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77455 Marne-la-Vallée - France

keriven@certis.enpc.fr

Jean Ponce

Willow - ENS / INRIA

ponce@di.ens.fr

Florent Ségonne

CERTIS - Ecole des Ponts

Abstract

This paper addresses the problem of segmenting an im-

age into regions consistent with user-supplied seeds (e.g., a

sparse set of broad brush strokes). We view this task as a

statistical transductive inference, in which some pixels are

already associated with given zones and the remaining ones

need to be classified. Our method relies on the Laplacian

graph regularizer, a powerful manifold learning tool that is

based on the estimation of variants of the Laplace-Beltrami

operator and is tightly related to diffusion processes. Seg-

mentation is modeled as the task of finding matting coef-

ficients for unclassified pixels given known matting coeffi-

cients for seed pixels. The proposed algorithm essentially

relies on a high margin assumption in the space of pixel

characteristics. It is simple, fast, and accurate, as demon-

strated by qualitative results on natural images and a quan-

titative comparison with state-of-the-art methods on the Mi-

crosoft GrabCut segmentation database.

1. Introduction

Image segmentation, the process of partitioning an im-

age into “meaningful” regions (Figure 1), is a fundamen-

tal task in a large number of applications in computer vi-

sion, medical imaging, etc. For instance, it may be used to

separate an object from its background (e.g., identification

of specific anatomical structures in medical images, track-

ing of persons or objects in video sequences, etc.), or iden-

tify image areas pertinent to some application (e.g., forests,

fields, or towns in satellite imagery). Segmentation also has

obvious applications in painting software (alpha matting for

landscape recomposition, virtual reality, etc.). More gen-

Figure 1. Left: an input image with user-supplied strokes. Right:

the segmentation found by the algorithm proposed in this paper.

erally, effective segmentation methods are a key to better

scene understanding and object recognition.

Yet, current segmentation algorithms are far from match-

ing human performance for natural images. The difficulty

of the task at hand and the limitations of the input data (real

images differ from their models because of noise, occlu-

sion, clutter, etc.) often lead to ill-posed problems. The

segmentation process itself is in general ill-defined without

additional prior knowledge: Homogeneity in some a priori

feature space such as, say, color or texture, is not a sufficient

criterion to define a meaningful, unambiguous image parti-

tion. People probably rely on a combination of low-level

information (e.g., color, texture, contours) and high-level

knowledge (e.g., shape priors, semantic cues) to resolve

these ambiguities. On the other hand, the incorporation of

prior knowledge in automated segmentation techniques is

still a challenging and active research area.

The literature dedicated to knowledge-driven image seg-

mentation is abundant. It includes completely automated

methods [8, 10, 22, 25], semi-supervised methods [4, 12,

11, 9, 13, 17, 23, 1], and model-driven approaches [18, 20,

26], among many others. Semi-supervised (or interactive)

segmentation methods classify unlabelled data (i.e., seg-

ment unknown regions) provided information in the form of



labelled and unlabelled training data (i.e., some segmented

regions, usually user-defined). Since we know beforehand

the points (or pixels) to be labelled, the problem is one of

transductive learning. This is the viewpoint adopted in this

presentation, and we define our segmentation problem as

follows:

Segmentation by transduction: Given a set of user-

supplied seeds representative of each region to be seg-

mented in an image, generate a segmentation of the entire

image that is consistent with the seeds.

The first innovation of this paper is to explicitly cast

the segmentation problem in a transductive learning frame-

work. We make three other contributions: First, we intro-

duce the s-weighted graph Laplacian regularizer to solve

the transduction problem. It appears that several segmen-

tation methods can be re-interpreted as special cases of

our general framework, and we highlight the correspond-

ing connections. Second, we clearly illustrate the link be-

tween the continuous formulation of transductive inference

and its discrete counterpart, introducing a “free” parame-

ter λ = 1 − s/2 as a measure of the output variation on

low-density input regions. As a consequence, our discrete

formulation leads to an energy minimization which reduces

to solving a linear system of size proportional to the num-

ber of pixels to be labelled, resulting in a simple and fast

segmentation procedure. Third, and finally, we demonstrate

with qualitative and quantitative experiments on natural im-

ages that our segmentation algorithm is also accurate (see

Figures 1 and 3 for typical examples). In particular, a quan-

titative evaluation shows that our method compares favor-

ably with other state-of-the-art approaches [4, 12, 11, 13]

on the Microsoft GrabCut segmentation dataset [4].

