∆sg) p
sdV =

∫

M

〈∇f,∇g〉 psdV,

wheref, g are infinitely smooth real-valued functions de-
fined onM with compact support. By the law of large
numbers, the integral in (3) can then be approximated by

1

n

n
∑

i=1

f(Xi)∆sf(Xi)p
s−1(Xi). (4)

Unfortunately, the direct computation of∆sf(Xi) for ev-
ery possible functionf is not possible and solving (3) is
intractable.A discrete approximation of thes-th weighted
Laplacian operator, proposes an alternative to this problem.
The method is based on a neighborhood graph in which the
nodes are the input data from both the labeled and unla-
beled sets. Again, letX1, . . . , Xn denote these data and let
K̃ : X × X → R be a symmetrical non-negative function
giving the similarity between two input points. The typi-

cal kernel is the GaussiañK(x′, x′′) = e−
‖x′−x′′‖2

2σ2 and its
degree function is defined as̃d(x) =

∑n

i=1 K̃(Xi, x). Let
λ ≥ 0. General graph Laplacian methods use the normal-
ized kernel defined as

K(x′, x′′) =
K̃(x′, x′′)

[d̃(x′)d̃(x′′)]λ
. (5)

Similarly, the degree function associated with the kernel
K is d(x) =

∑n

i=1K(Xi, x). The kernelK induces
a weighted undirected graphG in which the nodes are
X1, . . . , Xn and in which any two nodes are linked with
an edge of weightK(Xi, Xj). The degree of a node is de-
fined by the sum of the weights of the edges at the node, i.e.
d(Xj).

Let W be then × n matrix in which the generic ele-
ment isK(Xi, Xj). LetD be the diagonaln×nmatrix for
which thei-th diagonal element isd(Xi). The matrixLrw =
D−1W defines the random walk graph Laplacian where the
entry at rowi and columnj characterizes the probability of
a walk from the nodeXi to Xj . For a givenf : X → Y,
let F be the vector defined asFi = f(Xi). The main result
of [12] is essentiallyLrwF )i  

(

∆2(1−λ)f
)

(Xi) where 
means convergence almost sure when the sample of sizen
goes to infinity and the kernel bandwidthh goes to zero
not too rapidly (e.g. h = (log n)−1), up to normaliza-
tion of the left-hand side by an appropriate function ofn
andh. Besides one can understand the role of the degree
functions through the convergences:d̃(x)  p(x), and

d(x)  [p(x)]1−2λ. The above analysis shows that in-
stead of focusing on the intractable optimization (3), one
should solve its discrete counterpart forλ = 1− s/2 in (5):

min
F∈Rn

(F − Y )tC(F − Y ) + F tL̃F,

whose solutions are of the linear system(L̃ + C)F = CY
whereL̃ = Ds−1Lrw in view of (4). HereC is the diagonal
n× n matrix for which thei-th diagonal element isci for a
labeled point, and0 for an unlabeled point, and similarly,Y
is then-dimensional vector for which thei-th element isYi

for a labeled point, and0 for an unlabeled point.

3.2. Our Robust k-step Graph Laplacian

Let us rewriteLrw asL. When embedding a dataset
using the one step random walk graph LaplacianL, the
main drawback is its sensitivity to noise. This comes
from short-cuts, when building the adjacency graph (or
estimating the scale parameter of the Gaussian kernel).
Therefore, theactual topology of the manifoldM will
be lost (see. Figure 2, top). In [15], the authors consider
instead a diffusion map graph LaplacianL(k) (denoted also
Lk), hereLk = Lk−1 × L. The latter models a Markovian
process where the conditional k-step transition likelihood
(between two dataXi andXj) is the sum of the conditional
likelihoods of all the possible (k-1)-steps linkingXi and
Xj . This results into low transition probabilities in low
density areas. Nevertheless, when those areas are noisy, the
method fails in capturing the correct topology (cf. Figure 2,
middle).

Our k-step graph-Laplacian: the above limitation moti-
vates the introduction of a new (called robust) graph Lapla-
cian1, recursively defined as

Lk = [L
1
α

k−1 × L
1
α ]α, 1/α ∈ [1,+∞[ (6)

Let L(i, j)
1
α denotes thejth column of theith row of

L
1
α . Again,L is the one step random walk graph Laplacian

where each entryL(i, j) corresponds to the probability of a
walk fromXi toXj in one step, also denotedP1(j|i). This
quantity characterizes the first order neighborhood structure
of the graphG. In the context of diffusion map[15], the idea
is to represent higher order neighborhood by taking powers
of the matrixL, soLk(i, j) = Pk(j|i) will be the probabil-
ity of a walk fromXi toXj in k steps. Herek acts as a scale
factor and makes it possible to increase the local influence
of each node in the graphG. The matrixLk can be inferred
fromLk−1 andL by summing the conditional probabilities

1Without any confusion and in the remainder of this paper, we denote
by Lk this new form of the graph Laplacian.



Figure 2. The left figures show samples taken from the Swiss roll.
(left) A short cut makes the random walk Laplacian embedding
very noise sensitive, clearly the variation of the color mapdoes
not follow the intrinsic dimension of the actual manifold. (middle)
When using the diffusion map, noisy paths affect the estimation
of the conditional probabilities. This issue is overcome in(right)
when using the robust diffusion map, as now the color map varies
following the intrinsic dimension.

over different paths , i.e.,

[Pk(j|i)] 1
α =

n
∑

l=1

[Pk−1(l|i)]
1
α [P1(j|l)]

1
α (7)

We refer to ak-path as any path ofk steps in the graphG.
Depending onα the general form of the graph LaplacianLk

implements the following random walks:

• α→ 1: [Pk(j|i)]1 is the averagetransition probability
of the k-paths linkingXi to Xj . SoLk implements
exactly the one in [15].

• α → 0: it is easy to see that[Pk(j|i)] 1
α converges

to max
l
{[Pk−1(l|i)]

1
α [P (j|l)] 1

α }, so Lk(i, j) corre-

sponds tothe most likelytransition probability of k-
steps.

• α ∈]0, 1[: [Pk(j|i)] 1
α is dominated by the largest terms

in {[Pk−1(l|i)]
1
α [P (j|l)] 1

α }. The effect of noisy terms
will then be reduced.

Figure (2, bottom) shows the application of (6) in the
embedding of the Swiss roll data (k = 10 andα = 0.2).
Clearly, the topology of the data is now preserved. Fig-
ure (3) shows the robustness of the method to different
amount of noise (againk = 10 andα = 0.2).

3.3. Display Model

The data inS are mapped into a manifoldM such that
any two elementsXi andXj in S with close conditional
probabilities{Pk(i|.)} and{Pk(j|.)} will also be close in
M. Let Λ be the diagonal matrix of positive eigenvalues
of Lk andΨ the underlying matrix of eigenvectors. Con-
sideringLk = ΨtΛΨ, the embedding of a training sample

Figure 3. Robustness of the embedding with respect to uniform
noise throughout the curvilinear abscissa of the Swiss roll. From
top to bottom, the noise is0%, 15% and40%.

in S is ψ : Xi 7→
(√
λ1 ψ1(Xi), ...,

√
λd ψd(Xi)

)′
.

d is the intrinsic dimension which corresponds to the
largest indexl ∈ 1, ..., n such thatλl > δλ1 for some
δ → 0 [11]. The diffusion distance can then be ex-
pressed inM asDM(Xi, Xj) = ‖Pk(i|.) − Pk(j|.)‖2 =
∑

l λl [ψl(Xi) − ψl(Xj)]
2. This distance plays a key role

in propagating the labels from the labeled to unlabeled data
following the shortest path or the average path (depending
on the setting ofα).