The rest of our presentation is organized as follows. Sec-

tion 2 presents our transductive view of image segmenta-

tion, and Section 3 describes our segmentation algorithm.

Section 4 discusses its relationship with previous research.

Section 5 presents our experimental results, and we con-

clude in Section 6 with a brief discussion.

2. A transductive view of image segmentation

2.1. Transductive vs Inductive inference

One of the main issues addressed by machine learning is

labeling of new data points given a set of labelled examples;

classically, one observes input-output pairs and wants to de-

rive from this training data the outputs associated with new

inputs. One should distinguish transductive from inductive

inference: In inductive inference, the new inputs are not

known beforehand, so that the algorithm has to learn from

the training set a mapping from the whole input space to the

output space. When new (test) inputs come in, the learned

function maps them to corresponding outputs.

In transductive inference, the setup is different: The

training set and the input test set are both given from the

start (the output test set is of course hidden). As a conse-

quence, the two-step process of learning the input-to-output

mapping before using it on new test points can be replaced

by a single one: learning the output associated with the in-

put test points. This methodology follows Vapnik’s princi-

ple: Do not try to learn more than necessary as an interme-

diate step. It is the one often adopted implicitly in so-called

semi-supervised approaches to segmentation [4, 9, 13, 17].

Note that, strictly speaking, semi-supervised tasks [28] are

slightly different to transductive learning since instead of

starting with a labelled training set and a set of input test

points, semi-supervised learning methods start with a la-

belled and unlabelled training set and do not know in ad-

vance the points to be classified.

In both transductive and semi-supervised settings, one

can use unlabelled points to get an idea of the input distri-

bution, which often turns out to be useful, as illustrated by a

second key principle, often referred to in the machine learn-

ing community as the clustering assumption: Outputs only

vary a lot in regions of the input space having low density.

Figure 2 points out some of the advantages of transduc-

tive classifiers compared to inductive ones: In this toy ex-

ample, we have to differentiate two families of points in R
2.

The learning sets are represented in the top left part of the

figure. An inductive classifier would find a separator in the

middle of the two classes (bottom left). Thanks to the un-

labelled points (top right), a transductive method will find

a separator in a low-density area, resulting in a much more

satisfactory contour (bottom right).

Figure 2. Top left: the training data. Top right: the unlabelled

points in gray. Bottom left: the separator found by a (hypothet-

ical) inductive algorithm, and the corresponding results. Bottom

right: the separator fround by a transductive algorithm and the

corresponding results. The presence of unlabelled points is used

to put the boundary in low density region of the input space. This

is specially useful when only few points are labelled.

In this paper, we explicitly cast segmentation in a trans-

ductive framework, which enables us to introduce the s-

weighted Laplacian graph regularizer, a powerful manifold

learning tool that is based on the estimation of variants of

the Laplace-Beltrami operator and is tightly related to dif-

fusion processes.
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2.2. The segmentation input space

In our multi-zone segmentation problem, the outputs as-

sociated with seed pixels are given; the inference problem

consists in determining the outputs associated with the re-

maining pixels of the image. This is basically a transduc-

tive classification task in which the number of classes is the

number of selected zones in the segmentation. In machine

learning, the question of representation is of crucial impor-

tance. This is the first one we address: How should we

represent image pixels? Our choice for the input space is

motivated by the following considerations:

• pixels coming from the same zone should be well clus-

tered;

• clusters coming from different zones should be well sep-

arated;

• geometric (position) as well as photometric (color, tex-

ture) information should be used to cluster pixels.

We use very simple features in our implementation: we

capture the photometric information at each pixel by record-

ing the image colors in a fixed-size window surrounding it,

and encode geometric information in the form of pixel coor-

dinates. More sophisticated encodings of texture and geom-

etry could of course have been used as well (e.g., [16, 27]).

In order to capture the texture of the different objects, we

associate with each pixel a local patch centered around it:

the texture is then encoded by the color level of the patch.

Finally, the geometric information is just encoded by the

row and column numbers of the pixel. It is interesting to

note that while the combined use of color and texture is

standard, geometric position has been less employed despite

its crucial importance in the image segmentation problem.

The pixel position information is really important as one

can see by considering images in which two identical ob-

jects should be put in two different zones.

2.3. The graph Laplacian method: a state-of-the-
art transductive inference algorithm

Methods based on graph Laplacians have emerged re-

cently and have been successfully used in transductive in-

ference [3], (spectral) clustering [24], and dimensionality

reduction [2].

The underlying assumption in these methods is that the

(input) points are generated by a probability distribution

with support on a submanifold of the Euclidean space. Let

M denote this submanifold, and p denote the density of the

input probability distribution with respect to the canonical

measure on M . When M is the Euclidean space itself (or a

manifold with the same dimension), p can simply be viewed

as a density with respect to the Lebesgue measure on that

space.

In transductive inference, one searches for a smooth

function f from the input space into the output space such

that f(Xi) is close to the associated output Yi on the train-

ing set, and such that the function is allowed to vary only

on low-density regions of the input space. Let s ≥ 0 be a

parameter characterizing how low the density should be to

allow large variations of f , i.e., we consider a s-weighted

version of the density p. One of the main contributions of

this work consists in introducing the “free” parameter s and

in carefully explaining its connection with a specific graph

Laplacian. We also suggest how to choose the parameter s.

For the sake of clarity, let us consider a real-valued out-

put space (such as the space of alpha-matting coefficients

in a two-zone segmentation task [21]). Depending on the

confidence we assign to the training outputs, we obtain the

following optimization problem:

min
f

∑

i∈T

ci[Yi − f(Xi)]
2 +

∫

M
‖∇f‖2psdV, (1)

where the summation is over the pixels of the training set

T , the ci’s are positive coefficients measuring how much we

want to fit the training point (Xi, Yi), and the integral term

essentially forces the function f to vary only in low-density

regions. Typically, ci = +∞ imposes a hard constraint on

the function f so that f(Xi) = Yi. The s-weighted Lapla-

cian operator is characterized by:
∫

M
f × (∆sg) psdV =

∫

M
〈∇f,∇g〉 psdV, (2)

where f and g are smooth real-valued functions defined on

M with compact support. By the law of large numbers and

using (2), the integral in Eq. (1) can be approximated by

1
n

∑n
i=1 f(Xi)∆sf(Xi)p

s−1(Xi).

Unfortunately, the direct computation of ∆sf(Xi) for every

possible function f is not possible and solving Eq. (1) is

intractable.

As shown by Hein et al. in [14], graph Laplacian meth-

ods, which are based on a discrete approximation of the

s-weighted Laplacian operator, propose a discrete alter-

native to this problem. Briefly, these methods are based

on a neighborhood graph in which the nodes are the in-

put points coming from both the training and test sets. Let

X1, . . . , Xn denote these points. Let k̃ : X × X → R

be a symmetrical function giving the similarity between

two input points. The typical kernel k̃ is the Gaussian

kernel k̃(x′, x′′) = e−
‖x′−x′′‖2

2h2 , where h > 0 is com-

monly referred to as the bandwith of the kernel. The de-

gree function associated with this first kernel is defined by

d̃(x) =
∑n

i=1 k̃(Xi, x). Given some scalar λ ≥ 0, general

graph Laplacian methods use the normalized kernel defined

as

k(x′, x′′) = k̃(x′,x′′)

[d̃(x′)d̃(x′′)]λ
. (3)

For λ = 0, no normalization is done. For λ = 1/2,

the normalization is perfect to the extent that multiplying

k̃ by a constant does not change the value of k. The de-

gree function associated with this second kernel is d(x) =
∑n

i=1 k(Xi, x).
The kernel k induces a weighted undirected graph in

which the nodes are X1, . . . , Xn, and any two nodes are
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linked with an edge of weight k(Xi, Xj). The degree of a

node is defined by the sum of the weights of the edges at the

node, i.e., d(Xj).
Let us define W as the n × n matrix such that

Wij = k(Xi, Xj), D as the diagonal n×n matrix such that

Dii = d(Xi), and I as the n× n identity matrix. As shown

in [14], three kinds of graph Laplacian can be defined in

terms of these matrices:

— the random walk matrix: Lrw = I − D−1W ;
— the unnormalized matrix: Lun = D − W ;
— the normalized matrix: Ln = I − D−1/2WD−1/2.

For a given function f : X → R, let F be the vector de-

fined as Fi = f(Xi). The main result of [14] is essentially

that











(LrwF )i  
(

∆2(1−λ)f
)

(Xi),
(LunF )i  [p(Xi)]

1−2λ
(

∆2(1−λ)f
)

(Xi),

(LnF )i  [p(Xi)]
1
2−λ

[

∆2(1−λ)

(

f
p1/2−λ

)

]

(Xi),

(4)

where means almost sure convergence when the sample

size n goes to infinity and the kernel bandwidth h goes to

zero not too rapidly (e.g., h = (log n)−1), up to normal-

ization of the left-hand side by an appropriate function of n
and h. In addition, one can understand the role of the degree

functions through the convergences:

{

d̃(x) p(x),
d(x) [p(x)]1−2λ.