We define a probabilistic framework which, given a
subset of displayed imagesD1,...,Dt until iterationt, makes
it possible to explore the manifoldM in order to propose a
subset of imagesDt+1. When we use the unlabeled data by
using a transductive algorithm, the heuristics still rely on
the following basic assumption: at each iteration, one can
select the display in order to refine the current estimate of
the decision boundary or one can select the display in order
to find uncharted territories in which the actual decision
boundary is present. The first display strategyexploitsour
knowledge of the likely position of the decision boundary
while the second oneexploresnew regions. We believe
that any good CBIR system should find the correct balance
between exploration and exploitation.



Exploitation: letD ⊂ S andD′ = {X ∈ D, ft(X) > 0},
(2) is equivalent to :

Dt+1 ← arg max
D′

P (D′ | Dt, ...,D1) (8)

Assuming the data inDt+1 are chosen independently :

P (D′ | Dt, ...,D1) =
∏

Xj∈D′

P (Xj | Dt, ...,D1)

P (Xj | Dt, ...,D1) ∝ max
Xi ∈ Tt
Yi = +1

1/DM(Xi, Xj)
∑

l 1/DM(Xi, Xl)
,

(9)
Exploration: equivalently, the criteria is similar to (8) but:

P (Xj | Dt, ...,D1) ∝ min
Xi ∈ Tt
Yi = +1

1/DM(Xi, Xj)
∑

l 1/DM(Xi, Xl)
, (10)

We consider in this work a mixture between the two above
strategies where at each iterationt of the interaction pro-
cess, half of the display (of size8 in practice) is taken from
exploitation and the other set taken from exploration.

4. Nyström Extension

Relevance feedback usually involves databases ranging
from many thousands to millions images. The complexity
of solving Lk = ΨtΛΨ grows in O(n3) and on those
databases, the problem gets quickly out of hand. For
instance, for Corel database (n = 9.000) it took about15
hours to solve the eigenproblem on a standard64 bits AMD
processor of1.8 GHz, clearly this limits the applicability of
the method for large scale databases.

ConsiderS′ = {Xi}n
′

1 as a subset ofS (n′ ≪ n), n′

is chosen such that the above eigenproblem is numerically
tractable. The Nyström’s extension (see for instance [15])
will then be applied in order to extend the eigen-solution on
the whole setS:

ψl(X) =

n′
∑

i=1

(

K(X,Xi)
∑n

j=1K(Xj, Xi)

)

ψl(Xi), ∀X ∈ S

(11)
HereK is the kernel function used to build the graph Lapla-
cian. In order to show the precision of (11), we randomly
selectS′ from Corel (see Section 5) with different sizes
n′ = 500, 1.000, 2.000 and3.000. For a fixedn′, we con-
sider15 different sampling ofS, and for each one, we es-
timate the embedding ofS′ using graph Laplacian and we
extend on bothS′, S \ S′ using the Nyström interpolation.
The results reported in Figure (4), show two errors:

1. Curve in green shows: expectations of the interpola-
tion error between (i) graph Laplacian embedding and
(ii) Nystrom̈ interpolation, both onS′.

2. Curve in blue shows: the same measures but onS \S′.
In both (1) and (2) the two errors decrease asn′ increases
and asymptotically converge to the same curve. This clearly
corroborates the theoretical statement in [30], which proves
that the eigenvector-expansion of the Graph Laplacian con-
verges to the eigenfunctions of the Laplace-Beltrami opera-
tor.

Figure 4. This figure shows the means of the interpolation error
using the Nyström’s extension. In green: errors onS ′. In blue:
errors onS \ S ′.

5. Performances

In this section, we demonstrate the validity of relevance
feedback using our graph Laplacian. We compare it to pop-
ular state-of-the-art methods including support vector ma-
chines, Bayesian inference and closely related method i.e.,
graph-cuts. In all these experiments, the size of the display
|Dt| and the number of (simulated) user’s responses|Yt| are
set to8. The effectiveness is measured as the expected num-
ber of images per class which are displayed to the user or
equivalently the average number of iterations necessary in
order to show a fraction of images per class.