For instance, for λ = 1/2, the three graph Laplacians are

essentially the same since the matrix D converges to the

identity matrix.

The above analysis suggests that instead of focusing on

the intractable optimization (1), one may want to solve

a simple quadratic problem (possibly with linear equality

constraints if some ci’s are infinite), namely:

min
F∈Rn

∑

i∈T

ci(Yi − Fi)
2 + F tLunF, (5)

where the summation is once again taken over the training

pixels T , and λ = 1 − s/2. The parameter λ ≤ 1 (or

equivalently the parameter s ≥ 0) exerts an influence on the

segmentation by characterizing how low the density should

be to allow large variations of the labeling function. Larger

values of s (i.e., s ≥ 1) should reflect the user’s belief that

the labelled data are well-clustered in the feature space.

Let C be the diagonal n × n matrix for which the i-
th diagonal element is ci for a training point, and 0 for a

test point. Similarly let Y be the n-dimensional vector for

which the i-th element is Yi for a training point, and 0 for a

test point. Equation (5) reduces to

min
F∈Rn

(F − Y )tC(F − Y ) + F tLunF, (6)

whose solutions satisfy the linear system

(Lun + C)F = CY. (7)

For infinite coefficients ci, we have Fi = Yi on the training

set. Now by setting the gradient of F tLunF to zero, we

solve the minimization problem (6) and obtain that the Fj’s

on the input test set J are the solutions of the system:
∑

j∈J Lk,jFj = −
∑

i∈{train pixels} Lk,iYi, (8)

for all rows k of the matrix L.

3. Proposed segmentation algorithm

3.1. Two-zone segmentation

Our segmentation algorithm is parameterized by:

— s ≥ 0: a measure of how much we believe that “outputs

should vary only on input regions having low density” (see

Eq. (1));

— σg > 0: scale of geometric neighbourhoods (see

Eq. (9));

— σc > 0: scale of chromatic neighbourhoods (see

Eq. (9));

— m ∈ N: size of the local patch (see below).

Let C(i) denote the RGB levels of a square patch of size

2m + 1 around the pixel i. Let xi denote the geometric

position (row+column) of the pixel i. We use the following

kernel between pixels

k̃(i, j) = e
−

‖xi−xj‖2

2σ2
g

−
‖C(i)−C(j)‖2

2σ2
c . (9)

The labels of the training pixels are either 0 or 1 depending

which zone the pixel i belongs to. Finally, our segmentation

method consists in:

(1) computing Lun (see (4); it uses (3) with λ = 1 − s/2)

(2) solving the sparse linear system (8)

(3) thresholding the output to 1/2: the pixel j is assigned to

zone 1Fj≥1/2.

3.2. Multi-zone segmentation

The previous procedure can easily be extended to a

multi-zone segmentation with more than two zones. Let d
denote the number of zones. The output value associated

with the k-th zone is defined to be the vector of R
d having

all zero coefficients except its k-th coefficient being equal

to one. Then, in order to produce a smooth function that

is coherent with the observed outputs on the training points

(especially on high-density regions), we solve (8) for each

coordinate fk, k = 1, . . . , d. This procedure can be viewed

as a simple one-vs-all segmentation method; at the end, a

pixel is assigned to the zone l, where l = argmaxk=1,...,dfk.

3.3. Segmentation with prior knowledge of the
zones

One might want to use the algorithm without any user-

provided seeds. Consider a two-zone segmentation problem
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(object vs background): If no information is given on the

zones, then one can use the prior proposed in [13, Section

2.2]. In some situations, on the other hand, the user has

prior knowledge of the following form: Each pixel i has a

score si measuring the likelihood that the pixel belongs to

the object zone. This is in particular the case when the user

wants to segment an object with a known texture, previously

learned from a database of objects of the same category.

This information can be directly plugged into the segmenta-

tion method by adding the term: c
∑

i∈{test pixels}(si − Fi)
2.

The computational complexity of the method as character-

ized below remains unchanged.

3.4. Computational complexity

The main computational cost of the algorithm comes

from solving the linear system (8). Using a truncated ver-

sion of the Gaussian kernel, the resulting n × n matrix

becomes sparse. Solving such a system can be done in

O(n.p), where n is the size of the square matrix (the num-

ber of unlabelled points) and p the number of non-zero en-

tries in the matrix (the total number of neighbors for all

the points). In comparison, graph-cut algorithms which are

known to be fast use the Ford-Fulkerson min-cut max-flow

algorithm. Its complexity is O(E.f), where E is the num-

ber of edges and f the maximum flow. In our case, E is

equivalent to p and f is proportional to n, showing that the

two algorithms have the same complexity.