5.1. Databases

Experiments were conducted on simple databases
(Olivetti and Swedish) as well as difficult ones (Corel). The
Olivetti face database contains40 persons each one repre-
sented by10 faces. Each face is processed using histogram
equalization and encoded using kernel principal compo-
nent analysis (KPCA) resulting into20 coefficients. The
Swedish set contains15 categories of leaf silhouettes each
one represented by75 contours. Each contourC is encoded
using 14 coefficients corresponding to the eigenvalues of
KPCA on C [21]. The Corel database contains90 cate-
gories each one represented by100 images. This database
is generic and images range from simple objects to natu-
ral scenes with complex background. Each image in this
database is encoded simply using a3D RGB color his-
togram of125 dimensions. Notice that the classes are very
spread so the relevance feedback task is more challenging.
For all those databases the ground truth is provided.



Figure 5. (Top) These figures show the recall for Orl, Swedishand Corel databases for different graph Laplacians. (Bottom) Comparison
of Graph Laplacian with respect to SVM, Parzen and Graph-cuts.

5.2. Benchmarking

We evaluate the performance of our RF scheme using
the recall. LetZt be a random variable standing for the total
number of relevant images returned by the CBIR system un-
til iteration t, i.e., those belonging to the user’s “class of in-
terest”. The recall is defined asE(Zt) =

∑

r rP (Zt = r),
here the randomness and the expectation ofZt is taken
through different classes of interest. Figures (5, top) show
the recall for different graph Laplacians including the stan-
dard random walk (RW) and the robust random walk (R
RW) for different values ofα. The recall reported for the
three databases (ORL, Swedish and Corel) show clearly that
whenα ≪ 1 (in practiceα = .5 andα = .2), the em-
bedding generated using the graph Laplacian is robust and
captures better the topology of the data, and hence the per-
formance follow. Nevertheless, whenα → 0 (in practice
α = .01), the performances degrade as the underlying graph
Laplacian implements the most likely path which is more
noise-sensitive (see Section 3.2). In all the experiments,the
path lengthk is chosen large enough in order to make the
approach robust to noise. In practice and after cross valida-
tion we setk = 10.

5.3. Comparison

We compared our method to standard representative rel-
evance feedback tools including inductive methods: sup-
port vector machines (SVMs), Bayesian inference (based

on Parzen windows) and transductive one: Graph cuts. In
all these methods, we use the same display strategy (i.e.,
combined exploration exploitation). We train the SVMs
and Parzen classifiers using the triangular kernel as exten-
sive study in [10] showed that SVM based relevance feed-
back using the triangular kernel achieved far better results
than other kernels, so we limit our comparison to SVM
and Parzen using this kernel only. Again, for graph Lapla-
cian, the scale parameter of the Gaussian kernel is set as
σ = EX,X′∈Nm(X){‖X −X ′‖}, hereNm(X) denotes the
set ofm nearest neighbors ofX (in practicem = 10). The
results reported in Figure (5, bottom), show that in almost
all the cases, the recall performances of relevance feedback
(using graph-Laplacian) are better than SVMs, Parzen and
Graph cuts based RF. Clearly, the use of unlabeled data as a
part of transductive learning (in graph Laplacian and graph
cuts), makes it possible to improve the performance sub-
stantially. Furthermore, the embedding of the data through
graph Laplacian makes it possible to capture the topology
of the data, so learning the decision rule become easier.

6. Conclusion

We introduced in this work an original approach for rele-
vance feedback based on transductive learning using graph
Laplacian. This work demonstrates clearly that this semi
supervised learning is three-edged sword: it is effective in
order (1) to handle transductive learning (in contrast to in-



ductive learning), via the robust s-weighted graph Laplacian
which implements the clustering assumption and uses the
unlabeled data as a part of the training process (2) to capture
the topology of the data so the similarity measure and the
propagation of the labels to unlabeled data is done through
the manifold enclosing the data (3) to achieve a clear and
consistent improvement with respect to the most powerful
and used techniques in relevance feedback including SVMs,
Parzen windows and graph cuts. We also demonstrated the
efficiency of this approach in order to handle large scale
databases using the Nyström extension.
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