4. Links with previous approaches

4.1. Graph cuts

When the labels Yi’s take their value in {−1; +1}, a vari-

ant of our segmentation algorithm would be to replace (5)

with min
F∈{−1;1}n

∑

i∈T

ci(Yi − Fi)
2 + F tLunF so that steps

(2) and (3) are replaced with the combinatorial task

min
F∈{−1;1}n

Fi=Yi on T

F tLunF.
(10)

This problem can be efficiently solved by a graph-cut al-

gorithm. Straightforward computations show that the edge

between two pixels i and j should be weighted by four times

the (i, j)-element of the matrix W .

For s = 1 (equivalently λ = 1/2 in (3)), the ma-

trix which appears is exactly the one of the normalized cut

eigenvalue problem (see [22]). Besides, the discrete version

of our algorithm for s = 2 (equivalently λ = 0 in (3)) is

comparable to the regularization used in [4, 5, 6].

4.2. Iterative segmentation methods

Several segmentation procedures (e.g., using level sets

[20] or iterated graph cuts [19]) rely on the evolution of

a curve or region in which, at each step, the visual prop-

erties (e.g., color and texture) of the regions are updated.

This leads to generally slow methods because of the itera-

tive aspects of the problem. We believe that our viewpoint

is conceptually and practically more satisfactory since the

“chicken-and-egg” aspect is directly encoded in our global

optimization problem.

4.3. The random walker

In [12, 11], Grady and Funka-Lea motivate their al-

gorithm by interpreting the similarities between pixels in

terms of transition probabilities from one pixel to another

(the ones given by Lrw). Then, for a given pixel, they con-

sider (infinitely many) random walkers starting from this

pixel and all moving according to these transition probabil-

ities. The motivating idea of their algorithms is to assign

a pixel to the class having received the largest fraction of

random walkers. Interestingly, their implementation does

not use the random walk Laplacian Lrw. It rather uses the

unnormalized Laplacian Lun (motivated in their work by po-

tential theory in electrical circuits), so that their algorithm

corresponds to our method for the parameter s = 2.

4.4. Guan and Qiu’s approach

Our framework is capable of handling the energy under-

lying Guan and Qiu’s approach [13]. The minimized energy

functional is the following:

min
F∈Rn

∑

i∈T

ci(Yi − Fi)
2 + F tL2

rwF, (11)

where the summation is as usual done on the training set,

with ci = +∞ and λ = 0. In other words, they solve the

discrete version of

min
f

∫

M
|∆f |2pdV, (12)

where f is constrained to verify Yi = f(Xi) on T .

Considering the regularizer
∫

M
‖∇f‖2pdV (and its vari-

ants) seems to us more adequate than the above regularizer

since the former gives no penalty for linearly-varying func-

tions.

5. Experimental results

Figures 1 and 3 show several segmentation examples on

natural images, where the user input is limited to a small set

of broad brush strokes. The results are qualitatively good,

and mostly agree with perceptual boundaries.

For quantitative results, we turn to the Microsoft Grab-

Cut database [4].1 Despite the availability of numerous

datasets with ground truth segmentations, it is, to the best

of our knowledge, the only one for which seed regions are

given. It contains, however, seeds of a very particular type

since all pixels are labelled except for a narrow band around

the contour of the segmented object. Nevertheless, it is the

1http://research.microsoft.com/vision/

cambridge/i3l/segmentation/GrabCut.htm
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Figure 3. Qualitative segmentation results in the same format as

Figure 1.

only database which permits us to give a quantitative com-

parison with state-of-the-art algorithms.

It may be argued that this dataset is of limited interest

since one can exploit the particular form of the seeds to pro-

vide a good segmentation. Indeed, a naive segmentation ap-

proach that would track the skeleton of the unlabelled points

might perform quite well on this data set. The adaptative

thresholding (AT) method introduced by Guan and Qui in

[13, Section 3.1] essentially produces the same effect. Us-

ing the same adaptive filter, we have also greatly improved

our segmentation results, leading to significantly better re-

sults than the ones reported in [13]. To distinguish the actual

capabilities of our method from the appropriateness of the

AT step to a particular dataset, we have chosen to show our

results with and without that step in the comparative evalu-

ation of Table 1.

Following [4], we believe that, even if the masks consid-

ered in the database contain a considerable amount of infor-

mation, the interactive segmentation task illustrated by this

data is still of considerable practical interest. For instance,

it is easy for a user to use a broad brush and provide the

band where the boundary of the object has to be searched

for. Besides, several object detection algorithms provide a

rough estimate of the region in which the object is (see e.g.,

[7, 15]), and in most cases, this information can easily be

converted into a band containing the boundary.

Figure 4 illustrates some typical outputs of our segmen-

Segmentation model Error rate

GMMRF ([4]) 7.9%
Random Walker (s=2) ([11]) 5.4%

Our method without AT 5.4%

Square Laplacian regularizer ([13]) 4.6%
Random Walker (s=2) with AT 3.3%

Our method with AT 3.3%
Table 1. Pourcentage of mislabelled pixels in the region to be clas-

sified. Note that the two last scores correspond to algorithms ded-

icated to segmentation with contour information (using an adap-

tative filter [13]). A value of s = 1.5 has been used in these

experiments.

Figure 5. Influence of theparameter s on the average error on Mi-

crosoft database

tation with adaptative thresholding (AT) and s = 1.5. The

last column, which corresponds to the worst score (i.e.,

9.15%) of our segmentation algorithm is still of great qual-

ity.

5.1. Discussion

5.1.1 Geometric neighborhood

In the experiments described in this paper, we have consid-

ered a relatively small geometric neighborhood (σg = 10),

a small chromatic neighborhood (σc = 10) and the minimal

patch size (m = 1). We have found empirically that the

graph Laplacian is not efficient with a too large σg . Isolated

pixels appear, large zones influence become too important.

So the algorithm cannot use long range pixel similarity. To

tackle this problem, we think that it shoud be used in associ-

ation with long-range or global methods such as a Gaussian

mixture color model [4] or a SVM classifier. This could be

done using the method explained in Section 3.3. The graph

Laplacian would help to diffuse the prior knowledge of a

smart classifier.

5.1.2 Comparison with graph cuts

Algorithms based on graph Laplacians and graph cuts

can minimize the same energy function by an appropriate

change of kernel. They have the same theoretical complex-
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Figure 4. Top row: Initial images. Middle row: Masks provided for the segmentation. Bottom row: Results of our segmentation with

s = 1.5. Our method performs essentially as well as the case s = 2 ([11]; “random walker”) with a score of 3.3%. The last column

corresponds to the worst segmentation with 9.15%.

ity but it is well known that, in many computer vision tasks,

the running time of graph cuts is below what is expected

from its theoretical complexity. However, graph cuts pro-

vide only labels and our algorithm provide a real-valued

score function. This score function can be used to perform

alpha matting, or it could be used as a confidence score. In-

deed zones different from both learning zones received an

almost null score.

5.1.3 Computational time

The segmentation process takes between two seconds and

three minutes on a Pentium 1.7 GHz for the database im-

ages. Real time is not yet reachable. But this time could be

improved by standard multicore methods for sparse system.

5.1.4 Influence of the “free” parameter s

At this point, our evaluation of the effect of the parame-

ter s on segmentation performance remains quite prelimi-

nary. A quantitative evaluation using the Microsoft Grab-

Cut database only shows a modest influence of its value on

the segmentation error rate (less than 1% in the operating

range of our experiments, with an optimal value around

s = 1.5, see Fig. 5). To get a deeper understanding of

these effects, we are conducting a series of simulations on

synthetic examples. So far, these experiments suggest that

when s gets very large, the influence of the locally dens-

est training points becomes so important that neighbor test

points get labelled exactly the same way. On the other hand,

when s gets smaller, the f function becomes very smooth.

6. Conclusion

We have presented a simple, yet accurate segmentation

procedure in a transductive framework. We clearly illus-

trated the link between the continuous formulation and its

discrete counterpart, introducing a parameter s as a mea-

sure of the output variations on low-density input regions.

Our discrete formulation leads to an energy minimization

which reduces to a linear system of size proportional to the

number of pixels to be labelled. Segmentation results on

natural images clearly demonstrate the quality of our ap-

proach, and a quantitative evaluation on the data set of [4]

has shown that our method performs very well (the results

are essentially similar to the ones in [11] which corresponds

to s = 2). Future work will focus on improving the design

of the kernel to make it better adapted to the segmentation

task at hand, and on reducing the complexity of the algo-

rithm and making it real-time in high-resolution images.
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